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ABSTRACT
While an increasing share of intermittent and non- dispatch-
able renewable energy plants cause probabilistic behavior at
the power grids’ supply side, the expected penetration of
electric mobility at the demand side offers the opportunity
of controllable load. Their optimal coordination is one ma-
jor concern for future smart grids. Therefore, a multi-agent
system will be proposed where each electric vehicle (agent)
acts in response to dynamic conditions in its environment
according to a given strategy. Optimizing these strategies
will be the core of this paper, while evolutionary computa-
tion will be used for optimization. Here, simulation mod-
els will be applied for problem representation and solution
evaluation. Thus, simulation allows modeling of complex as
well as probabilistic systems, necessary for the herein tack-
led probem. In the end, the optimized strategies determine
electric vehicles’ charging behavior such that end-users’ en-
ergy demand is satisfied and secure power grid operation is
guaranteed throughout the considered grid using power from
renewable plants. For solution representation, two different
approaches will be compared concerning reachable solution
quality as well as problem-specific metrics.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter Learning

General Terms
Theory, Experiments

Keywords
Electric Vehicle Charging Control, Evolutionary Strategies,
Policy Optimization, Simulation-Based Optimization

1. INTRODUCTION
Various researchers already investigate the integration of

electric vehicle (EV) charging into modern power grids and
therefore show the necessity of control strategies [5] [6] [13].
Designing these strategies proved to be a challenging task
due to the stochastic nature of individual behavior. Addi-
tionally, an increasing share of zero-emission power supply
forces the penetration of intermittent and non-dispatchable
power plants like wind power or photovoltaics. Their fluctu-
ating and weather-dependent power output further compli-
cates the situation in power grids from the supply side. The
combination of electric mobility and probabilistic supply is
therefore a highly fruitful field, since controlling EV charg-
ing leads to a dispatchable distributed load, which will be
the central topic of this work. Therefore, a simulation-based
optimization approach will be shown that uses evolutionary
algorithms. This approach is applied for optimizing policies
within a multi-agent system. The computed optimal poli-
cies of the electrified car fleet both satisfy energy demand
of individual car users as well as incorporate the physical
characteristics of the electric power grid under the special
condition of partly probabilistic supply. Since the electric
power grid will be considered through load flow simulations,
constraints can be integrated that ensure reliable operation
and maximize utilization of renewable energy. Thus, a holis-
tic integration of the power grid model into the optimization
process is enabled.
One way to solve such a scheduling problem is by calculat-
ing a solution that consists of a fixed charging schedule for
each vehicle, that considers its forecasted behavior as well
as power system conditions in advance. However when the
system is very dynamic and situation changes on the fly,
planning ahead is difficult. In such a case it would be more
appropriate to make decisions as they come up, reacting to
a new order situation very quickly. Therefore, optimization
of a flexible and reactive charging policy for agents (EVs) is
applied, that lets them react to dynamic conditions. This
policy is principally the same for all EVs, but using input
data from agent’s individual environment it leads to agent-
specific charging behavior.
The rest of the paper is organized as follows: section two
states the problem description while referring to related lit-
erature. In section three, the two different solution repre-
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sentations are discussed mentioned before. Experiments for
both variants are performed in section 4, comparing their
achievable outcome. Section 5 rounds up the paper with
concluding remarks.

2. OPTIMAL EV CHARGING - PROBLEM
STATEMENT

2.1 Problem Formulation
Given a fleet of EVs within a distribution grid, a vector

Pc = [Pc1,1, ..., P ci,n] describes the active charging power
of each EV n at time step i over a given time interval. At
the end of the considered planning frame, each EV must
have received a specific amount of energy for satisfying its
daily demand

∑24
i=1 Pi,n ∗ ∆t ≥ Emin. This constraint is

valid assuming that batteries are big enough and the one-
way distance of a car does not lead to a low state of charge.
Since additional load caused by related charging of electric
vehicles can endanger power grid security, constraints have
to be satisfied that ensure secure distribution grid opera-
tion. Thus, within each time step i, power flow constraints
have to be considered. Steady-state security constraints can
be formulated according to [16] for ensuring lower and up-
per bounds for generator real and reactive power output
Pmin
Gj

≤ PGj ≤ Pmax
Gj

and Qmin
Gj

≤ QGj ≤ Qmax
Gj

, over all
buses j = 1, ..., J . Power flow over transmission lines shall
be constrained to Pl ≤ Pmax

l as well as the voltage deviation
being restricted to V min

j ≤ Vj ≤ V max
j for all transmission

lines l = 1, ..., L.
While satisfying all formulated constraints, the objective
function shall be defined of minimizing financial costs of
power supply: min

∑J
j=1 Cf(Pg). Pg in this case is im-

plicitly given by Pc and the remaining load to the system
plus power losses, which have to be satisfied.

2.2 Scenario Description
As real-world scenario, the IEEE 14-bus testcase [10] is

used as distribution grid model. At four buses in the sys-
tem, photovoltaic plants are installed as well as two addi-
tional wind power plants, which supply renewable power to
the system. The resulting power output from these plants
is integrated using probabilistic models that describe their
mean power supply within the scheduling horizon. Since en-
ergy from renewables is assumed to be cheaper than from
the remaining energy market, minimizing costs of supply in-
trinsically means maximizing utilization of renewables. Ad-
ditionally, it is assumed that all additional energy that has
to be served by the slack bus has to be imported from a
higher power grid level and thus has to be bought at the en-
ergy spot market. Therefore, price data from the european
electricity spot market is used for the cost function. Since
prices tend to be high during peak hours, minimizing finan-
cial costs of power supply causes load-shifting to off-peak
periods as we see later when discussing the experiments. A
schematic description of the distribution grid can be seen
in Figure 1. The IEEE 14-bus testcase is downscaled such
that all EVs in the system can cause a maximum charging
load that sums up to 10% of the total load in the worst case.
This worst case describes the event that all EVs charge at
the same time with full power. Avoiding this is actually
the aim of charging control within smart grids. The used

Figure 1: Distribution Grid Layout

Figure 2: Simulation Optimization Architecture

test system is discussed more in detail in [8], just a brief
overview that is needed for outlining the problem scenario
is given here.

The outline of the distribution grid model shows the dif-
ferent interconnected buses as well as their characteristics.
The black bar shows the slack bus, which is necessary for
power flow calculation [16] [17]. There are three buses in the
system that serve es generator buses supplying energy from
photovoltaics, two buses inject electricity from wind power
plants, and additionally to the slack bus, one bus serves
as deterministic generator which injects power according to
a defined profile. All buses are assumed to be load buses
additionally. Assuming that this distribution grid mainly
consists of domestic customers, all loads follow a common
load profile discussed later. The single loads satisfy this
profile with a normally distributed deviation of N(1,0.016),
which is a valid assumption [13]. All parts of the simulation
are realized as autonomous components, building aggregated
the problem representation. The simulation architecture is
shown in Figure 2. The simulation is implemented in Mat-
Lab, whereas the distribution grid load flow simulation is
realized using MatPower [17], an open source toolbox for
MatLab.

The simulation model itself consists of three components,
including the distribution grid influenced by the probabilis-
tic supply model as well as the traffic model which describes
the behaviour of EVs. In the given system, in total n = 960
independent agents exist that are simulated to behave ac-
cording to an Austrian survey on traffic data [4]. Emin is de-
fined to be 8kWh over a period of i = 24 hours, which yields
into a mean driven distance of 40 kilometers per day. These
EVs are modeled using two different basic driving patterns,
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namely patterns of half-time workers and full-time workers
during a week day. This model simulates synthetic driving
profiles, that describe location, time step as well as dura-
tion of residence of all single EVs. At each location in the
simulated system, a charging station may exist according to
a certain probability, which conforms with actual real-world
activities in charging infrastructure implementation plans.
From the renewables point of view, the probabilistic sup-
ply models describe the expected injection of power from
renewable plants using probability distributions. More in-
formation on these models can be obtained in [8], beeing too
extensive for the scope of this paper. The distribution grid
model takes the resulting load of electric vehicle charging as
well as the simulated input from renewable supply for cal-
culating the final power flow solution.
The strategy with which the EVs charge their batteries is
defined by the solution candidate, using two different solu-
tion representations as discussed in the next section. In the
end, the desired solution satisfies EV users’ energy demand
while considering all constraints from the distribution grid
point of view for ensuring secure power grid operation.

3. SOLUTION REPRESENTATIONS
Within this work, two different solution representations

will be discussed: the first approach tries to compute the
vector Pc statically in advance, considering forecasted be-
havior through simulation. However when the environment
is very dynamic and situation changes on the fly, planning
ahead is difficult. In such a case it would be more appro-
priate to make decisions as they come up, reacting to a new
order situation very quickly. Therefore, optimization of a
flexible and reactive charging policy for each agent (EV) is
applied, that lets it react to dynamic conditions.

3.1 Computing Static Schedules in Advance
This solution representation is extensively discussed in [8].

Principally, it directly contains the vector Pc as real-valued
vector, which ensures optimal behavior beforehand consid-
ering forecasted behavior of the system. This presentation
seems to be the easiest and most intuitive way for tackling
this problem, but can lead easily to solution space explosion.
When for example handling the herein defined n = 960 EVs
with i = 24 time steps, using Pc directly as solution repre-
sentation, 960∗24 control variables would be needed exceed-
ing a manageable problem size for evolutionary algorithms.
In this case, clustering is applied, where agents (EVs) with
similar behavior and similar local appearance in the power
grid get clustered using the same solution, thus reducing the
solution space drastically. Within this study, EVs are clus-
tered to group sizes of 60, which is valid according to the
defined problem and leads to a problem size of 384, which
is indeed manageable for evolutionary algorithms. Beside
the exploding problem size, this representation additionally
shows the disadvantage that it considers volatile behavior of
the stochastic system in advance, being very unflexible to
dynamic conditions.

3.2 Multi-Agent Policy Optimization
When trying to find optimal behavior within a volatile and

uncertain system, it’s more adequate for each agent to make
decisions as they come up, reacting optimally to its individ-
ual environment. This can be realized using a policy-based
approach, where each agent (EV) in the system receives a

flexible policy rather than a static charging schedule. This
policy lets him react to influences quickly, but in an optimal
manner.

3.2.1 Principles of Policy Optimization
The principle of optimizing a multiagent system based on

policies is a common approach in operations research, estab-
lished for example in the field of production logistics. Here,
for example each job within a process chain serves as agent
that acts according to a policy which describes its prior-
ity at a certain point in the process. This priority decides
for example its position within a waiting queue of a specific
service. It is based on a policy that is computed using agent-
specific input data as actual waiting time, service time, or
other logistical metrics. Since serving a number of electric
vehicles with power while considering restrictions from the
supply infrastructure can be seen as similar problem as we
see further, thus, the concept of policy optimization shall be
applied now. Here, the aim is not to compute the optimal
priority of an agent at a specific point in the process, but to
compute its optimal charging power at a specific time step.
Therefore, the value ”priority” is substituted by the amount
of power a car is desired to charge relative to its maximum
charging power. A similar work with the aim of demand
response has already been performed in the field of electric
engineering, also constituting the application of policy-based
optimization within this field [12]
[11] provides a huge overview of established priority rules in
production plant logistics. These rules are generally depen-
dent on logistic metrics, but can be adapted to the herein
handled problem. Many such logistical rules for example
prioritize jobs according to their remaining number of op-
erations, distance to due date, imminent operation time or
information about their remaining time. Such simple rules
can be adapted easily to the problem of charging control.
Instead of computing a job’s priority based on remaining
number of operations or its imminent operation time, us-
ing values like an EV’s remaining energy demand or its re-
maining residence time at a charging spot can be taken for
computing its necessary charging power. Thus, adaptation
of existing rules and their formulation with EV and pow-
ergrid specific metrics is absolutely feasible as well as valid
for handling the herein defined problem. Additionally to
the adapted rules coming from logistics, further rules have
to be defined that consider electricity generation and distri-
bution metrics for regarding the power grid situation as well.

In order to get a single policy out of the later formulated
amount of simple rules, rule synthesis is applied similar to
[14] and [2]. First, all simple rules are normalized accord-
ing to their maximum value for ensuring that their output
value is in the interval [0,1]. The normalized rules rk with
k = 1, ...,K are further combined using equation (1) for
computing the charging rate.

CRi =

∑K
k=1 rk,i ∗ wk

k
(1)

Each rule is multiplied by a weighting value wk in the in-
terval [0,1]. It obviously follows, that the resulting value of
the charging rate CR at time step i exists within the inter-
val [0,1] as well, and describes the computed charging power
of the EV relative to the maximum power of the charging
infrastructure.
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In the end, the policy defines the charging behavior of each
single EV. Even if the policy is principally the same for all
agents, using situation-specific input data it leads to indi-
vidual and (near-)optimal behavior where Pci,n is computed
exactly at time step i. An illustration of the principle is
shown in Figure 3.

Figure 3: Illustration of Policy Principle

3.2.2 Implementation to Defined Problem
Since there exist generally a high variety of possible rules,

those have to be selected, that are suitable for the formulated
problem. The finally applied rules are shown in Table 1.
While the first three rules consider agent-specific infor-

mation of the considered EV, additional rules using local
(at the same bus) and global (in the entire grid) informa-
tion are formulated for regarding the power grid’s opera-
tion point. Irradiance as well as wind speed data during
the whole residence period of an agent is taken into account
since using renewable power for charging batteries should be
forced. Base load data is used with the intention of shifting
charging to off-peak hours. Since the objective function of
the optimization problem aims at minimizing financial costs,
price data is used as well. For representing local distribu-
tion grid aspects, data from connected branches is included
as well as information about how many EVs are remaining
at the same bus during the considered time steps, using lo-
cal information.
While the lion’s share of rules can be seen of concerning ab-
solute values that do not depend on the states before, i.e.
on the evaluation of the policy in step i− 1, the last 4 rules
consider state-dependent rules. Here, the evaluation of the
rules depends on the evaluation at the steps before, where
the actual charging rate is taken into account that resulted
from policy evaluation. The last 7 rules (including MMVA to
MCRB) additionally incorporate the interrelation between
agents implicitly, that influence the resulting charging rate
of an agent according to the actual behavior of the others.
Thus, competitive behavior is integrated.
An additional information is important considering each rule:
namely if this rule leads to a higher or lower charging rate.
Taking for example ETTD: an EV that has a relatively high
remaining time left at the charging station should get a lower
charging rate at the actual time step. This is intrinsically
clear, since there is much time left to get charged, probably
more than for other agents. Therefore, this rule is getting
inverted. Thus, ”prioritize minimum” is added.
For all these rules it is theoretically assumed that the needed
information can be obtained. In practice, information tech-

nology will be needed providing required data, which could
be implemented by aggregators when regarding actual trends
in the smart grids research field.

The control variables for the optimization are the weights
wk, therefore, a 23-dimensional real-valued optimization prob-
lem has to be tackled.

4. EXPERIMENTS
The central functionality of the optimization approach

shall now be discussed.

4.1 Simulation-Based Evolutionary Optimiza-
tion

Simulation-based optimization with evolutionary algorithms
according to [9] is applied for handling this problem. The
central idea of this approach is the application of simulation
for evaluating the fitness of a solution candidate generated
by the metaheuristic optimization algorithm. During eval-
uation, Pci,n is computed from the policy for each agent
directly in the simulation for the policy-based approach,
whereas for the static approach the whole vector Pc is com-
puted explicitly by the optimization algorithm. Given the
so computed charging rates, the resulting fitness of the so-
lution candidate is evaluated through simulation. This eval-
uation will be sampled a sufficient number of times in order
to overcome uncertainty of the stochastic system which is
represented through simulation. Uncertainty in this case
occurs because of probabilistic models of intermittent sup-
ply on the one hand, but because of the uncertain individual
traffic behavior on the other hand. The optimization pro-
cess especially for the policy-based multi-agent approach is
shown in Figure 4.

The used algorithm is abstracted being a single box and
will be discussed later. The solution evaluation is the more
interesting part now: as known from the problem descrip-
tion, the model consists of different parts including electric
distribution grid model, electric vehicle traffic model and
probabilistic supply model. These three simulation models
are aggregated for evaluating a solution candidate. At the
beginning of the evaluation, the traffic model as well as the
renewable sources are simulated. Using this data, for the
policy-based approach the resulting charging rate is com-
puted for each agent over all time steps, serving as input
data for the distribution grid model. Using load flow simu-
lation, all constraints as well as the resulting fitness value are
computed. Constraints are incorporated using the concept
of penalization, where the fitness of a solution candidate is
penalized by the degree of constraint violation. The final
fitness function is shown in equation (2), where the financial
objective function value is enhanced by a vector CV describ-
ing constraints violations. Handling multiple constraints as
defined above, a vector R describes the weight of each con-
straint relative to the objective function. Since the problem
is stochastic and the respective simulation model will deliver
deviating fitness values for the same solution candidate, each
candidate is sampled a sufficient number of times in order
to estimate its true performance within the uncertain envi-
ronment when averaging its fitness over all samples.

Minimize :

24∑
i=1

[Cf(Pc) +R ∗ CV (PC)] (2)
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Table 1: Formulation of Simple Rules
Rule Acronym Description
Residence Time So Far RT Total residence time during all previous time steps, prioritize minimum
Estimated Time to Depar-
ture

ETTD Remaining residence time at actual charging station, prioritize minimum

Passed Residence Time PRT Passed residence time at actual charging station, prioritize minimum
Actual Irradiance AI Actual solar irradiance relative to known maximum, prioritize maximum
Past Irradiance PI Past mean solar irradiance during PRT, prioritize maximum
Estimated Irradiance EI Estimated mean solar irradiance during ETTD, prioritize maximum
Actual Wind Speed AWS Actual wind speed relative to known maximum, prioritize maximum
Past Wind Speed PWS Past mean wind speed during PRT, prioritize maximum
Estimated Wind Speed EWS Estimated mean wind speed during ETTD, prioritize maximum
Actual Base Load ABL Actual base load relative to peak load value, prioritize minimum
Past Base Load PBL Past mean base load during PRT, prioritize minimum
Estimated Base Load EBL Estimated mean base load during ETTD, prioritize minimum
Actual Price AP Actual price relative to peak price value, prioritize minimum
Past Price PP Past mean price during PRT, prioritize minimum
Estimated Price EP Estimated mean price during ETTD, prioritize minimum
Distance to Peak Load DTP Absolute temporal distance from time of peak load, prioritize maximum
Mean MVA Rating MMVA Mean MVA rating of connected branches relative to maximum ratings

in the grid, prioritize maximum
Number of EVs at Bus NREVB Actual number of EVs remaining at bus, prioritize minimum
Mean Number EVs during
PRT

MNREVB Mean number of EVs remaining at bus at each time step during PRT,
prioritize minimum

State Dependent Policies
Number of EVs Charging NREVC Total number of EVs charging during last time step, prioritize minimum
Number of EVs Charging,
Same Bus

NREVCB Total number of EVs charging during last time step at same bus, prior-
itize minimum

Mean Charging Rate MCR Mean charging rate (relative to maximal charging power) per EV during
last time step over all EVs, prioritize minimum

Mean Charging Rate,
Same Bus

MCRB Mean charging rate (relative to maximal charging power) per EV during
last time step over all EVs at same bus, prioritize minimum

Figure 4: Optimization Process Flow
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Principally, evolution strategies (ES) [3] are used as evo-
lutionary algorithms, which have been successfully proved
to be performant for real-valued optimization problems. In
principle, ES is a nature-inspired population-based optimiza-
tion algorithm, that tries to improve a set of solution candi-
dates until a certain stopping criterion is reached. Contrary
to other related algorithms, ES selects the best individuals
within each generation and improves them where mutation
is the main evolutionary operator. It is generally proven to
be a powerful and efficient metaheuristic algorithm for real-
valued optimization problems, supplied by its special ability
of self-adaptiveness within the search process. For both ap-
proaches considered within this paper, different algorithm
parameterizations have been tested in order to get the best
performing. Tests have been carried out extensively thanks
to HeuristicLab’s huge algorithm library. Finally, best pa-
rameters have been found as shown in Table 2. A detailed
description of the parameters can be found in HeuristicLab
[7] which is used as optimization framework using MatLab
as Plug-In, respectively the appropriate literature [1] [15].

Table 2: Configurations Evolution Strategies

Approach 1: Optimization of Static Schedule

Type (20 + 40)-ES

Manipulator SelfAdaptiveNormalAllPositions-
Manipulator

Recombinator Single Point Crossover

Parents per
Child

2

Stopping Cri-
terium

Maximum Generations: 5000

Sampling Sample Each Solution 6 Times

Approach 2: Policy Optimization

Type (5 + 15)-ES

Manipulator SelfAdaptiveNormalAllPositions-
Manipulator

Recombinator Average Crossover

Parents per
Child

2

Stopping Cri-
terium

Maximum Generations: 5000

Sampling Sample Each Solution 3 Times

Since time for evaluation is the main critical issue for
simulation-based optimization, the optimization algorithm
has to be adapted accordingly. Evaluation of the policy
principally takes longer than the evaluation of the static
schedule. Thus, experiments for policy optimization have
been performed with drastically reduced population sizes as
well as number of resulting total evaluations. With these
configurations, solutions have been found that will be com-
pared to each other consequently.

4.2 Experimental Results
Using the optimized strategy, each agent (EV) in the sys-

tem acts individually, yielding in a charging strategy over
the defined time horizon that is suited optimally to its in-
dividual behavior. For the first approach when optimizing

static schedules in advance, this individualism is generated
because each EV/cluster receives its own schedule. For the
policy-based approach, each EV receives the same policy,
but using individual information from its environment as
input to the policy, agent-specific behaviour results. The
finally best found results are visualized in Figures 5 and 6,
where the mean resulting charging power over all EVs is
plotted with grey bars. Additionally, the base load to the
power grid is indicated by the dotted line relatively to its
peak load.

Figure 5: Mean Charging with Static Schedules

Figure 6: Mean Charging with Reactive Policy

The two results can be compared intuitively considering
the mean resulting charging strategy over all agents: the
static approach clearly tends to schedule much more energy
to each agent that it actually needs, almost around 20kWh.
This is because of the aforementioned averaging effect that
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occurs because of the clustering of similar vehicles. Even
if all vehicles within such a cluster show similar behaviour,
individual probabilistic behavior occurs. Thus, scheduling
more energy as needed to each single vehicle allows such
individual probabilistic behavior while guaranteeing enough
energy to everyone. Sure, from a power grid point of view,
this behavior is not optimal since free capacities cannot be
used efficiently. The policy-based approach on the other
hand does not need any clustering in order to handle the
high number of agents, since each EV acts individually in
response to its environment, using one generic policy for all
agents. Therefore, each agent receives exactly the amount it
actually needs, leading to more individual charging strate-
gies. Considering the temporal distribution over the time
for both cases, it clearly seems that charging during night-
time is forced. This is on the one hand because of the used
price-profile for electric energy that shows lower prices at
night times, but also because of the lower base load result-
ing from the daily load profile. Especially the policy-based
approach additionally shows a small peak during midday,
which results directly from the higher energy supply from
photovoltaics at this time. Since this kind of supply is di-
rectly incorporated into the specified rules, it is integrated
to the final charging policy.
Some numeric comparisons are also needed in order to inves-
tigate the performance of both approaches. Table 3 shows
metrics that have been defined for comparison reasons. Prin-
cipally, it would be obvious to compare the achieved fitness
value of both approaches. But since the used cost function
describes financial cost for energy supply, it’s clear that the
static approach results in a multiply higher fitness value,
since it schedules much more energy to each agent (which
it actually will not need). So, other metrics are introduced
that lead to fundamental findings.
In order to get a sufficient estimate of the true performance
of each best found solution within the uncertain environ-
ment, both considered solutions have been evaluated on 100
runs. The first metric describes the standard deviation of
the achieved fitness over 100 evaluations and is therefore a
metric for considering the robustness of the found solution
within the probabilistic system. ”Overcharging” describes
the fact that both approaches tend to schedule more en-
ergy to each agent than it acutally needs, in order to satisfy
the constraint for Emin defined above. ”Individualism” tries
to represent the self-dependence of each agent that results
from the used optimization approach. Therefore, for each
agent the mean euclidean distance from its resulting charg-
ing strategy to all other strategies from all agents is com-
puted in order to describe its individualism. For this metric,
the standard deviation is further computed over all agents.
So, if this standard deviation is high, this means that there
is a high difference in resulting behavior between all agents,
whereas a low value would mean that the agents tend to
have similar charging behavior.

In terms of robustness, the static approach clearly out-
performs the policy-based one. This is in fact clear, since
it schedules as mentioned above higher amounts of energy
to each agent than it needs. Thus, probabilistic conditions
have less influence, since they are compensated by sched-
uled strategies with high degree of freedom. So this impre-
cision of the static approach has the disadvantage of not
optimally using existing capacities in the power grid, but on

Table 3: Quantitative Comparison

Metric Reactive
Policy

Static
Schedules

STD Fitness 1.04 % 0.51 %

Overcharging 5.1 % 125.3 %

Individualism 27.8 % 41.79 %

the other hand it leads to a robustification of the solution.
As discussed above, the resulting overcharging comes into
play drastically for the static approach, while the policy-
based strategy schedules nearly the amount of energy to
each agent that it needs in fact. Considering individualism,
interestingly there are higher differences between the result-
ing strategies of all agents when optimizing agents’ strategies
statically. Thus, even if agents within a cluster receive ex-
actly the same strategy, the resulting variance between the
clusters leads to an overall higher individualism. This ob-
servation is interesting, showing that the optimized policy
consisting of the defined rules admits lower individualism to
each agent, than the static approach. Here, additional rules
have to be defined, that integrate more agent-specific infor-
mation into the optimized policy.
Beside all these quantitative result, one qualitative fact clearly
privileges the optimization of policies: no matter how many
agents are modeled within the system, the problem size in
means of the length of the solution vector remains constant,
since one generic policy is computed for all agents. For the
static approach, this problem size directly grows with the
number of agents, which makes investigating more complex
problems impossible. From a power grid point of view, an-
alyzing bigger distribution systems with thousands of EVs
will be a fruitful research ground, being only possible with
the policy-based approach.

Table 4 shows the weights wk for the final best found
solution in case of the policy optimization. Most rules are
weighted close to 1, some conclusions can be stated: All
three rules concerning the residence time of the EVs are
weighted with 1, underlying that residence time at charging
stations seems to be the most important information for
satisfying an agent’s energy demand. Interestingly, when
considering renewable power plants, forecasts (EI, EWS) are
weighted lower than actual and past values. Sure, the actual
value seems to be the most important one when trying to
schedule as much as renewable energy to the EVs as possible.
Base-load related as well as price related rules are correlated
since both groups have the aim of shifting charging to time
steps of low load (which are considerably related to time
steps of low price). Here, weights considering base-load data
are significantly higher, which clearly states the objective
that charging at off-peak times and thus maintaining secure
power grid operation (which is a hard constraint) outranks
low costs of charging. State dependent rules considering the
charging behavior of other agents are especially important
for handling the multi-agent system, if agents remaining at
the same bus are considered.

5. CONCLUSIONS
A simulation-based evolutionary optimization approach

has been presented that is used for computing optimal in-
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Table 4: Best Found Solution
Rule Weight wk Rule Weight wk

RT 1 AP 0.9166
ETTD 1 PP 0.6943
PRT 1 EP 0.9166
AI 0.9613 DTP 0.9572
PI 0.9959 MMVA 0.8560
EI 0.2370 NREVB 0.6080
AWS 0.9814 MNREVB 0.9393
PWS 1 NREVC 0.8132
EWS 0.5910 NREVCB 1
ABL 1 MCR 0.9939
PBL 0.9861 MCRB 0.9548
EBL 1

telligent charging strategies for a fleet of electric individ-
ual vehicles that exist within a distribution grid, building
a multi-agent system. The concept of using simulation for
evaluation enables that probabilistic influences of both indi-
vidual traffic behavior as well as intermittent energy supply
can be incorporated during the optimization process. In the
end, intelligent strategies have been found that satisfy oper-
ation constraints from the electric power grid point of view
while supplying energy demand by individual vehicle users.
Two different solution representations have been discussed.
First a static one was introduced where individual charg-
ing strategies for all agents during a specific time interval
are computed in advance. Since in such a dynamic and un-
certain environment it is more appropriate for an agent’s
behavior to make decisions as they come up, a more so-
phisticated approach is introduced that optimizes a generic
policy. This policy is the same for each agent, but using
agent-specific input data from the environment, it leads to
individual charging behavior. Comparisons showed that it
is possible for the static approach to produce compatible
results, but in order to meet higher problem sizes, using
optimization of generic policies will be more accurate.

6. ACKNOWLEDGMENTS
This project was supported by the program Regionale
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