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ABSTRACT
A water distribution contamination event occurs when a
chemical or pathogen is introduced to a pipe network ded-
icated to the delivery of potable water. During an event,
complex interactions among consumers, utility operators,
decision makers, and the pipe network can influence the
number of exposed consumers, as human actors adapt their
water use activities in response to warnings or exposure.
An agent-based model is developed to model the water con-
tamination event and provides insight and understanding
about the effect of interactions on public health, such as the
number of exposed consumers. Utility operators can protect
consumers using a wide range of mitigation responses, and
opening a set of hydrants is typically an effective strategy
for flushing contaminated water before it reaches consumers.
The ABM framework is coupled with an Evolutionary Strat-
egy (ES)-based search to identify an optimal strategy for
manipulating hydrants to minimize the number of exposed
consumers. The application of the simulation-optimization
framework is demonstrated for a virtual mid-sized munici-
pality, Mesopolis.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.2 [Physical Science and Engineering]: Engi-
neering; G1.6 [Optimization]: Global optimization

General Terms
Algorithms

Keywords
Optimization, Evolutionary Strategy, Agent-Based Model-
ing, Water Distribution Contamination Event, Technical Re-
sponse Action, Flushing, Opening Hydrants
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1. INTRODUCTION
Water utilities are responsible for developing plans for

threat management when a contaminant is released in a wa-
ter distribution network. Both intentional and accidental
events can create public health emergencies. To prevent the
exposure of a large population of consumers, water utility
managers may develop a set of plans for protective actions,
such as flushing the contaminant from the system by open-
ing fire hydrants. A manager may become aware of a threat
through water quality sensor information and a set of actions
can be selected to warn consumers directly or remove con-
tamination before it reaches consumers. In current practice,
however, utility managers do not have a set of plans that
are developed a priori. For example, manuals or libraries of
appropriate responses should be developed specifically for a
utiltiy, as response strategies will vary in their effectiveness
based on the characteristics of a pipe network, the commu-
nity who uses the water, and a specific contamination event.
The research presented here develops a new methodology
for creating a library of responses that a manager can use
to respond to events in a water system.
Once a manager becomes aware of a contamination event,
actions for protecting the public should be selected. One ap-
proach is to select hydrants located near the activated sen-
sor to capture and flush the contaminant plume. A hydrant
flushing strategy can be designed to minimize the number of
exposed consumers for a contamination event through simu-
lation of the event. A water contamination event, however,
is a dynamic and complex event, and interactions among
human actors in the system may cause unpredictable hy-
draulic patterns in the network and impact the performance
of a hydrant flushing strategy. Both utility managers and
consumers interact with the pipe network and one another
and adapt their behaviors based on the information they
receive. Adaptive responses to the event change the hy-
draulics in the system and the propagation of the contami-
nant plume. Utility managers can control the contaminant
plume by opening a set of hydrants to flush contaminated
water while manipulating a set of valves to confine the con-
taminant within an isolated section of the network. In addi-
tion, the manager may warn consumers about the event. As
consumers receive information from the utility manager, me-
dia, and peers, they may reduce their consumption and use
of tap water. Changes in water consumption feed back to
the water network and impact hydraulics. The interactions
among technical and social components creates a sociotech-
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nical system, and prediction of the contaminant plume lo-
cation emerges from the interactions among different actors
and the engineering infrastructure. The presence and poten-
tial effects of decentralized interactions should be considered
and taken into account in the process of designing effective
hydrant strategies.
Due to the nonlinear and complex interactions of consumers,
utility managers, and the water distribution infrastructure,
the water contamination event can be studied and simulated
as a Complex Adaptive System (CAS). A CAS is a system of
autonomous actors which interact to generate system-level
properties that could not be predicted through by individ-
ual consideration of components [8]. An agent-based model
(ABM) can be used to simulate a CAS by representing indi-
vidual actors that interact through a set of logical or math-
ematical rules [13]. An ABM approach was developed and
is extended in this study to simulate a water network con-
tamination event and assess the impact of interactions on
the number of exposures [19]. The ABM is coupled with an
evolutionary algorithm (EA) to identify strategies for ma-
nipulating hydrants to flush a contaminant while considering
the complexity of interactions in the system. An Evolution
Strategies (ES) approach is used to identify a set of hydrants
that should be opened during an event that is detected us-
ing information from a water quality sensor network. The
ES-based search utilizes operators that can search through
a connected graph of nodes efficiently. The ABM-ES frame-
work is demonstrated for a mid-sized virtual city of 150,000
consumers.

2. PROBLEM FORMULATION
Hydrants may be selected during a water contamination

event to protect consumers by flushing out contaminated
water. A hydrant strategy is defined here as the identifi-
cation of a set of hydrants and the timing for opening and
closing each hydrant. Previous studies explored objectives
for identifying optimal hydrants strategies based on min-
imizing the amount of consumed contaminated water [1],
the amount of contaminant in a network [3], and the num-
ber of exposed consumers [20]. These studies use optimiza-
tion to identify one hydrant strategy for each contamination
event. The limiting assumption of this approach is that to
use a hydrant strategy, a utility manager must know exactly
where and when the contaminant was released in the net-
work. In many realistic cases, however, the utility manager
would have information provided by a water quality sensor
network and may not know the exact location of the con-
taminant intrusion. This study explores a new approach to
solve the hydrant optimization problem. Instead of find-
ing the best hydrant strategy for one contamination event,
a hydrant strategy is identified for a set of contamination
events. Each event that is included in the objective function
is selected because it activates the same sensors over the du-
ration of an event. Using this approach, the optimization
framework identifies the most effective hydrant strategy for
a specific sensor warning, rather than for a specific contam-
ination event.
The performance of any hydrant strategy is its ability to pro-
tect consumers over a set of events that activate the same
water quality sensor. The problem is formulated as followed
to minimize the the average number of consumers who are

exposed over these events (Eqn. 1).

minExposure =

∑k=M
k=1 fk(L,T,D) + V

M
(1)

Subject to: ti ≥ tmanager : ti ∈ T (2)

V =

{
0 pj ≥ Pmin : j = 1, . . . , nnodes

150, 000 otherwise
(3)

where Exposure is the average number of exposed con-
sumers calculated over M water distribution contamination
events. An event k is simulated by the function fk, which
is an ABM simulation of the water distribution contami-
nation event (described in Section 4). L = {l1, . . . , ln} is
an array of the specific hydrants that should be opened;
T = {t1, . . . , tn} is the time step at which the correspond-
ing hydrant is opened, and flushing is initialized; and D =
{d1, . . . , dn} is the duration that each hydrant remains open.
tmanager is the time that a utility manager becomes aware
of a threat through activated water quality sensors, and hy-
drants can be opened only after this time. pj is the pressure
of water at node j and Pmin is the minimum pressure pre-
defined by a utility manager to maintain the serviceability
of a water network, typically set at 20 psi. Nnodes is the
number of nodes that are monitored for pressure violation
(all terminal nodes) in a water network.

3. OVERVIEW OF INTEGRATED AGENT-
BASED MODELING AND EVOLUTION-
ARY ALGORITHM FRAMEWORK

To solve the problem as formulated above, a computa-
tional framework couples an EA-based search with an ABM
of the sociotechnical water distribution system. The EA-
based search generates a population of individuals that rep-
resent solutions to the problem, and a hydrant strategy (rep-
resented as a set of decision variables) is passed to the ABM
simulation, which calculates the quality of a strategy as the
average number of exposed consumers over a set of contam-
ination events. Based on the ABM simulation, the fitness
of each solution is assigned, and the EA selects solutions to
survive to the next iteration of search. The integration of
the EA and ABM components is shown in Fig. 1, and the
separate components are described below.

4. AGENT-BASED MODELING
FRAMEWORK

ABM is an approach for simulating actors and interac-
tions among actors to predict the collective effect of these
interactions on system behavior. The agent is the under-
lying component of an ABM and is modeled to behave dy-
namically and adaptively. Agents have attributes, receive
information from their environment or other agents, have
goals, and achieve their goals by changing their behaviors.
The ABM approach has been used in water resources engi-
neering problems to capture the dynamics and complexity of
management and planning through simulating the interac-
tions among infrastructure systems and social actors. A few
studies use ABM to simulate the interaction of consumers
and water utility managers under normal operating condi-
tions [17, 2]. Shafiee and Zechman [15] developed a model
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Figure 1: Simulation-optimization framework. An
evolutionary algorithm (upper box) is coupled with
a sociotechnical model (lower box) of a water distri-
bution contamination event. A set of decision vari-
ables is passed to the simulation model and the fit-
ness value is returned to the optimization algorithm.

of a water distribution contamination event using an ABM
approach to connect a set of consumers with a water distri-
bution network and predict the emergent number of exposed
consumers; this framework and approach is extended here.
The ABM framework of a water distribution contamination
event (lower box of Fig. 1) couples agent models of human
actors (on the left) and an engineering model of the techni-
cal water distribution network (on the right). The technical
and social models are connected by a set of computational
mechanisms that pass information among components. Wa-
ter quality sensors are simulated at selected nodes to monitor
for unusual water quality. If the contaminant levels exceed
a predetermined threshold at a sensed node, a warning mes-
sage is passed from a sensor to the utility manager agent.
The utility manager agent is simulated with a hydrant strat-
egy, which specifies the timing of opening hydrants. The
selected hydrants are encoded in the water network simula-
tion to represent new demands. Information is also passed
between consumer agents and the water distribution system
model. At each time step, each consumer receives a message
from the water network of the concentration of contaminant
in the water at the node where it is located. A consumer
agent accumulates contaminant in its person, based on the
concentration and volume of consumed water, until its expo-
sure reaches a critical dose. Once the consumer is exposed,
it passes warning messages to other consumers that it is
exposed. Agents that are exposed to the contaminant or
informed about the event reduce their water consumption
demand. Demand reductions are translated to the distribu-
tion network by altering the input file to reflect new values
at demand nodes. The hydraulic simulation is executed to
calculate new flow directions and velocities as they are al-
tered in the network due to opening and closing hydrants

and demand reductions. This iterative process continues at
each time step throughout the duration of the simulation.
The ABM framework is implemented by connecting a wa-
ter distribution simulation model, EPANET [14], with Any-
Logic [18], which is a dynamic simulation software for dis-
crete event modeling, system dynamics modeling, and ABM.

4.1 Water distribution system model
A water distribution system is composed of a network of

pipes, pumps, and valves, and can be represented as a graph
of links and nodes, where nodes represent junctions at the
intersection of multiple pipes. EPANET is a model for sim-
ulating the hydraulics and transport of contaminants and
chemical species within a water distribution pipe network.
EPANET calculates flow, pressure, and contamination con-
centration at each network element using consumption de-
mand exerted by consumers. Water quality sensors are sim-
ulated within the water distribution network to monitor the
concentration of chemical and biological materials. The sen-
sors are activated if the concentration of a contaminant ex-
ceeds a threshold based on regional or national water safety
requirement [5]. This study simulates ideal sensors that ac-
curately and precisely sense the contaminant of interest.

4.2 Water consumer agents
Consumer agents are modeled with mechanisms and char-

acteristics, including demographic heterogeneity, water use
behavior, communication among consumers, and adoption
of protective strategies, as described originally by Shafiee
and Zechman [16]. Brief descriptions of these behaviors are
given below.

4.2.1 Demographic characteristics
A set of data (available on the U.S. Environmental Pro-

tection Agency website [6]) is used to generate consumer
agents with demographic characteristics, including gender,
age, and weight. The population of consumer agents repre-
sents national demographic statistics.

4.2.2 Water ingestion
A water use model is used for each consumer agent to

characterize the volume of water ingested each day and the
timing of water ingestion events. The water use model esti-
mates the daily volume of water ingested by each consumer
based on age and gender [6]. A timing model is adopted to
predict the three major meals during which water is ingested
based on a set of probabilistic distributions [4]. Two minor
meals are taken at the mid-point between each major meal.
The daily volume of water is divided uniformly among these
five meals.

4.2.3 Adoption of protective actions
Each consumer is initialized with a set of water activ-

ities, which are categorized as indoor end-use water uses,
including washing clothes (22% of total water demand), toi-
let (26%), shower (17%), faucet (16%), leakages (14%), and
other miscellaneous indoor uses (5%) [12]. Consumers re-
duce their normal water demand as they become aware of
a contamination event or are exposed through ingestion of
the contaminant. An agent is assigned a probability for
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suspending each water activity in the event of a water con-
tamination problem. The probability for suspending each
water activity varies based on the perception of consumers
that an activity would cause exposure, and these values are
calculated based on a survey that was fielded for a group
of water consumers [11]. The sum of suspended water ac-
tivities is used to represent the reduction in the individual
water demand, and the final reduction in demand for each
consumer is between 5% and 41.7%. The demand at a node
in a water distribution network is updated using Eqn. 4.

dnew,j =
pj −

∑pj
i=1 rji

pj
dnormal,j (4)

where dnormal,j is the base demand for normal conditions at
node j; pj is the number of consumers at node j, rji is the
reduction factor for consumer i at node j; and dnew,j is the
new demand at node j.

4.2.4 Mobility
Consumer agents exert water demands at different nodes

during a simulation as they travel to and from businesses
and residences. Each consumer agent is assigned a residen-
tial node, a non-residential node, a duration of time that
the agent remains at the residential node, and the time at
which the consumer leaves the residential node to visit the
non-residential node. These parameters are decoded within
the ABM simulation to derive the pattern of travel for each
consumer and to simulate the nodes where consumers in-
gest contaminated water and change the typical demand
pattern by reducing water use. The timing for traveling
within the network was generated for the population to fit
the the hourly distributions of demands (specified in the wa-
ter distribution model input file) at non-residential nodes.

4.2.5 Word-of-mouth communication among
consumers

Each consumer sends and receives messages with other
agents through a word-of-mouth mechanism, using a clus-
ter model [10], which is similar to the small world network
model. In this model, a small number of agents are grouped
as a cluster, and each agent has a specific role in sending
and receiving information. Agents are assigned roles as an
original source, intermediate receiver, ultimate receiver, or
information isolate. The original source receives and passes
information to the intermediate receiver. In addition to com-
municating with an original source, the intermediate receiver
also passes information to the ultimate receiver. The ulti-
mate receiver can receive information, but cannot pass it
to other agents, and the information isolate never receives
or passes information. The cluster size is predefined as 15
consumers with two original source agents, five intermediate
receiver agents, seven ultimate receivers, and one informa-
tion isolate agent.

4.3 Utility manager agent
The utility manager ensures the quality of water delivered

to consumers by collecting information from sensor networks
and implementing a hydrant strategy for opening hydrants.
The hydrant strategy is passed to a utility manager agent
from the ES algorithm as one solution. Each solution speci-
fies a delay in opening hydrants as the amount of time (num-

ber of time steps) that passes after the the utility manager
receives the first warning message from the sensor network.
After the time delay, the utility manager opens a hydrant.
The utility manager closes each hydrant separately after a
specified period, which is encoded in each solution as the du-
ration, or number of time steps the hydrant should remain
open.

5. EVOLUTION STRATEGIES OPTIMIZA-
TION

To solve the problem formation represented in Eqn. 1, an
EA-based approach is developed using Evolutionary Strate-
gies (ES), which is a population-based evolutionary search
algorithm. As in other EAs, ES applies a set of operators
to a population of individuals to evolve toward an optimal
solution over generations. At each iteration, a reproduc-
tion operator creates a set of child individuals from parent
individuals, and the combined array of parents (µ) and chil-
dren (λ) compete to survive. ES uses mutation to create
new individuals by taking small incremental steps through
the decision space. An adaptive ES approach mutates the
mutation rate itself. Adaptive ES represents each decision
variable with an additional associated gene to specify the
mutation rate that is applied to its decision variable, and
the mutation rate become smaller for each decision variable
as an individual converges to an optimal value. In this study,
a specialized mutation operator is used for searching through
a network of nodes [21]. The elitist graduated overselection
operator is also used to avoid premature convergence. These
mechanisms are described in the following sections.

5.1 Network-based mutation operator
The network-based mutation operator is designed to mu-

tate nodes in a graph or network. Using an adaptive ES
approach, an additional decision variable is created to rep-
resent a mutation rate that is associated with the decision
variable representing the node, which is the location of a
hydrant that should be opened. The mutation rate specifies
a maximum distance for changing the current node. The
distance is calculated as steps, where a node is within one
step of the current node if it is connected to the current
node by one link (e.g., pipe). An array of candidate nodes
is created that lists all nodes within the maximum number
of steps from the current node. A node is selected with uni-
form probability from the candidates to replace the current
node in the array of decision variables.

5.2 Elitist graduated overselection operator
An ES-based search is often implemented with a deter-

ministic selection approach. This approach may cause pre-
mature convergence, as a solution that is highly fit in early
generations may be repeated in the population and drive out
diverse solutions that would provide exploration capabilities
in subsequent generations. The elitist graduated overselec-
tion operator is designed to allow lower quality solutions to
survive [7]. In the elitist graduated overselection operator,
an archive of the parent and children individuals is formed
and ranked based on objective function values. An auxil-
iary subset of this archive is separated from the combined
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Figure 2: Mesopolis water distribution network; en-
semble of water quality sensors, Sensors A, B, and
C (filled circles); and nodes where contaminant is
injected (stars). The level of contamination at each
location is indicated as high (H), medium (M), or
low (L).

individuals to participate in the selection operation. The
initial size of the subset is predefined as an input param-
eter and described as a percentage of the population size.
An individual is chosen with uniform probability from the
subset with replacement. The subset size is increased by
adding the highest-ranked individual left in the archive, and
the next individual is selected from the subset. The subset
continues to grow until the next population has been cre-
ated. Through the use of the elitist graduate overselection
operator, several copies of one solution may be created in
the new population, and solutions that are not among the
highest ranked solutions may survive in the new population.

6. ILLUSTRATIVE CASE STUDY: VIRTUAL
CITY OF MESOPOLIS

The ABM-ES simulation-optimization framework is eval-
uated using a mid-sized virtual city, Mesopolis. Mesopolis
was developed as a research tool for assessing algorithms
and approaches for water distribution threat management
(Fig. 2) [9]. The population of Mesopolis is approximately
150,000 people. The water distribution network is modeled
with 1,588 nodes, 151 valves, 3,426 pipes, 69 pumps, one
reservoir, and 13 storage tanks. Potable water is pumped
from two water treatment plants that withdraw water from
a surface water source. Consumers exert demands at a total
of 704 terminal nodes. Node types, including residences, in-
dustries, airport, university, and commercial nodes, specify
diurnal demand patterns. The water network is monitored
with an ensemble of water quality sensors, which were placed
at central nodes in the network on high-flow pipes. The di-
versity in land uses and the network topography provides
a realistic case study for assessing the impact of hydrant
strategies on the number of exposed consumers in Mesopo-
lis.

7. CONTAMINATION EVENTS AND
HYDRANT STRATEGIES

Three contamination events are simulated to represent the
injection of high, medium, and low loads of arsenic at differ-
ent locations in Mesopolis (Table 1). The occurrence prob-
ability of each event is not considered in this study, and a
uniform probability is assigned for each event. Each event is
simulated for ten random seeds, and the average and stan-
dard deviation (shown as ±) are reported. When hydrants
are not opened to flush out the contaminant, the number of
exposed consumers is 4,439 ± 50, 3,851 ± 48, and 2,041 ±
66 for the high, medium, and low events, respectively. Each
event activates only Sensor A.
The ABM-ES framework is applied to identify a hydrant
strategy for the three events. Each hydrant strategy speci-
fies three hydrants from 884 potential hydrants for flushing.
Hydrants are modeled at nodes at which there are no de-
mands exerted by consumers, and each hydrant is opened
at a flow rate of 400 gpm from one to six hours after a sen-
sor is activated and may remain open for up to six hours.
The time of initialization indicates the delay after the Sensor
A is activated before a hydrant is opened.To ensure the ser-
viceability of the water network, a pressure of 20 psi should
be met at all 704 demand nodes. In total, each solution
has 18 decision variables: three decision variables for loca-
tion, delay, and duration for each hydrant, and each deci-
sion variable is created with an additional associated gene
to represent the mutation rate. The objective function value
is calculated as the average performance of a strategy over
the three events presented in Eqn. 1. The average perfor-
mance of each hydrant strategy is determined by simulating
three events and calculating the average over the number of
exposed consumers for each simulation.

Table 1: Three contamination events are used to
calculate the number of exposed consumers for each
hydrant strategy. Each events has a duration of four
hours.

Risk
(Location)

Arsenic
amount

(kg)
Start time

Contamination
detection
time at

sensor A

High 150 12:00AM 3:00AM
Medium 120 2:00AM 6:00AM

Low 80 4:00AM 11:00AM

8. RESULTS
The ABM-ES approach is executed to identify a hydrant

strategy using the settings for the algorithmic parameters as
shown in Table 2. Using these settings, a search generates
2,550 individuals, requiring a total of 7,650 function eval-
uations. Each function evaluation (execution of the ABM
simulation) takes four minutes on a personal desktop com-
puter to simulate a 24-hour event.
Five trials were executed using random seeds. The best so-
lution from each trial is shown in Fig. 3, with the locations
of the three hydrants that should be opened, the delay af-
ter the activation of Sensor A when each hydrant should be
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Table 2: Algorithmic Settings for ES
Parameter Setting
Trials 5
Population Size 50
Generations 50
λ 50
Overselection ratio 10%

opened, and the duration of flushing at each hydrant. The
value of the objective function for each hydrant strategy is
listed in Fig. 3, which is the average number of exposed
consumers.

8.1 Best solution
The convergence plot for the best solution of the five tri-

als, S1, is shown in Fig. 4. For any hydrant strategy, one
time step (one hour in the simulation) passes after the sen-
sor activation before a hydrant could be opened. For So-
lution S1, the first hydrant (H1) is identified with a delay
of one hour, and as a result, the time at which the hydrant
should be opened is 5:00AM, 8:00AM, and 1:00PM for the
high, medium, and low events. To evaluate the effect of the
stochasticity associated with the behavior of agents, each so-
lution is simulated 10 times (Table 3). Solution S1 produces
1,813±53, 1,920±49, and 1,561±61 exposed consumers for
the high, medium, and low events, respectively. S1 reduces
the number of exposed consumers by 59%, 49%, and 23%,
compared to the base case where no hydrants are opened.
If the same hydrants are opened in the time step immedi-
ately after the contamination is released in the network, the
number of exposed consumers is 1,645 ± 45 (reduction of
63% compared to no mitigation), 1,498 ± 40 (reduction of
69%), and 1,172 ± 51 (reduction of 43%). Further analysis
can explore more strategic placement of sensors to detect
events earlier and implement mitigation with a shorter re-
sponse time to protect more consumers from exposure.

Table 3: Performance of the best solution from each
trial.

Trial Best Exposed consumers in
solutions high medium low

contamination scenario

S1 1,695 1,813±53 1,920±49 1,561±61
S2 1,996 2,298±47 2,165±57 1,632±56
S3 2,019 2,368±59 2,271±48 1,530±64
S4 2,034.7 2,458±55 2,169±47 1,680±60
S5 2,128 2,341±51 2,385±57 1,776±68

8.2 Comparison of five solutions
The five solutions have similar performances, or objec-

tive function values. For each solution, the standard devi-
ation (shown as ±) is relatively small, indicating that the
effect of the randomness in the ABM simulation does not
significantly impact the results. The solutions show a de-
creasing performance in the order S1, S2, S3, S4, and S5,

with only some exception. Solution S3 ranks third with
respect to the overall objective value, but it produces the
most effective performance for the low event. This is be-
cause Hydrant H1 for Solution S3 flushes the eastern side
of the network, which is significant in protecting consumers
for the low event, though not as important for the medium
and high events. Hydrant H1 is located on a main pipe and
flushes a significant amount of contaminated water traveling
through the system. In addition, there are several tanks lo-
cated downstream of this hydrant that are filled during the
night and drain during the day. Hydrant H1 flushes contam-
inant from the system that would be stored in the tank and
released to the consumers later during the daytime.
The locations of open hydrants are diverse among the so-
lutions. There is no hydrant that is included in each of
the five solutions, and there is disparity among the solu-
tions regarding the sections of the network where hydrants
should be opened. Solutions S1, S2, and S3, are the high-
est performing solutions of the five solutions, and they show
some similarity in the location of open hydrants; each solu-
tion flushes hydrants located in the upper northeast corner
of the network, which is the location of a dense residential
area where consumers actively exert demands throughout
the simulation.
In general, the diversity among the decision characteristics
of the solutions may indicate that many different hydrant
strategies exist that solve the problem to the same degree
(e.g., protect a similar number of consumers). More anal-
ysis is needed, however, to ensure that the solutions that
have been identified are not local optima. The degree of
non-uniqueness among hydrant strategies may also be due
to disparity among the events that have been included in
evaluation of the objective function. For the problem stud-
ied here, all events have only the activation of Sensor A in
common; the events, however, have very different charac-
teristics, such as contaminant load and location of injection.
New information could be collected to more uniquely charac-
terize events by installing additional sensors in the network
or utilizing consumer complaint data. Using this new infor-
mation, contamination events can be clustered into distinct
groups, and the ABM-ES framework can be applied to iden-
tify more effective hydrant strategies.

8.3 Hydraulic conditions
Only a small number of solutions generated in the five

trials violate the pressure constraint. This is because only
three hydrants are opened throughout the network, which
is a relatively large distribution system. In addition, the
model of Mesopolis is skeletonized, where smaller pipes and
household-level connections are not simulated. Instead, wa-
ter consumption demands are clustered at a smaller set of
nodes with aggregated demand values at levels that are sim-
ilar to the hydrant flows. Twenty of the 704 demand nodes
have a base demand greater than 100 gpm, and the uni-
versity node exerts 3,000 gpm. An additional flow of 400
gpm, as simulated for the hydrant flow, does not signifi-
cantly change the hydraulics of the network.

9. CONCLUSIONS
This study demonstrates a new approach for water distri-

bution system threat management to minimize exposure to
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H1: t1 = 0, d1 = 5

S1: Objective function value = 1,695

S2: Objective function value = 1,996

S3: Objective function value = 2,019

S5: Objective function value = 2,128

S4: Objective function value = 2,034.7

H2: t2 = 2, d2 = 5

H3: t3 = 4, d3 = 4

H1: t1 = 0, d1 = 1

H2: t2 = 1, d2 = 4

H3: t3 = 3, d3 = 3

H3: t3 = 4, d3 = 0

H2: t2 = 2, d2 = 2

H1: t1 = 0, d1 = 4

H1: t1 = 0, d1 = 2

H2: t2 = 0, d2 = 2

H3: t3 = 5, d3 = 3

H1: t1 = 0, d1 = 1

H2: t2 = 0, d2 = 5

H3: t3 = 2, d3 = 3

Figure 3: Location of hydrants for the best solution
from each trial, along with the time (t) and duration
(d) that each hydrant should be opened.
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Figure 4: Convergence plot of Solution S1.

contamination through manipulating a set of hydrants for
flushing the system. This research utilizes a ABM frame-
work that simulates a sociotechnical water distribution con-
tamination event, where the social and infrastructure sys-
tems interact to generate public health consequences. The
ABM simulation is coupled with an ES-based search algo-
rithm to identify the best hydrant strategy to protect con-
sumers. For a case study, Mesopolis, the ES-based opti-
mization is able to reduce the number of exposed consumers,
compared to a base case without any protective actions. The
framework that is developed here can be applied for manag-
ing real-world municipalities to determine the most effective
hydrant strategies for removing a contaminant introduced
to a water distribution network.
A significant contribution of this research is that a hydrant
strategy is identified in association with the activation of a
sensor, rather than identifying a hydrant strategy for a spe-
cific contamination event. For many contamination events,
the location and time that a contaminant entered the sys-
tem is not discovered until after the contaminant has exited
the system, and the only real-time information available is
sensor data. The approach developed here extends the re-
search that has identified hydrant strategies to better assist
managers in making real-time decisions by using the infor-
mation that is available to them. The hydrant strategy does
not rely on concentration or timing data for a sensor, which
may be subject to significant error, but relies only on the
activation of the sensor, or detection that a contaminant
is present. The optimization framework can be applied in
further research for a large set of contamination events to
determine a library of rules for applying hydrant strategies
based on the activation of different sensors in the network.
A decision-maker can use the library to identify a hydrant
strategy and will not need to rely on real-time execution of
the simulation-optimization framework. If the likelihoods
of individual events are known, these values can be used
to weight the objective function to design hydrant strate-
gies for more likely events. For example, exposed mains and
treatment plants are more vulnerable to intentional contam-
ination than buried connections.
The attributes and rules that determine the behavior of
agents are simplified in this study and can be explored in
future work for the real world application of this framework.
For example, consumers have been simulated to immediately
comply with warning messages from peers; a more realistic
assumption may allow for a likelihood of compliance that
would be involved in any human decision-making. In addi-
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tion, the decision-maker responds immediately to the water
quality sensors, and the sensitivity of the results to this as-
sumption has not been explored in this study. Decision-
makers typically take time to validate the presence of a
threat before flushing the system or warning consumers.
Further problem complexity may include the flow rate of
hydrants as an additional set of decision variables, and the
number of hydrants that are opened may be increased for
more effective flushing. Finally, a decision-maker can se-
lect many different actions for reducing public health con-
sequences, and combined strategies for both warning con-
sumers and manipulating the hydraulic system should be
optimized and identified simultaneously.

10. ACKNOWLEDGMENTS
This research is funded in part by the National Science

Foundation, Award 0927739. Any opinions and/or findings
are those of the author and do not necessarily represent the
views of the sponsor.

11. REFERENCES
[1] L. Alfonso, A. Jonoski, and D. Solomatine.

Multiobjective optimization of operational responses
for contaminant flushing in water distribution
networks. Journal of Water Resources Planning and
Management, 136(1):48–58, 2010.

[2] I. N. Athanasiadis, A. K. Mentes, P. A. Mitkas, and
Y. A. Mylopoulos. A hybrid agent-based model for
estimating residential water demand. 81(3):175–187,
2005.

[3] T. M. Baranowski and E. J. LeBoeuf. Consequence
management utilizing optimization. Journal of Water
Resources Planning and Management, 134(4):386–394,
2008.

[4] M. J. Davis and R. Janke. Development of a
probabilistic timing model for the ingestion of tap
water. Journal of Water Resources Planning and
Management, 135(5):397–405, 2009.

[5] EPA. Ground water and drinking water. Available at
http://water.epa.gov/drink/.

[6] EPA. Estimated per capita water ingestion in the
united states. U.S. Environmental Protection Agency
-822-00-008, Office of Water, Washington, D.C., 2000.

[7] T. Fernandez and M. Evett. Training period size and
evolved trading systems. In Genetic Programming
1997: Proceedings of the Second Annual Conference,
page 95, Stanford University, CA, USA, 13-16 July
1997. Morgan Kaufmann.

[8] J. Holland. Hidden Order: How Adaptation Builds
Complexity. Helix Books, USA, 1995.

[9] G. Johnson and K. Brumbelow. Developing mesopolis
a virtual city for research in water distribution system

and interdependent infrastructures, avilable online at
https://ceprofs.civil.tamu.edu/kbrumbelow/Mesopolis/
index.htm. 2008.

[10] M. Lindell and R. W. Perry. Communicating
Environmental Risk in Multiethnic Communities.
SAGA, Thousand Oaks CA, 2004.

[11] M. K. Lindell, J. Mumpower, H.-C. Wu, and S.-K.
Hwang. Perceptions and expected responses to a water
contamination emergency. To be Submitted, 2011.

[12] P. Mayer, E. Tawler, and W. DeOreo. Residential End
Uses of Water. American water Works Association,
1999.

[13] J. Miller and S. Page. Complex Adaptive System.
Princeton University Press, Princeton, NJ, 2007.

[14] L. Rossman. Epanet user’s manual. U.S.
Environmental Protection Agency Risk Reduction
Engineering Lab, 2000.

[15] M. E. Shafiee and E. M. Zechman. An agent-based
modeling approach to evaluate protective action
strategies in a water distribution contamination event.
In Proceedings of the world Environmental and Water
Resources Congress, pages 414–422, 2011.

[16] M. E. Shafiee and E. M. Zechman. Sociotechnical
simulation and evolutionary algorithm optimization
for routing siren vehicles in a water distribution
contamination event. In Proceedings of the 13th
annual conference companion on Genetic and
evolutionary computation, GECCO ’11, pages
543–550, New York, NY, USA, 2011. ACM.

[17] D. Tillman, T. A. Larsen, C. Pahl-Wostl, and
W. Gujer. Simulating development strategies for water
supply systems. Journal of Hydroinformatics, 7:41–51,
2005.

[18] X.J.-Technologies. Anylogic 6.5.0. Available at
www.xjtek.com, Accessed on April 22, 2010., 2010.

[19] E. M. Zechman. Agent-based modeling to simulate
contamination events and evaluate threat management
strategies in water distribution systems. Risk Analysis,
31(5), 2011.

[20] E. M. Zechman. Integrating evolutionary computation
and sociotechnical simulation for flushing
contaminated water distribution systems. Journal of
Hydroinformatics, Accepted to publish.

[21] E. M. Zechman and S. R. Ranjithan. Evolutionary
computation-based methods for characterizing
contaminant sources in a water distribution system.
Water Resources Planning and Management,
135(5):334–343, 2009.

322




