Modeling Technology Evolution
Using Generalized Genotype—Phenotype Maps

C. Jason Woodard
School of Information Systems
Singapore Management University

jwoodard@smu.edu.sg

ABSTRACT

Modeling open-ended technological evolution is notoriously
challenging. The most successful models to date have been
grounded in specific domains such as electronic circuit de-
sign. This paper presents an alternative approach based on
a generalization of Kauffman’s NK model. In this approach,
boundedly rational agents combine components into prod-
ucts and systems whose value is determined by a random
fitness landscape in which components may vary in their
pleiotropy, or the number of genotypic functions they enable.
The authors are developing a family of agent-based models
using this framework, the first of which explores the evo-
lution of platform architectures. Preliminary results from
this model show that platforms emerge most strongly under
conditions of frequent but moderate environmental change
or a moderate number of correlated market niches.

Categories and Subject Descriptors
1.6 [Simulation and Modeling]: Model Development

General Terms

Design, Economics

Keywords

Technology evolution, generalized N K model, agent-based
modeling, computational simulation

1. INTRODUCTION

The relentless proliferation of complex artifacts is a fact
of everyday life in a modern economy, yet one that eco-
nomics as a discipline remains hard-pressed to explain [9].
Among recent scholarship that has sought to account for
both the existence of technological complexity and its ex-
plosive growth (e.g., [4]), a consensus is emerging that evo-
lutionary theory offers a powerful way forward. It has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’12 Companion, July 7-11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

323

Eric K. Clemons
The Wharton School
University of Pennsylvania
clemons@wharton.upenn.edu

argued that “the economy is not like an evolutionary sys-
tem, it is an evolutionary system” [10], which in turn sug-
gests that technological evolution can be understood using
the algorithmic tools of evolutionary computation [12].

This paper presents a framework for modeling the evolu-
tion of complex products and systems using computational
agent-based research methods. Previous efforts have suc-
ceeded in specific domains like circuit design [5], but our
goal is (loosely) to see how far we can get in a more general
setting. Our main contribution is to extend Kauffman’s NK
model [23, 24, 26] to capture the key features of technology
evolution in a market economy, building on prior work by
Altenberg [2, 3] and Frenken [18].

We also provide a status report on an ongoing project
to study the evolution of platform architectures using the
proposed framework. Platform architectures are ubiquitous
in complex engineered systems because they support both
the reuse of highly interdependent “core” components and
the combination of these components with a wide variety
of loosely coupled “peripheral” components [8]. Preliminary
results from this project indicate that these architectural
properties can arise through simple evolutionary dynamics—
without planning, learning, anticipation, or explicit design.
The results also highlight the effects of two external condi-
tions: the degree of environmental stability or change, and
the degree of uniformity or heterogeneity among consumers.

The remainder of the paper is structured as follows. Sec-
tion 2 briefly reviews related work on computational models
of technology and industry evolution. Section 3 presents
the framework. Section 4 describes our model of platform
evolution and our results to date. Section 5 concludes.

2. RELATED WORK
Prior Models of Technology Evolution

There is a long tradition of modeling technological change
as a search process over randomly selected production pos-
sibilities. Nelson and Winter [32] provide an early example;
more recent work has employed variations on the NK model
[6, 25]. These models exhibit technological progress (often
uneven) arising out of investments in research and develop-
ment, but for the most part they abstract away from the
structure of the technologies themselves.

In contrast, Arthur and Polak [5] developed a model that
is grounded in the domain of electronic logic circuits. This
approach allowed them to postulate an empirically plausible
fitness function, since the properties of any valid combina-
tion of logic gates are well-defined and can be compared with

known circuits that perform useful functions, like adding
numbers. (While their model was not intended to invent
circuits that are novel as well as useful, others have actually
done so—notably Koza et al. [27, 28].)

A third stream of work has modeled economic production
as a set of linked processes akin to a complex chemical re-
action [33], based on the work of Eigen and Schuster [14].
This work yields insight into the emergence of novel self-
reinforcing loops (hypercycles), but is difficult to adapt to
study the evolution of designed artifacts.

Altenberg’s Generalized NK Model and
Frenken’s Mapping to Technology
Landscapes

Mindful of the power of real-world fitness functions, the pit-
falls of synthetic ones, and the promise of alternative ap-
proaches, we take the familiar NK model as our starting
point. Despite its stark assumption of “total ignorance”
about the interactions among the elements of a complex sys-
tem [22], we believe the NK model can be adapted to model
technology evolution in a fruitful way.

An important but frequently overlooked generalization of
the NK family was proposed by Altenberg [2, 3] and first
applied to technological innovation in complex engineered
systems by Frenken [18]. This “generalized NK model” dis-
tinguishes structural elements (genes or system components)
from functional attributes (traits or product features), and
allows arbitrary patterns of interdependence between them.
Relaxing the requirement that each element interact epistat-
ically with (i.e., modify the effects of) exactly K others
yields genotype—phenotype maps in which elements can vary
in their pleiotropy (the number of functions with which they
interact) and functions can vary in their polygeny (the num-
ber of elements that affect them).

Altenberg used this model to explore the growth of bio-
logical genomes through “constructional selection,” an evo-
lutionary process in which new genes are added when they
improve an organism’s total fitness. He found that genes
with high pleiotropy tend to be added early, while later
additions typically affect only a few functional attributes.
Constructional selection tends to increase fitness by reject-
ing new genes that interfere with parts of the genome that
are already well adapted, while accepting those that yield
incremental improvements or deliver new functions.

Frenken recognized that analogous processes occur in tech-
nological evolution, and employed Altenberg’s model to ex-
plain well-known patterns in product and technology life
cycles [1, 13]. He defined a technological paradigm as “a
set of standardised high-pleiotropy elements in the prod-
uct population,” and interpreted Altenberg’s results on con-
structional selection to show how “an invariant core of high-
pleiotropy elements emerges endogenously in a growing com-
plex system” (p. 62). He further observed that many types
of design changes (including architectural, modular, incre-
mental, and radical innovation [20]) can be expressed using
generalized genotype—phenotype maps, which makes such
maps a potentially powerful tool for studying evolution on
complex technology landscapes.

However, the Altenberg—Frenken constructional selection
model lacks two ingredients needed to build a fully dynamic
model of technology evolution. First, the product popula-
tion is not explicitly modeled. Each simulation run consists
of a single individual (genome or system) that evolves in

324

isolation. This precludes studying competition between al-
ternative designs that differ in their complexity or specific
arrangement of components. Second, new genes or compo-
nents can only be added, never removed or substituted for
variants. This assumption may be defensible in a biological
setting (where genomes tend to grow through accretion, even
if many parts are deactivated by regulatory mechanisms),
but it fails to capture the repertoire of actions available to
human designers. Fortunately, both ingredients are readily
available in the modeling literature.

Levinthal’s Treatment of Adaptation
and Population Selection

In a seminal paper that introduced NK modeling to man-
agement scholars [29], Levinthal studied adaptive behav-
ior in a population of agents on a complex fitness land-
scape. Agents representing organizations engage in both
local search and “long-jump” adaptation (testing random or-
ganizational forms against the current one). In addition, the
model includes a population-level process of change based on
assumptions derived from the biological literature:

e In each period, the probability that an organization
survives is proportional to the ratio of its fitness to that
of the most fit organization in the population. Non-
survivors are replaced in order to maintain a constant
population size.

e A new organization may either replicate an existing
one or choose a configuration of attributes at random.
The probability of choosing attributes at random is
proportional to the genetic load of the population (a
concept borrowed from population biology [36]), which
is defined as the one minus the ratio of the average
fitness value to the maximum fitness value.

e If a new organization is chosen to replicate an existing
one, the probability of a given organization being se-
lected as a “target” is determined by its relative fitness
in the population, with more fit forms being propor-
tionately more likely to be replicated.

These assumptions are orthogonal to the key assumptions
of the Altenberg—Frenken model, in the sense that fitness
landscapes based on generalized genotype-phenotype maps
can be substituted for the traditional NK landscapes studied
by Levinthal (although to our knowledge we are the first to
do so). This is the essence of the framework presented below.

3. A FRAMEWORK FOR MODELING
TECHNOLOGY EVOLUTION ON
RANDOM LANDSCAPES

This section presents a framework for modeling the evo-
lution of technologies in a modern economy. As in the
Altenberg—Frenken model, the main elements of the frame-
work are system components and their associated functions.*
Figure 1 illustrates the relationships among these elements.

'To build intuition, we use Frenken’s technological vocab-
ulary (components, functions, systems) in the context of
technology evolution, instead of Altenberg’s biological terms
(genes, traits, organisms) or the organizational ones (deci-
sions, departments, firms) typically used by management
scholars to in the context of NK models.

(1) Pleiotropy and polygeny

Which components participate in which functions?

o [5
s 0 @ 0
(A} 063 (B} 0.60
(B} 024
{AB} 048 4
@ 0

m {cy 007
s 0
A} 047
{c} o031 (]
{AC} 074 (D} 066

(2) Fitness contributions

How well do different component
combinations deliver each function?

(3) System fitness

What is the overall fitness level
of a given set of components?

Figure 1: Relationships among components, functions, and systems.

Pleiotropy and Polygeny

Each component (A, B,C, D) enables (or affords [31]) a set
of functions (1,2,3,4,5). These relationships are indicated
by arrows in the figure. When multiple components enable
the same function (polygeny), the effects of one component
may be modified by the presence or absence of others (epista-
sis). Likewise, a component may enable multiple functions
(pleiotropy). Adapting Altenberg’s terminology [2, 3], we
call the set of functions that a given component enables its
pleiotropy set, and the set of components that enable a given
function its polygeny set.

Fitness Contributions

Different combinations of components interact differently in
enabling their respective functions; some of these interac-
tions may be positive, while others may be negative. Each
function is associated with a fitness contribution whose value
depends on the presence or absence of the components in the
function’s polygeny set. The effects of these dependencies
are shown in the figure by the tables associated with each
numbered function. For example, function 1 contributes a
value of 0.63 if component A is present but B is not, but
only 0.48 if both A and B are present. (Note that B con-
tributes separately to function 3, which compensates for its
negative effect on function 1.)

Following standard practice in the NK literature, we adopt
the baseline assumption that fitness contributions are uncor-
related with each other. In other words, adding or removing
a component yields a new random value that is indepen-
dent of the previous one. (We use correlated fitness land-
scapes to model heterogeneous consumer preferences in the
model of platform evolution discussed below.) Also follow-
ing standard practice, fitness contributions are denoted by
real numbers distributed uniformly on the unit interval.

Unlike both traditional NK models and the generalized

325

Altenberg—Frenken model, our framework does not explic-
itly distinguish the effects of alternative component designs
(alleles). This approach simplifies models that focus on the
selection of components from a large and/or changing popu-
lation, in contrast to the usual focus on the search for high-
value configurations within a fixed design space.?

Design Fitness (Value Creation)

A system, for our purposes, is simply a set of components.
A system design can thus be represented as a bit string in
which each position corresponds to a component, and a 1
denotes the presence of that component while a 0 denotes
its absence.

When a system is deployed in a particular environment, it
creates economic value by satisfying the needs of its users.
For simplicity, we associate every system with an overall
fitness level, labeled design fitness, that depends only on the
identity of its components (the system’s “genotype”). Design
fitness expresses the value of the functionality delivered by
the system (the “phenotype”); it can be interpreted as a
normalized measure of users’ aggregate willingness to pay
for systems that realize the design.

Again following standard practice, a system’s design fit-
ness is defined as the mean of the functions’ fitness contri-
butions. We need an additional assumption to define the
fitness contribution of a function that is not enabled by any
component in the system (a situation that does not arise
in the standard NK model). We follow Altenberg [2, 3] in
assuming that such functions have a contribution of zero.

2This simplification is without loss of generality, since mod-
els are free to define the set of available components in
many ways. An easy way to restore the structure of a tra-
ditional NK model is to assume that components come in
pairs (A, A; B, B;...) corresponding to binary alleles (“on”
vs. “off” states). Then a one-mutation adaptive walk would
be defined as a swap of one component for its allelic sibling.

Designer Fitness (Value Capture)

Depending on the structure of the environment (e.g., the
number of consumers and firms, as well as their respective
preferences and pricing policies), some fraction of a system’s
value is captured by its designers in the form of economic
rent or profit, which in turn may influence the future value
of the system (e.g., through reinvestment in product devel-
opment). Recognizing that technology evolution operates
at multiple levels, from the cognitive processes of individual
designers to the market forces that shape the population of
organizations that employ them, we distinguish the fitness
of designers from the fitness of their designs.

The assumptions relating design fitness to designer fitness
necessarily vary across models, just as assumptions about
the relationship between value creation and value capture
vary across traditional economic models. To accommodate
this variation, we leave these assumptions to be specified by
each model rather than the framework itself.

For example, in the platform evolution model presented
below, the full value of a system design may be credited to
multiple designers. This represents an ideal case in which
the designers’ incentives are aligned to maximize the value of
the system as a whole. In reality, however, incentive conflicts
can occur because designers typically compete for shares of
a finite economic “pie” denominated in monetary units. Our
most recent work (not reported in this paper) grapples with
this constraint more directly.

Evolutionary Dynamics

In order to integrate the elements of the framework into a
dynamic model of technology evolution, an evolutionary pro-
cess must be specified [11, 21]. This process does not need
to capture the full complexity of competition, investment,
market share, and survival. But it does need to generate suf-
ficient variety among designs, and selective pressure among
designers, to effectively explore the vast combinatorial de-
sign spaces that can easily arise in such models.® In the
platform model described in the next section, we focus on
processes that include both myopic search and population
selection. These processes favor the survival of higher-value
systems and their associated designers.

4. APPLICATION TO THE EVOLUTION
OF PLATFORM ARCHITECTURES

We are currently applying the framework presented above
to study the evolution of platform architectures using an
agent-based model. Baldwin and Woodard [8] define a plat-
form as “a set of stable components that supports variety and
evolvability in a system by constraining the linkages among
the other components.” They propose that platforms arise
due to the interaction of two fundamental economic forces:
pressure to reuse certain “core” components (e.g., due to
economies of scale in production or the difficulty of finding
substitutes) while facilitating variation in other “peripheral”
components (e.g., to satisfy diverse consumer preferences or

3Even under the assumption that systems are defined only
by the presence or absence of components (i.e., ignoring all
details about their configuration and assembly), the size
of the design space scales by the familiar powers of two:
16 components yield 65,535 distinct system designs, 32 com-
ponents yield over 4 billion designs, and 64 components yield
over 10 quintillion.

326

increase resilience to environmental change). The initial aim
of our study is to replicate these forces in silico and explore
the conditions under which platform architectures emerge.
More broadly, we seek to develop a robust model of platform
evolution that can be used to study strategic design choices
by participants in a platform ecosystem.

This work is complementary to the existing literature on
platform competition [15, 16, 19], which typically assumes
the existence of one or more platforms and then studies eco-
nomic phenomena such as pricing and consumer welfare un-
der game-theoretic assumptions of equilibrium behavior. In
our model, by contrast, platform architectures can emerge
endogenously and the network structure of component reuse
can be observed directly, both in cross section and over time.

Basic Model

Consistent with our framework, the main elements of the
model are components that enable various functions and can
be combined into systems whose value to their users depends
only on the combination of components they contain.

Inspired by the metaphor of the “primordial soup” in which
biologists sometimes imagine life to have arisen, we assume
an unlimited supply of components that come in C' discrete
types (like inorganic “feedstock” compounds). A system can
perform up to F' functions. The set of functions enabled by
a particular component is fixed at the start of a simulation
run (with each component being “wired” to a given function
with a fixed probability), and remains unchanged for the
duration of the run. The value created by a particular sys-
tem (i.e., its design fitness) is defined as in section 3, with
individual fitness values drawn uniformly at random on the
unit interval.

To explore the emergence of stable sets of components
(i.e., potential platforms), we introduce an intermediate level
of aggregation between components and systems. Firms,
which we call producers, assemble components into products
that are in turn purchased by consumers, who can either
use them alone or assemble multiple products into systems.
For simplicity, we assume that product boundaries are ir-
relevant in evaluating design fitness; consumers assign the
same value to a given set of components (e.g., {4, B,C})
whether they are purchased as a single standalone product
or assembled separately (e.g., {A, B} and {C}). Duplicate
instances of a component are also assumed to be irrelevant
(e.g., combining {A, B} and {B,C?} is equivalent to simply
purchasing {4, B,C}).

In a given period, there are N producers. Each producer
has a “strategy” that consists of a single product design (i.e.,
combination of components). Producers’ strategies need not
be unique; many producers can make the same design. Each
producer makes one unit of its design in each period. Af-
ter production occurs, consumers assemble systems from the
products available in the market. After all products have
been consumed, population selection occurs among produc-
ers, simulating the action of competitive markets. Finally,
the cycle repeats until 7" periods have elapsed.

Below we elaborate on the central drivers of the model’s
evolutionary dynamics: myopic search by consumers and
population selection among producers.

Myopic Search by Consumers

After production occurs, there is a pool of N products avail-
able for consumers. Consumers arrive one at a time. Each

consumer then assembles a system through a greedy myopic
gradient search process, as follows:

e The consumer examines the pool and selects, uniformly
at random, G products to evaluate (or all of the re-
maining products if fewer than G are available).

e To evaluate a product, the consumer adds it to his/her
current system, computes the value of the new system
as prescribed above, and compares it to the value of
the current system.

e If at least one of the products evaluated by the con-
sumer yields a system with strictly higher value than
the current one, the product that yields the greatest
improvement is kept and the search process begins
again with a newly selected set of products (if any
remain in the pool). If not, this consumer exits the
market and a new consumer enters.

Consumers continue to arrive and assemble systems until
the pool of available products is exhausted.

Population Selection Among Producers

At the end of each period, population selection occurs among
producers. To operationalize the concept of designer fitness
as defined in section 3, we define the fitness of a producer as
the value of the system containing the product it produced
in the current period. This assumption rewards producers
whose products contribute to high-value systems.*

The remaining assumptions on population selection closely
follow Levinthal [29]:

e Each producer survives with probability proportional
to the ratio of its fitness to the maximum fitness in the
population.

e Producers that do not survive are replaced by new en-
trants. A new entrant is either a raw component sup-
plier (i.e., its product consists of a single component,
chosen uniformly at random from the set of component
types) or an imitator of an existing producer.

e The probability of imitating an existing producer is in-
versely proportional to the genetic load of the producer
population [36].

An entrant assigned to imitate an existing producer may also
innovate by “mutating” the product design of the producer
it is imitating. With probability p, an imitating firm does
each of the following before finalizing its design:

e Add a component chosen uniformly at random from
the available types.

e Drop a component chosen uniformly at random from
its current product design.

e Swap two components by performing an add followed
by a drop.

4There is also an element of chance, since a producer cannot
directly control which consumer buys its product in a given
period. If G is low (or the consumer’s search process gets
“stuck” at a local optimum [34]), it is possible for a product
to be used in a system to which it contributes less value
than it would in alternative uses. In other words, we do not
assume an efficient market.

327

Extensions

As noted earlier, our modeling effort was motivated by the
proposition that platform architectures arise in response to
economic forces. These forces are present to a limited extent
in the basic model. Sets of components with high fitness
contributions that interact positively (or at least not too
negatively) with a variety of other components are likely to
exist but be difficult to find, hence firms that package these
components together as a product—by sheer luck, since we
do not model strategic behavior by producers—are likely to
enjoy a selective advantage, increasing both their longevity
and the rate at which their designs are imitated by new
entrants. So we should not be surprised to find some degree
of platform emergence even in the basic model.

That said, the basic model omits three forces that we
would expect to drive the emergence of platforms even more
strongly. One is economies of scale, which we do not ad-
dress in the present version of the model. The other two
are environmental change and consumer heterogeneity. We
implemented both of these as extensions to the basic model.

Environmental Change

Environmental change can be interpreted as change in con-
sumer preferences or in the ways that products interact with
their environment. If environmental change is enabled in a
given simulation run, it occurs in each period with proba-
bility ¢, called the frequency of change. If environmental
change occurs, each function is “scrambled” with a probabil-
ity s, called the severity of change. If a function is selected
to be scrambled, all of the fitness contributions associated
with that function are randomly redrawn. This is similar to
the approach of Siggelkow and Rivkin [35].

Allowing the frequency and severity of change to be varied
independently allows us to investigate very different types of
change, from rare but catastrophic disruptions (like the shift
from mainframes to personal computers) to those that are
more frequent but moderate in scope (like the substitution
of fuel injection systems for carburetors).

Consumer Heterogeneity

When consumers’ preferences are diverse, there is almost
certainly no single design that is viewed as “best” by all of
them. We model this phenomenon by dividing consumers
into L groups uniformly at random, and giving each group
its own fitness landscape. (Recall that in our context, a
fitness landscape is a mapping from system designs, i.e., sets
of components, to real numbers representing value. In the
basic model we implicitly assumed that all consumers value
systems the same way, yielding a single fitness landscape.)

The fitness values on these landscapes may be correlated,
with the extent of correlation given by the parameter r. If
r = 0, each landscape is uncorrelated with the others; in
other words, their fitness contributions are drawn indepen-
dently and identically from the same distribution. More
generally (if L > 1 and r > 0), we define a “parent” land-
scape and L “child” landscapes. For each child landscape,
each function is either inherited from the parent or unique to
the child. In order to ensure the same degree of correlation
across all child landscapes, we want the same functions to
be inherited or unique for each; we arbitrarily set the first
F - r functions to be inherited, and the remaining F' (1 —r)
to be unique.

S etyork Graphis,

:leo-u\an-Pr&'k-n:I Graph r Component- System Graph-

r Product.-System Graph-

Figure 2: Screen shot of an interactive run. Network ties in the three panels respectively represent
co-occurrence of components in products, components in systems, and products in systems.

Experiments

We implemented the model in Java using the MASON sim-
ulation toolkit [30], and are conducting experiments on a
Linux-based high-performance computing cluster.® All of
our reported results are averaged over 100 independent trials
for each combination of parameters, with a different random
number seed for each trial. All observations are taken after
200 time periods; we verified the robustness of our results
to run lengths ranging from 100 to 500 periods.

Figure 2 shows a screen shot from an interactive run of the
model with 8 components and 30 producers. The graph on
the left illustrates the co-occurrence of components in prod-
ucts (e.g., the two edges between C' and D indicate that two
products in the population included these components dur-
ing the time period when the screenshot was taken). Simi-
larly, the middle graph illustrates the co-occurrence of com-
ponents in systems (e.g., the single edge between C' and
H indicates that these two components were present in ex-
actly one system; since these components are not linked in
the component—product graph, we can infer that they were
brought together during system assembly by a consumer).
The graph on the right illustrates the co-occurrence of prod-
ucts and systems; here the nodes are products rather than
individual components.

We ran a set of preliminary simulations that explored the
parameters of the model, including number of components
(C), number of functions (F'), and the fraction of products
evaluated by each consumer at each step in the system as-
sembly process (G/N). While there were some interesting
differences (which we will discuss in an expanded version
of this paper), the results presented below are qualitatively
robust to a wide range of parameter values.

Average Product Centrality

In addition to a variety of other outcome variables (e.g.,
product size, system size, and system value), we constructed
a measure of platform emergence called average product cen-
trality. This measure is motivated by our desire to iden-

®We also used several other free and open-source Java li-
braries (e.g., JUNG for network visualization, Guice for in-
jecting parameter values into model classes, and Hibernate
for storing observations to a database during simulations).

328

tify not just fully formed and easily recognizable platforms,
but also proto-platforms: configurations of products and
systems with platform-like characteristics. Intuitively, av-
erage product centrality measures the extent to which the
product—system graph exhibits the kind of pattern shown in
the right-hand panel of Figure 2, where some products form
a densely connected core surrounded by a sparsely connected
periphery. These core products are platform-like in the sense
that they are frequently reused (i.e., they appear in many
different systems) and they support variety (i.e., they appear
in combination with a wide range of other products).

To compute the average product centrality, a centrality
score is computed for each product and then averaged over
the product population. Since a product is a set of com-
ponents, we computed the centrality score using a network
measure designed for groups rather than individuals, namely
a weighted and normalized variant of the group betweenness
centrality measure proposed by Everett and Borgatti [17].
Group betweenness centrality (GBC) is defined as the pro-
portion of geodesics connecting pairs of non-group members
that pass through the group—in other words, the extent to
which components appear in systems more often in combi-
nation with a particular product than with others.

Formally, let P be a product. Let gy, (P) denote the num-
ber of geodesics (distinct shortest paths) in the component—
system graph that connect components u and v without
passing through components in P. Let g, ,, denote the to-
tal number of geodesics connecting u and v, and define an
ordering (<) on the set of components. Then:

GBC(P) = Z gug’vi(P) for u,v ¢ P.

u<v

Key Results

Figures 3 and 4 summarize our key results to date. The
vertical axis in both graphs is the average product centrality
measure defined above, and both graphs are shaded using
the same color scheme.

Reasoning by analogy from biological evolution, we ex-
pected a complex and non-linear relationship between fre-
quency and severity of change and the emergence of plat-
forms. Environments that are very stable lead to stable,

0.25

Z
= 0.2

=

g

3 0.15

g

=1

§ 0.1

[-%

Q

& 005 12
3

2 0

o 1/8
1/64 1/32 116

1/8 1/32
/ 1/4 12 1 / Change

Frequency of
Environmental Change

Figure 3: Platform emergence varies with frequency
and severity of change.

optimized systems that are often produced by a single inte-
grated firm. As environmental change increases, it becomes
advantageous to produce modules that can be reassembled
in a variety of ways by a variety of producers [7]. In the
technologically more stable markets of the 1960s, IBM was
a vertically integrated computer company, GM was a ver-
tically integrated car company, and AT&T was a vertically
integrated telecommunications company. In the more turbu-
lent environment of the early 21st century, it is more prof-
itable to produce disk drives, or processor chips, or office
software, that can be “mixed and matched” to satisfy chang-
ing market demand. When environmental change becomes
too rapid or too severe, however, evolution can no longer
select for products that work well together, and even well-
adapted products fall victim to random shocks.

Figure 3 exhibits a striking visual pattern that supports
this prediction: a diagonal “ridge line” that peaks in the re-
gion of frequent but moderate change. This figure shows
that platform architectures are most strongly favored under
precisely the conditions in which it is most valuable to have
a stable set of core components that work well with a vari-
ety of peripheral ones. Most importantly for our research,
we were able to induce the emergence of platforms with-
out explicitly modeling participation externalities favoring
widespread adoption or economies of scale favoring reuse,
and without memory, learning, or anticipation on the part
of product designers.

Introducing consumer heterogeneity in the form of mul-
tiple market niches yielded results that were qualitatively
similar to environmental change, as shown in Figure 4. As
the number of market niches increases, so does the advantage
of having a product that can be combined into systems with
high fitness in multiple niches. Each niche represents a sub-
population of consumers whose ideal products differ in one or
more functional attributes (e.g., business or home computer
users). As niches diverge, they begin to resemble separate,
unrelated markets, and it is difficult to develop products
that can succeed in all of them. Not surprisingly, the max-
imum average product centrality appeared under consumer
heterogeneity rather than under environmental change, be-
cause in a stable environment evolution has more time to
converge to a population of well-adapted products.

Severity of
Environmental

329

0.3
0.25
0.2 -
0.15
0.1
0.05
0 3/4
7/8

Correlation
of Consumer
Preferences

AVerage Product Centrality

Number of Consumer Types

Figure 4: Platform emergence varies with the num-
ber of niches and the correlation between them.

5. CONCLUSION

In this paper, we presented an approach to modeling tech-
nology evolution on random fitness landscapes. This ap-
proach builds on prior work that extended Kauffman’s NK
model using the idea of a generalized genotype—phenotype
map, and extends that work in turn by simulating the evolu-
tionary dynamics among product and system designers us-
ing agent-based modeling techniques. Our preliminary ef-
forts to study the evolution of platform architectures using
these ideas have yielded promising initial results. We plan
to explore a set of related issues using the same tools. More
broadly, we believe the framework presented in the paper
can be used to illuminate a variety of phenomena related to
the evolution of complex engineered artifacts and systems.

6. ACKNOWLEDGMENTS

Both authors thank the School of Information Systems at
Singapore Management University and the Wharton-SMU
Research Centre for generous financial support.

7. REFERENCES

[1] W. J. Abernathy and J. M. Utterback. Patterns of
industrial innovation. Technology Review, 80(7):40-47,
1978.

L. Altenberg. Evolving better representations through
selective genome growth. In Proceedings of the IEEE
World Congress on Computational Intelligence, Part
1, pages 182-187, 1994.

L. Altenberg. Genome growth and the evolution of the
genotype-phenotype map. In W. Banzhaf and F. H.
Eckman, editors, Fvolution and Biocomputation, pages
205-259. Springer-Verlag, 1995.

W. B. Arthur. The Nature of Technology: What It Is
and How It Fvolves. Free Press, 2009.

W. B. Arthur and W. Polak. The evolution of
technology within a simple computer model.
Complezity, 11(5):23-31, 2006.

P. Auerswald, S. Kauffman, J. Lobo, and K. Shell.
The production recipes approach to modeling
technological innovation: An application to learning

2]

3]

[4]

[5]

[6]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

by doing. Journal of Economic Dynamics and Control,
24(3):389-450, 2000.

C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1:
The Power of Modularity. MIT Press, 2000.

C. Y. Baldwin and C. J. Woodard. The architecture of
platforms: A unified view. In A. Gawer, editor,
Platforms, Markets and Innovation, pages 19—44.
Edward Elgar, 2009.

E. D. Beinhocker. The Origin of Wealth: Evolution,
Complexity, and the Radical Remaking of Economics.
Harvard Business School Press, 2006.

E. D. Beinhocker. Evolution as computation:
Integrating self-organisation with generalized
darwinism. Journal of Institutional Economics,
7(3):393-423, 2011.

D. T. Campbell. Variation and selective retention in
socio-cultural evolution. General Systems, 14:69-85,
1969.

K. A. De Jong. Evolutionary Computation: A Unified
Approach. MIT Press, 2006.

G. Dosi. Technological paradigms and technological
trajectories: A suggested interpretation of the
determinants and directions of technical change.
Research Policy, 11:147-162, 1982.

M. Eigen and P. Schuster. The Hypercycle: A
Principle of Natural Self-organization.
Springer-Verlag, 1979.

T. Eisenmann, G. Parker, and M. Van Alstyne.
Platform envelopment. Strategic Management Journal,
32(12):1270-1285, 2011.

D. S. Evans, A. Hagiu, and R. Schmalensee. Invisible
Engines: How Software Platforms Drive Innovation
and Transform Industries. MIT Press, 2006.

M. G. Everett and S. P. Borgatti. The centrality of
groups and classes. Journal of Mathematical Sociology,
23(3):181-201, 1999.

K. Frenken. Innovation, Evolution and Complezity
Theory. Edward Elgar, 2006.

A. Gawer and M. A. Cusumano. Platform Leadership:
How Intel, Microsoft, and Cisco Drive Industry
Innovation. Harvard Business School Press, 2002.

R. M. Henderson and K. B. Clark. Architectural
innovation: The reconfiguration of existing product
technologies and the failure of established firms.
Administrative Science Quarterly, 35(1):9-30, 1990.
J. H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control, and Artificial Intelligence.
University of Michigan Press, 1975.

S. A. Kauffman. The Origins of Order:
Self-organization and Selection in Evolution. Oxford
University Press, 1993.

330

23]

[24]

(25]

(26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

35]

(36]

S. A. Kauffman and S. Johnsen. Coevolution to the
edge of chaos: Coupled fitness landscapes, poised
states, and coevolutionary avalanches. Journal of
Theoretical Biology, 149(4):467-505, 1991.

S. A. Kauffman and S. Levin. Towards a general
theory of adaptive walks on rugged landscapes.
Journal of Theoretical Biology, 128(1):11-45, 1987.
S. A. Kauffman, J. Lobo, and W. G. Macready.
Optimal search on a technology landscape. Journal of
Economic Behavior and Organization, 43(2):141-166,
2000.

S. A. Kauffman and E. D. Weinberger. The NK model
of rugged fitness landscapes and its application to
maturation of the immune response. Journal of
Theoretical Biology, 141(2):211-245, 1989.

J. R. Koza, F. H. Bennett, D. Andre, and M. A.
Keane. Genetic Programming III: Darwinian
Invention and Problem Solving. Morgan Kaufmann,
1999.

J. R. Koza, M. A. Keane, M. J. Streeter,

W. Mydlowec, J. Yu, and G. Lanza. Genetic
Programming 1V: Routine Human-Competitive
Machine Intelligence. Kluwer, 2003.

D. A. Levinthal. Adaptation on rugged landscapes.
Management Science, 43(7):934-950, 1997.

S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sullivan.
MASON: A new multi-agent simulation toolkit. In
Proceedings of the Fighth Annual Swarm
Users/Researchers Conference (SwarmFest 2004),
2004.

J. R. A. Maier and G. M. Fadel. Affordance based
design: A relational theory for design. Research in
Engineering Design, 20(1):13-27, 2009.

R. R. Nelson and S. G. Winter. An Evolutionary
Theory of Economic Change. Harvard University
Press, 1982.

J. F. Padgett, D. Lee, and N. Collier. Economic
production as chemistry. Industrial and Corporate
Change, 12(4):843-877, 2003.

J. W. Rivkin and N. Siggelkow. Organizational
sticking points on NK landscapes. Complezity,
7(5):31-43, 2002.

N. Siggelkow and J. W. Rivkin. Speed and search:
Designing organizations for turbulence and
complexity. Organization Science, 16(2):101-122, 2005.
E. O. Wilson and W. H. Bossert. A Primer of
Population Biology. Sinauer Associates, 1971.

