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ABSTRACT
In dynamic dial-a-ride problems a fleet of vehicles need to
handle transportation requests within time. We research
how to create a decentralized multi-agent system that can
solve the dynamic dial-a-ride problem. Normally multi-agent
systems are hand designed for each specific application. In
this paper we research the applicability of genetic program-
ming to automatically program a multi-agent system that
solves dial-a-ride problems. We evaluated the evolved sys-
tem by running a number of simulations and compared it’s
performance to a selection hyper-heuristic. The results shows
that genetic programming can be a viable alternative to
hand constructing multi-agent systems.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: Program Synthesis; I.2.11
[Distributed Artificial Intelligence]: Multi-agent sys-
tems

Keywords
Multi-agent systems, genetic programming, dial-a-ride prob-
lems, decentralized control

1. INTRODUCTION
The dial-a-ride problem (DARP) is a vehicle routing prob-

lem that concerns the transportation of goods or people be-
tween an origin and destination [1]. We consider the dy-

namic DARP in which requests arrive over time. Real world
examples are taxi companies and courier services where it is
common that requests need to be handled in a short period
of time. As a provider of such a service one should try to
deliver all goods within a short time window. Most work in
DARP has focused on the static variant [1]. Static solutions
are usually centralized and computationally intensive, espe-
cially if many re-computations need to be done over time.

There is a lot of attention for decentralized MASs [11, 3,
5, 6]. Designing a decentralized system that shows accept-
able global performance is hard. Most of the difficulty lies
in the design of a decision mechanism that uses local and
incomplete information. In this paper we address this prob-
lem by using genetic programming to create this decision
mechanism.

The purpose of this paper is to investigate the applica-
bility of genetic programming for developing decentralized
MASs that solve dynamic DARPs. In this first step we will
neglect the possibilities of explicit coordination within the
MAS. We evaluate our evolved heuristics on a set of DARP
scenarios and compare its performance with two solutions.
One is a centralized static solution that has the benefit of
foresight, it knows everything that is going to happen be-
forehand, this solution serves as a lower bound. The sec-
ond solution we compare with is a centralized rolling-time
horizon solution, at every time step this solution tries to
find the best global solution given the information currently
available.

We give a formal definition of the dynamic DARP and a
standard MAS solution in section 2. A description of how
GP is used to create a MAS to solve DARP is given in
section 3. In section 4 related work is discussed followed
by an evaluation of our approach in section 5. We conclude
that GP is a feasible technique for MAS to solve DARP in
section 6.
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2. DARP AND MAS

2.1 Formal definition
In the DARP there are n vehicles which have to handle m

requests. In the dynamic variant no information is known
about the size and distribution of m, requests arrive grad-
ually over time. A request consists of a pickup location, a
drop-off location and a deadline. A request is handled when
customers have been transported from pickup to delivery
location. Further we assume that:

• Vehicles drive with a constant speed (infinite fuel, no
driver fatigue).

• Vehicles can only handle one request at a time (vehicles
have unit capacity).

• When a vehicle is carrying customers it is not allowed
to divert.

• The actual pickup and delivery of customers takes no
time.

The objective function for this problem is to minimize the
tardiness of all requests. Where tardiness is defined as in
equation 1.

|requests|∑
r=1

max(0, deliverytime(r) − deadline(r)) (1)

Here deliverytime(r) is defined as the time that request r is
delivered, deadline(r) indicates the deadline for request r.
An implication of this equation is that a solution is consid-
ered invalid if it has not handled all requests.

2.2 MAS solution
The distributed nature of the DARP allows for a logical

mapping of agents: each vehicle is represented by an agent.
When a vehicle is not already carrying customers it has to
decide which request it is going to handle first. A vehicle
can make this decision based on information it has about
available requests, such as location and time to deadline.
Creating a decision mechanism for an individual agent is non
trivial as it needs to take into account the global objective
as defined in equation 1. As a decision mechanism one can
devise a heuristic that computes a priority value for each
request. Then, the agent simply handles the request with
the highest priority value first. For creating this heuristic we
present a genetic programming solution in the next section.

3. GP OF MAS FOR DYNAMIC DARPS
In this section we present our GP solution for evolving

agent heuristics that solve the dynamic DARP.

3.1 Heuristic
Similar to [2] we define an agent heuristic as a function

which assigns a priority value to a request:

heuristic = (agent, request) -> priority

This heuristic is deployed on every agent. For all available
requests the agent executes the heuristic. The agent always
decides to handle the request with the highest priority value
first. The priority values for all available requests are recom-
puted periodically, which means that agents can divert from

their paths. To avoid infinite recurring diversions, agents
are disallowed to divert back to a previous target.

Since every agent is autonomous and has no means to com-
municate with other agents, conflicts can arise. A conflict
can occur when two agents aim to handle the same request.
The agent that arrives earliest will handle the request, the
second agent will divert to another target as soon as it rec-
ognizes that its first target is no longer available.

Note that by using the above described heuristic the agents
are only scheduling one request in advance. This is differ-
ent from more traditional approaches which usually plan
multiple requests in advance. Since we consider dynamic
DARPs long term planning is not beneficial because of the
rapidly changing dynamics. Also, because each agent is au-
tonomous, it is possible that vehicles aim for the same re-
quest. This is implemented such that the agent that first
reaches a request will handle it.

A simple example heuristic is shown in Figure 1(a). This
defines a priority function that returns a value inversely pro-
portional to the distance in case the request falls within the
time window, otherwise it returns a value proportional to the
lateness. This function prioritizes late requests if available,
otherwise it prioritizes requests which are close.

– Driver fatigue is not an issue, drivers never need to change.

The objective function for this problem is to minimize the tardiness of all re-
quests. Where tardiness is defined as the time that a request is too late, early
deliveries are allowed and have no e↵ect on the solution. This implies that a
solution is considered invalid if it has not handled all requests.

4 Genetic programming for dial-a-ride problems

Genetic programming is a well known technique for automatically creating com-
puter programs [8]. We use GP for designing heuristics which are deployed in a
multi-agent system. Every vehicle driver is represented by an agent which uses
the heuristic as a decision mechanism. Since the quality of a heuristic can not
analytically be deduced we are using a simulation-based fitness evaluation. This
means that for every individual in the evolutionary run we need to perform a
simulation that tests the heuristic on a problem instance.

4.1 Simulation based fitness evaluation

link to RinSim

4.2 Deploying the heuristic

The heuristic is a mathematical function which computes a priority value for a
request. The following Scala code illustrates the usage of the heuristic inside the
agent’s main loop:

is this Scala code
clear enough?

val currentTarget = requests.maxBy(heuristic(_))

Where requests is the set of available requests and heuristic is a func-
tion that computes a priority value for a request. The formula above selects
the request which has the highest priority value as computed by the heuris-
tic. Each vehicle travels towards its current target. Each agent recomputes the
currentTarget periodically, which means that vehicles are allowed to divert
from their path. To avoid recurring diversions agents are not allowed to ...

explain the di-
version avoidance
mechanism

4.3 Evolving the heuristic

Genetic programming uses a tree-based structure as a representation for an indi-
vidual. The nodes in the tree are functions and the leafs are terminals (constants
or variables). In Table 1 the functions and terminals that we have used are shown.

if( timeleft > 0 ){

return 1 / distance

} else {

return -1 x timeleft

}

(a) pseudocode



  

  

(b) tree representation

Figure 1: An example heuristic shown as pseu-
docode (a) and as a GP tree (b).

3.2 GP of heuristics for agents
The main difference between genetic algorithms (GA) and

GP is the choice of representation [4]. In GAs individuals
commonly represent numerical values while in GP they rep-
resent a program. Our approach differs from a regular GP
approach in that it requires a simulation to compute the
fitness of an individual.

For creating the above described heuristic we use GP, in-
dividuals are represented as a syntax tree. Figure 1(b) shows
the same heuristic as described previously but now as a syn-
tax tree. The nodes in the tree are functions and the leafs are
terminals (constants or variables). Table 1 gives an overview
of the functions and terminals that we use.

3.3 Simulation-based fitness evaluation
Since the quality of a heuristic can not analytically be

deduced, we are using a simulation-based fitness evaluation.
This means that for every individual in the evolutionary run
we need to perform a simulation that tests the heuristic on
a problem instance. For simulating the dynamic DARP we
use a multi-agent discrete event simulator called RinSim1.
In this simulator vehicles can drive over roads and pickup

1https://github.com/rinde/RinSim
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Table 1: GP functions and terminals, the first three
terminals return a value which is relative to the cur-
rent request c.

Name n args Description

distance 0 Bird flight distance to c mea-
sured from vehicle

timeleft 0 Time-left to handle c, nega-
tive when late

nearby-packages 0 Returns the accumulated
distance of the five closest
requests measured from the
drop-off location of c.

×, /, +, −, max 2 Mathematical operators
−1× 1 Negates the argument
if3 3 if(arg0 ≥ 0) then arg1 else

arg2
0, 1, 2, 4, 10 0 Constants

and deliver customers. The road map is a connected directed
graph, only the nodes of the graph can serve as pickup and
delivery locations. The agents in the simulator receive up-
dates periodically, in our case the agents receive an update
every second (simulation time).

4. RELATED WORK
There are two main research tracks which are directly re-

lated to our work. Firstly, the field of agent-based modeling
applied to DARPs. And secondly, the field of GP aimed at
developing decentralized control systems.

4.1 MAS and DARP
Problems such as DARP have distributed characteristics

which allow natural modeling of the problem using MASs.
For example, in [5] a MAS is used to solve the planning
problem for a taxi service company in the city of London.
Although this solution is a MAS it is not entirely decentral-
ized since it contains a centralized dispatcher which assigns
tasks to vehicles. A similar system is implemented in [3].
In [11] agent based modeling was used for an underground
freight transportation system. It was shown that their MAS
solution was more robust to demand fluctuations compared
to several traditional optimization methods.

The described methods above use MAS in either of two
ways: (a) they introduce a dispatcher agent which assigns re-
quests to agents or (b) they let agents autonomously decide
which request to handle next. In case of (a) the dispatcher
agent usually applies a problem specific heuristic or an opti-
mization method for assigning requests to agents. When us-
ing (b) the autonomous agents are given a hand constructed
heuristic and conflict resolution mechanism based on specific
domain knowledge.

Our approach differs from the described MAS literature
in that it implements a decision mechanism in a completely
decentralized way. Also, instead of using hand constructed
decision mechanisms we have developed the agent decision
mechanisms using genetic programming.

4.2 GP for MAS and decentralized control
Genetic programming (GP) is a well known general prob-

lem solver which is capable of finding creative solutions [8].

Past research shows that GP is capable of producing collab-
orative behaviors in MASs. For example, in [10] a virtual
world was defined containing lions and gazelles. GP was
used to program the lion controllers such that they collabo-
ratively hunt for the gazelles in an efficient manner. In [14]
it was shown that GP can be used to evolve agents that only
use communication to find each other in a virtual world. An
application of GP in a more complex environment is pre-
sented in [9]. Here the controllers for a team of software
soccer robots were evolved, the resulting team was able to
coordinate basic maneuvers such as scattering itself over the
field and defending the goal. More recently in [15] cooper-
ative strategies for unmanned aerial vehicles were evolved
using GP. In [7] neural networks were evolved for swarming
micro air vehicles.

The idea of using GP for developing a heuristic which
can be used to coordinate a decentralized control system
has been researched before. In [13, 2] it was shown that by
applying GP new heuristics can be obtained for the dynamic
job shop scheduling problem which outperform state-of-the-
art heuristics.

To our knowledge we are the first to combine MAS and
GP in the area of dynamic DARPs.

5. EVALUATION
Our approach is evolved on a set of scenarios on a real

world map. For testing we use a hold-out set of scenarios
on the same map. We compare our solution with the per-
formance of a selection hyper-heuristic on the hold-out set.

5.1 Scenarios
In typical optimization approaches for DARP diversion

is not considered. As such, all major benchmarks do not
contain information about the road structure. We consider
diversion to be an integral part of the problem, as such we
decided to create our own set of scenarios which are situated
on actual maps.

A scenario is a sequence of requests that arrive during a
period of time. Our scenario creation method is very similar
to that of [16, 17]. Instead of a Euclidean plane we use
actual map data. We run our simulations on a simplified
map of the city of Leuven (Belgium) which was obtained
from OpenStreetMap2. In Table 2 the parameters are shown
that we have used for the creation of our scenarios. We made
the scenarios and map available online, more information
can be found on the accompanying webpage3.

Table 2: Scenario creation parameters
Parameter name Parameter value

number of vehicles 6
number of requests 200
request deadline 30 minutes
incoming requests time period 2 hours
map Leuven, Belgium

2http://www.openstreetmap.org/
3http://people.cs.kuleuven.be/rinde.vanlon/data/
GECCO2012/
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5.2 Comparison: selection hyper-heuristic
Since our scenarios are relatively large (in terms of re-

quests) exact optimization solutions are not feasible. There-
fore as a comparison method we opted for a particular se-
lection hyper-heuristic that has shown good performance on
a set of problem domains [12]. The pseudocode for this
method is:

current best solution = random

while(termination criterium not met){
current heuristic = randomly select heuristic from

set of heuristics H
new solution = use heuristic for changing the current

best solution
if( new solution >= current best solution){

current best solution = new solution
}

}

In the pseudocode above, a solution is an assignment of
requests to vehicles in a particular order. The set of heuris-
tics H is a set of methods that ‘mutate’ a solution, the used
heuristics are shown in Table 3. Each heuristic guarantees
that it always produces complete solutions, i.e. solutions
where all known requests are handled by a vehicle.

Table 3: The set of heuristics H used in the selection
hyper-heuristic.

Name Description

precedence
change

pick a vehicle, pick one of its requests
and change its precedence

precedence
shuffle

randomly pick a vehicle and shuffle its
requests

move pick a vehicle, pick one of its requests
and move it to another vehicle

swap all pick two vehicles and exchange all re-
quests

swap one pick one request of one vehicle and
move it to another vehicle

We have used this algorithm in a static (hh-s) and a dy-
namic (hh-d) way. Both variants are executed at a cen-
tralized entity which coordinates all vehicles. In the static
variant the entire scenario is known beforehand, a global
plan for all vehicles is computed. This is of course an un-
fair comparison, as such we use this value as a lower bound.
In the dynamic variant this algorithm uses a rolling-time
horizon, meaning that it optimizes the solution based on
the information available at that moment in time. Note
that this algorithm is executed every time new information
comes available. The algorithm uses the current vehicles po-
sitions as input for optimizing the solution. The parameters
we used for executing the algorithm are shown in Table 4,
the results are shown in Table 5.

Table 4: Experiment settings for the selection
hyper-heuristic.

Parameter hh-s hh-d

iterations 1000000 250000
computation duration
(for each scenario)

30-34 hours 9-12 days

Table 5: Results for the two variants of the selection
hyper-heuristic on the ten hold-out scenarios. The
first two columns show tardiness (in hours) and the
last column shows the ratio between the dynamic
and static variant.

Scenario hh-s

(hours)
hh-d

(hours)
hh-d/hh-s
(ratio)

0 0.69 23.888 34.63
1 4.339 26.565 6.12
2 0.85 26.306 30.96
3 3.283 28.183 8.58
4 0.415 23.42 56.43
5 3.165 27.173 8.59
6 1.267 26.763 21.12
7 5.672 38.138 6.72
8 7.087 43.206 6.1
9 12.576 46.884 3.73

5.3 Comparison: hand constructed heuristics
For comparison, we constructed two trivial heuristics. One

is called distance and is defined as -1 distance. When us-
ing this heuristic vehicles will always go to the closest request
first. The second heuristic is called timeleft and is defined
as -1 timeleft. When applying this heuristic on a vehicle
the most urgent requests are handled first.

5.4 GP evaluation settings
For our GP implementation we used the ECJ library4. We

have extended the default GP implementation in two ways.
Firstly, we added a simulation-based fitness function that
performs simulations for an individual. Secondly, since the
simulations are computationally intensive we hooked ECJ
up with a framework that distributes the simulations over a
large number of computers such that many simulations can
be executed in parallel.

The fitness value of an individual is computed by tak-
ing the summed tardiness of all requests in a simulation as
was defined in equation 1. Since the tardiness needs to be
minimized, lower fitness values indicate better performance.
When either:

• the simulation time has exceeded a predefined limit;

• the simulation computation time has exceeded a pre-
defined limit;

• or, not all requests were handled,

the fitness value takes an infinitely high value instead. These
constraints imply that there is implicit fitness pressure for
large (computational intensive) individuals. The computa-
tion time constraint has a stochastic nature since it depends
on the hardware used for execution and the load of the hard-
ware at that time.

In each generation we compute the fitness of our individu-
als by doing simulations for multiple scenarios. To compute
the fitness of an individual we take the average fitness for
all scenarios, unless the fitness for one of the scenarios is
infinite, then the individual’s fitness is also infinite. Each
generation we use different random generated scenarios (us-
ing the same settings as explained in section 5.1). In the

4http://cs.gmu.edu/~eclab/projects/ecj/
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final generation of the evolutionary run we do a more exten-
sive fitness calculation by using a larger number of scenarios.
From this final generation we select the individual with the
best fitness value and then test it on a set of 10 hold-out
scenarios.

We have done experiments with two different parameter
settings, shown in Table 6. For computing these results

Table 6: Genetic programming settings
name gp 51 gp 101

generations 51 101
population size 1500
# scenarios 3 5
# scenarios at last generation 10 25
simulation time limit 24 hours
simulation computation time limit 120 seconds
tournament selection size 7

we used in total 80 computers. During computation the
computers could theoretically also be used by other users,
however, since the computations took place during nights
and weekends this happened rarely. The total computation
time for gp 51 was 10 hours, for gp 101 it took 44 hours.
In Appendix A the resulting heuristic of gp 51 is shown.

5.5 Results
Table 7 shows the results. It can be seen that for every sce-

nario the heuristic obtained through genetic programming
outperforms the solution obtained by the dynamic variant
of the hyper-heuristic. As expected, the evolved solutions
never outperformed the lower bound generated by the static
selection hyper-heuristic. An interesting and unexpected re-

Table 7: The results for the evolved and hand con-
structed heuristics on the set of 10 hold-out sce-
narios shown as ratios compared to the best known
static solution as was displayed in Table 5. The re-
sults shown in bold are the best results found for
that scenario.

Scenario hh-d gp 51 gp 101 distance timeleft

0 34.63 5.72 8.95 19.44 597.23
1 6.12 1.46 2.19 3.11 98.85
2 30.96 7.73 5.04 15.59 516.25
3 8.58 3.01 1.75 4.99 147.65
4 56.43 12.23 14.81 28.48 1181.3
5 8.59 1.67 1.92 4.27 149.84
6 21.12 5.02 4.56 8.93 382.2
7 6.72 1.57 1.81 2.7 85.46
8 6.1 2.15 2.24 3.3 73.16
9 3.73 1.23 1.43 1.66 46.5

mean 17.8 3.8 3.9 8.7 327.4

sult is that gp 51 performs slightly better than gp 101 even
though gp 101 used about four times as many fitness evalu-
ations. This can be explained by the fact that both GP runs
(gp 51 and gp 101) were run only once because of the high
computational cost. However, when examining the results
per scenario, it is clear that gp 51 does not always outper-
form gp 101. Further, it can be seen that the distance

heuristic performs much better than the timeleft heuristic.

However, the evolved heuristics are much better than the
distance and timeleft heuristic.

6. CONCLUSION
We have presented a method to automatically generate

a multi-agent system that can solve the dial-a-ride prob-
lem for a specific class of scenarios. The resulting MAS is
decentralized, meaning that each agent makes its decisions
autonomously based on its situation. We have used GP to
generate a heuristic which guides each agent at making deci-
sions. Our results show that our generated MAS is effective
at solving the dial-a-ride problem when compared to a cen-
tralized rolling-time horizon solution. These results indicate
that genetic programming is a good method for program-
ming decentralized multi-agent systems.

Based on this first step, various directions for future work
are possible. An interesting approach is to extend the GP
functions and terminals to allow agents to communicate with
each other. Adding communication, agents can coordinate
their actions to avoid conflicts when aiming for the same
request. We expect coordination to improve the solution
even further.

The current MAS is homogenous, every vehicle has the
same characteristics and every agent uses the same heuris-
tic. It would be interesting to investigate whether a het-
erogenous MAS performs better than a homogenous MAS.
In a heterogenous MAS agents can specialize, e.g. some
agents can be optimized for a certain region or a specific
kind of vehicle.
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APPENDIX
A. VISUALIZATION OF GP 51
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