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ABSTRACT 
Using a rule-based system for growing artificial neural networks 
[1], we have evolved controllers for physically simulated 18-
degree-of-freedom robotic “spiders”. These robots previously 
evolved “galloping” gaits and tracked a compass heading. Here, 
we introduce an artificial “visual cortex” that permits distinct 
predator and prey species to “see” one another. It has been 
claimed [2] that the “Cambrian explosion” of evolutionary 
diversity was due the emergence of animal eyes, which created a 
new dynamic in the interaction between predators and prey. The 
survival of both was for the first time determined by interactions 
between animals some distance apart. Here, we find that the 
introduction of vision does indeed generate complex interactions 
both between and within the two species, as they species evolve 
complex hunting or avoidance behavior, modulating their 
galloping gaits with dynamic input from their visual systems. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Evolutionary Prototyping; I.2.8 
[Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods; I.2.8 [Artificial Intelligence]: 
Robotics. 

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Open-ended evolution, complexity, predator-prey, artificial 
retina, generative, developmental systems. 

1. INTRODUCTION 
One of the primary goals in the field of artificial developmental 
systems is evolve systems that show an open-ended increase in 
complexity over evolutionary time. “Generative” artificial 
developmental systems [3-6] are intended to provide the 
possibility of such open-ended increase, whereas, for example, a 
standard genetic algorithm with a fixed genome length, and 
fixed phenotypic meanings of all genetic loci, does not. 
Predator-prey interactions have long been thought to promote 
adaptive evolution in artificial systems [7, 8]. A “Red Queen’s 
race” between predator and prey may create an arms race of 

adaptation between them. A series of work by Nolfi et al. [9, 10] 
and related work by Buason et al. [11, 12] explored co-evolution 
of robot predators and prey, using a simulated version of a 
hardware robot.  Our work in this paper differs in that we use an 
open-ended method for “growing” our neural controllers. 

2. METHODS 
2.1 Robot Bodies and Actuation by 
Controllers 
We use a fixed hexapod “spider” robot body, three of which are 
visible in Figure 1. Each of the six legs has three degrees of 
freedom (DOF): from the center of the head, looking outward 
along one of the upper leg segments, the “thigh” segment can 
move left-right and up-down. The attached “foreleg” segment 
can move up-down only. Neither joint can twist. Thus, in total, 
each robot has thirteen rigid body parts, and twelve joints with 
18 total DOF, all of which are actuated. 

Each joint axis has fixed limits to its range of motion. The 
neural network controlling each robot body has one Output 
neuron corresponding to each degree of freedom; when it 
assumes a value of +1, it is calling for its corresponding joint 
axis to be at its maximum range limit; a value of -1 calls for the 
minimum range limit. A simulated “spring” between the actual 
and requested positions generates a force on the joint axis. 
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Figure 1: A focal spider sees three other objects in its 

environment along three of its six lines of sight (arrows). 
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We used similar robot bodies in [1], but here we have eliminated 
the body orientation and velocity sensor Inputs, and replaced 
them with an “artificial visual cortex”. 

2.2 Artificial Visual Cortex 
An artificial “visual cortex” allows the spiders to “see” other 
objects of three types along six lines of sight. For example, in 
Figure 1, the green (which indicates the prey species) spider at 
lower right sees three objects situated around it: one spider of 
the same (green) species, one spider of the other (purple, 
indicating the predator) species, and one barrier object 
(cylinder). The lines of sight radiate from the spider at 60 degree 
angles; objects falling in a ~60 degree arc, centered on each line 
of sight, will register on the artificial visual cortex. 

The 18 Input neurons of the visual cortex are arranged in three 
rows of six, as shown in Figure 2. A particular neuron activates 
when an object of its type is in a particular 60-degree arc 
(centered on one of the six lines of sight): the rows encode the 
object type, and the columns encode the viewing direction. In 
Figure 2, three neurons in the visual cortex are activated (larger 
in size), indicating the presence of one spider of the same 
species to the front left (“same2”), one spider of the other 
species to the front right (“other3”), and one barrier object to the 
left (“barrier1”), as they were situated in Figure 1. The neurons 
activate more strongly for closer objects. 

2.3 Growth of Neural Network 
We use the L-Brain method [1] for “growing” neural networks 
according to inherited sets of growth rules. In the L-Brain 
method, a neural network unfolds in three dimensions according 
to cell division rules comprising: 1) a predicate type, 2) a 
conditional expression that indicates when and where the rule 
may be applied, and 3) two successor types. Beginning from a 
single protoneuron of a certain type, the rule set is repeatedly 
searched for applicable rules. If the predicate of a rule matches 
the type of a protoneuron, and the conditional expression 
evaluates to true, then the protoneuron divides into two 
protoneurons, each with one of the successor types. The 
conditional expressions are intended to control neural 
development in a space-, time-, and context-dependent way, 
analogous to natural gene regulation. When a full complement 

of protoneurons has been produced by a fixed number of cell 
divisions, the rules are applied again to convert some of the 
protoneurons into neurons. A fixed set of 18 Input neurons 
(green, the “visual cortex” neurons in Figure 2) and 18 Output 
neurons (red neurons in Figure 5, each of which will control one 
of the 18 DOF of the robot) are introduced Synaptic connections 
then grow according to the inherited rule set: briefly, the final 
neurons have a set of “preferred” types to which they would like 
form connections to, and from. The connections produced 
satisfy a combination of these preferences with a locality 
requirement. The L-Brain method itself is not the focus of this 
paper, but see [1] for much more detail. A video of the unfolding 
developmental process is available at the following URL: 
http://www.youtube.com/alifespider  

2.4 Evolutionary Parameters 
2.4.1 Predator and prey interactions 
In [1], we successfully used a single species to evolve a neural 
controller that would direct the 18 DOF of the robot to produce a 
“galloping” gait, and then track a compass heading to gallop to 
the North. In this paper, our goal is to study the interaction of 
two co-evolving species, one predator and one prey, selected for 
hunting and evasion behavior. The bodies and brains of the two 
species have identical physical capabilities and growth 
constraints, but the two species are scored differently. A 
predator individual receives credit for “eating” a prey individual, 
by physically colliding with it; the prey is penalized for being 
eaten, and rewarded for eating inanimate barrier objects. 

2.4.2 Fitness evaluation in physically simulated 
local demes 
We place N=25 individuals of each species into D separate 
demes (local populations), where D ranged from 16 to 320; thus 
the total metapopulation size is ND individuals, ranging from 
400 to 8,000, of each species. Each individual has a distinct 
genotype, i.e., a distinct set of inherited rules. Both species are 
asexual. All the 2N robot bodies in a single deme are simulated 
together, along with N barrier objects; thus they may all 
physically interact. Fitness is relative among all individuals of 
each species, within one deme. A single evaluation lasts for 
2,000 time steps of 1/30 second each, about 1 minute of 
simulated time. During this time, robots accumulate a score at 
each time step, according to the details of the physical 
simulation, including the velocities of the robots, and whether 
collision events occur. When a prey is “eaten”, it receives a 
score penalty, but does not disappear from the simulation; rather 
it is “regenerated” (retaining its accumulated score) in a new 
random location and the simulation proceeds. When a barrier is 
eaten, it also moves to a new location. Individuals migrate to a 
new random deme at a rate of 0.01 per generation. Thus one 
evolutionary generation consists of: 1) fitness evaluation via 
2,000 time steps of physical simulation; 2) reproduction 
according to relative fitnesses; 3) possible mutation of the 
“rules” making up each genotype (at a rate of 0.05 per rule per 
generation); and 4) migration among demes. We typically 
performed runs of 3,000 to 10,000 generations. 

3. RESULTS 
3.1 Tracking behavior 
With the above scoring function, we had success evolving 
tracking behavior in both species, using N=25 and D=16. In 
Figure 3, an example of successful tracking behavior in both 
species is shown: a predator tracks a prey, which is itself 

 
Figure 2: An  “artificial visual cortex” registers the presence 

of three objects, indicated by the three large neurons. 
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tracking a barrier object. The spiders leave colored 
“breadcrumbs” behind them to make their recent path visible; 
however, the breadcrumbs are not visible to the spiders. A video 
of tracking is available at: http://www.youtube.com/alifespider 

One alternative outcome to the evolution of hunting in both 
species is that the prey may become faster runners than the 
predators, such that even a predator that is successfully tracking 
a prey cannot catch up; this in turn reduces the selective 
advantage to the predators of good tracking, and they cease to 
improve it, or may even lose it. (Thus, interestingly, predators 
that are good at tracking get more “practice”, and improve.) 

3.2 “Orbit the barrier” baiting behavior 
One alternative adaptive strategy taken by the predators, if a 
deme enters the slower predator / faster prey condition, is what 
we call predators’ “orbit the barrier” behavior. In some runs, the 
predators would circle around a barrier object, apparently 
waiting for prey to track toward the barrier. When the prey 
finally approaches and “eats” the barrier, it is not difficult for the 
predator to move into the center of the barrier (which has just 

disappeared, having been “eaten”), and capture the prey. In 
Figure 4, a predator circles a barrier as a prey approaches. A 
video of the “orbit the barrier” behavior is available at: 
http://www.youtube.com/alifespider 

3.3 Larger metapopulations 
With D=16, not every run would produce successful tracking in 
both species. Using a single node of our 20-node computing 
cluster (each node contains 2 E5520 4-core CPUs), we are able 
to conduct a D=16 run on a single cluster node at a rate of about 
200 generations/hour, for N=25 (25 individuals of each species, 
and 25 barriers). In order to run larger metapopulations, we 
linked the 20 cluster nodes together by passing migrant 
individuals among them. That allowed us to run a large 
metapopulation of D=20*16=320 demes (or ND=8,000 per 
species) on the cluster, at the same rate of 200 generations/hour. 
Runs with larger metapopulations produced additional 
refinements to behavior. The “circle the barrier” behavior we 
previously described first arises by predators blindly bumping 
into a barrier, and having a gait that does not allow them to 
disengage from it. In larger runs, we commonly see this being 
refined by predators that can visually track barriers, close on 
them, and then circle them. This appears to occur when the prey 
are already accomplished trackers, which makes sense, since a 
“baiting” predator is relying on the prey’s tracking ability. 

We also observed prey that shy away from predators: if one of 
these prey individuals is tracking towards a barrier, and the 
experimenter manually places a predator in its path, it will detect 
the predator (the appropriate “other” Inputs are connected, and 
activate) and divert its course, in order not to collide with the 
predator. Interestingly, we have also observed prey that will shy 
away from other prey (and we can see that the appropriate 
“same” Inputs are activated during this behavior). The adaptive 
value of this may be that two spiders that collide usually end up 
with their legs tangled together, making them easy targets. 
Interestingly, we have also, rarely, observed predators that track 
toward other predators, so that they collide with them; we are 
not sure whether this is adaptive or not. We have only observed 
it in the case of slow predators / fast prey, where the predators 
are also actively tracking the barriers; so it is possible that some 
predators benefit by tracking other predators when they are 
likely to already be circling barriers. We note that it is possible 
for blind predators to “orbit”: when they run into a barrier, their 
leg motion may be such that they shuffle around the barrier, 
rather than detaching from it. It would thus be possible for one 
predator species to promote orbiting wherein a first predator 
blindly finds a barrier, and a second tracks to the first. This 
might perhaps be adaptive relative to being blind to barriers, but 
not relative to tracking the barriers directly. If this behavior is in 
fact selected, it would be a third-order interaction. 

3.4 Brain structure for tracking behavior 
A typical structure for a brain (here, a prey) that exhibits 
successful tracking behavior is shown in Figure 5. Only neurons 
that are “upstream” of some Output are shown in the figure, 
because only those can affect the gait. Two green Input neurons 
are so connected, “barrier0” and “barrier5”. The typical behavior 
produced by such brains is to run in circles until a target object 
(a barrier in this case) appears near the spider. When one of the 
Inputs detects a target, the spider zigzags back and forth as it 
closes on the target, with the target alternately activating the two 
Input neurons as it passes into their line of sight. Each activation 

 
Figure 3: A predator (purple) tracking a prey (green), which 

is, in turn, tracking a barrier object. 
 

 
Figure 4: A predator (center, purple) engages in “orbit the 
barrier” behavior, waiting for prey (green), to approach. 
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causes a “zig” or a “zag” that diverts the path of the spider back 
toward the target, until it eventually closes on the target. 

A common way this evolved tracking algorithm may fail is when 
two or more target objects are nearby on either side of the spider; 
this can cause tracking anomalies, such that capture fails. In 
addition, with moving targets, the target may move across one of 
the lines of site, and outside the “tracking cone”, also causing 
failure to capture. Commonly, a spider is under time pressure to 
quickly capture a target that it has sighted, lest a competing spider 
get to it first. Videos of spiders competing in this way are 
available at: http://www.youtube.com/alifespider 

4. CONCLUSIONS 
One interesting effort that aims to make evolution more efficient, 
is called “novelty search” [13], which keeps track of the regions of 
phenotypic space that have been previously searched, and does not 
produce similar organisms again. When phenotypic space 
becomes very large and multidimensional, however, it may not be 
possible to efficiently characterize and record the previously 
searched volume of phenotype space; nor is it clear how to reduce 
the dimensionality of this representation for general problems. It 
may be the case that a long-term means to avoid evolutionary 
stagnation, and evolutionary cycling, is to make the dynamics so 
complex and multifaceted that the chance of exact cyclic behavior 
becomes remote. If we wish to design artifacts for which we 
cannot intelligently create stepping-stones, then at least we can 
increase the chance that evolution is not repeatedly searching the 
same domain. 

We note that predator-prey interactions do force a sort of 
temporally-local “novelty search” due to the frequency-dependent 
fitness of predator-prey interactions: when the predator adopts 
strategy A, and the prey adopts strategy B to counter it, then at 
least for a short time, the predator is forced to find a novel, non-A 
solution. No manual dimensionality-reduction of the phenotype 
space is required: the discouraged strategy (A) is encoded, in a 
sense, in the genome of the prey. When the predator changes to 
another strategy, and the prey follows, then this “memory” of the 
previously covered region of phenotype space is lost – or is it? It 
is possible for second-order selective effects related to evolvability 
to shape the genome: even through the prey is no longer currently 
expressing the B strategy, its genome may now be more easily 

able to re-evolve the B strategy. This produces a “memory” on a 
longer timescale: if the predator adopts A again, it may be more 
quickly countered with B. Predators that evolve a novel, non-A 
strategy, can thus be rewarded on this longer timescale. Only 
when A has been avoided – and novelty has been enforced – for a 
relatively long time may this “memory” eventually fade. 
This Extended Abstract is a summary of a longer paper submitted 
to the ALife XIII conference, 2012. 
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Figure 5: A (prey) brain that exhibits successful tracking 

behavior by zig-zagging toward a barrier object. 
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