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ABSTRACT

How to drive a learning process towards the emergence of
a memory? It is hypothesized here that a reward function
which evaluates the fulfillment of a task requiring memory
does not necessarily reward the stepping stones to this cog-
nitive ability. This question is studied from an evolutionary
robotics perspective. Both structure and parameters of a
neural network supposed to exhibit a memory are generated
through an evolutionary search. Results show that selec-
tive pressures driving the evolutionary search are of critical
importance. We further hypothesize that one feature of con-
trollers with a memory is their ability to exhibit consistent
behaviors over different contexts. To validate this hypothe-
sis, a new fitness objective rewarding behavior consistency in
different contexts is introduced and tested on a T-maze ER
task — a task involving both navigation and working mem-
ory. The efficiency of the fitness objective is studied, as well
as its effects on the overall performance and generalization
ability of the controller. Results show that it is comple-
mentary to a behavioral diversity objective, thus leading to
improved results when using both selection pressures.

Categories and Subject Descriptors: 1.2.6 [Artificial
intelligence]: Learning

General Terms: Algorithms.

Keywords: Evolutionary Algorithm, Evolutionary Robotics,
Neuroevolution, Selection pressure.

1. INTRODUCTION

To exhibit a behavior that needs to remember past events,
a robot requires a dedicated controller architecture that can
store information. Learning over such architectures is a
difficult task. Evolutionary algorithms are versatile opti-
mization algorithms that can be used to find an adapted
architecture and/or its corresponding parameters. Neural
networks in particular can exhibit such properties and be
optimized with evolutionary algorithms. Following the sem-
inal work of Yamauchi and Beer [Yamauchi and Beer, 1994],
most works on this topic have focused on network structures
[Ziemke, 1999, Capi and Doya, 2005], but generating such
networks with evolutionary algorithms still remains a chal-
lenge [Blynel and Floreano, 2003]. Evolutionary search pro-
ceeds by balancing diversification that consists in exploring
the search space with intensification that consists in opti-
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mizing the best solutions found so far. These two differ-
ent aspects of EA result from the exploration done by the
genetic operators (mutation and, eventually cross-over) to-
gether with the selection algorithm that relies on fitness val-
ues. We will refer to the fitness function and all mechanisms
influencing the selection process as selection pressures. In
this work, we will hypothesize that the difficulty to generate
neural networks with a memory is not (at least not only)
a problem of network structure or encoding, but rather a
problem of selection pressure. The question we will address
is then: what selection pressure should we use to drive the
evolutionary search towards controllers exhibiting memory?

A selection pressure should drive the evolutionary search
from randomly generated individuals to desired solutions.
We hypothesize here that evolving a memory is a decep-
tive task, i.e. that intuitive goal oriented fitness functions
are misleading. More precisely, we think that reactive con-
trollers represent a very attractive local optima that is diffi-
cult to escape from and the contribution of this work aims at
enhancing both diversification and intensification phases to
solve this problem. The first contribution consists in show-
ing the impact of behavioral diversity [Mouret and Don-
cieux, 2012] for the evolution of memory, while it has been
tested mostly on reactive controllers up to now. Behav-
ioral diversity is a selection pressure that is independent
from memory and aims at enhancing the diversification part
of the evolutionary algorithm. The second contribution is
the proposition of a new selection pressure dedicated to the
emergence of an internal representation. This selection pres-
sure explicitly rewards networks that exhibit some form of
memory. It has been designed with the goal to be compatible
with any kind of neural network encoding and without mak-
ing any assumption on where the memory should emerge.
These two contributions have been tested on a T-maze nav-
igation task requiring to memorize some inputs to generate
the expected behavior.

2. METHODS

In the following, two helper objectives have been consid-
ered in a multi-objective scheme:

e a behavioral diversity, as defined in [Mouret and Don-
cieux, 2012];

e a consistency objective, as introduced in this work.

The behavioral diversity assumes a distance dy(z,y) be-
tween the behaviors x and y in a population of NV individuals.
The diversity associated with individual z is then computed
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Figure 1: Details of the evaluation of an individual by the consistency objective. 1) An individual (here a
neural network with internal neurons ni,ns,...) is simulated onto several predefined contexts. During this
simulation, the behavior of each internal neuron is stored. 2) The internal behaviors are compared and
checked for coherence, resulting in a partial fitness value f;. Then, the partial fitness values are aggregated

into the final evaluation f.

in the following way:
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The behavioral distance dj is specific to each experiment.

The generic framework for the consistency objective is de-
scribed in Figure 1. An individual is simulated over a col-
lection of predefined contexts. Its behavior on the different
contexts is stored (here the behavior of internal neurons is
considered). The fitness value of the objective is derived
from the comparison of those behaviors.

The definition of contexts and their comparisons depends
on the considered task, and will thus be described in the
next section.

3. EXPERIMENTAL SETUP

3.1 T-Maze navigation task

The task is an extension of the “roadsign problem” [Ziemke
and Thieme, 2002]: an agent starts off at the bottom of a
T-shaped maze, encounters an instruction stimulus (e.g. a
light) while moving along a corridor and, when it reaches
the junction, it has to turn left or right, depending on which
stimulus has been encountered (Figure 2).

A-X sequence
———- Other sequences

— distance sensors (IR)

(a) (b)

Figure 2: (a) Simulated mobile robot used for the
T-maze task. The robot has four additional sensors,
one by letter. (b) Map employed for this task.

To make the task more cognitive, the instruction stimulus
is a combination of four stimuli (A, B, X, Y) following the
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same rule as in the AX-CPT working memory test [Braver
et al., 1995, Pinville and Doncieux, 2010]. This task consists
of a context cue (A or B), followed by a probe (X or Y)
after some delay. The agent must turn to the left when the
stimulus A is followed by the stimulus X, and to the right
otherwise (for AY, BX, BY).

The agent is a simulated two-wheeled robot receiving sen-
sory inputs from six infrared distance sensors and four letter
sensors, one sensor for each letter A, B, X, Y, which receives
1 if the letter is presented, 0 otherwise. The robot controls
its speed through two output units corresponding to its left
and right motors. The agent is evaluated on each letter se-
quence (A followed by X, AY, BX, BY). The fitness increases
by one if it turns to the correct side for the sequences AY,
BX, BY and by three for the sequence AX, for a maximal
value of 6. This fitness (normalized) will be referred to as
“Goal oriented fitness”.

Both motors are disabled during the presentation of the
letters. The whole task lasts 350 steps and takes place as
follows with ¢ the number of elapsed time steps:

e 0 <t < 50: presentation of the first letter (A/B);
e 50 <t < 100: delay, all the sensors are set to 0;

e 100 < t < 150: presentation of the second letter
(X/Y);

e 150 < t < 350: the robot can move and must reach
the correct side of the T-maze.

In order to avoid overfitting to a specific initial configura-
tion of the robot, 12 different setups have been defined for
each possible letter sequence. A setup is described by an
initial starting position (4 different positions) and an initial
starting angle (3 different angles).

3.2 Neural network encoding

The agent is controlled by a neural network whose struc-
ture and parameters are evolved. DNN, a simple direct en-
coding has been used [Mouret and Doncieux, 2009b, Mouret
and Doncieux, 2009a]. It does not use crossover. Mutations



can change parameters (connection weights and neuron bi-
ases) and add or remove neurons or connections. A 1PDS-
based (locally Projected Dynamic System) neuron model
[Girard et al., 2008] is used to simulate the neurons with
an output in [—1,1] . It corresponds to a variant of the
leaky integrator model with similar dynamics but with the
dynamic property of contraction [Girard et al., 2008]. The
same setup has already been used in [Pinville et al., 2011].

3.3 Consistency Objective

The Consistency objective evaluates controlleurs for all 12
different setups. For each setup, the 4 letter sequences define
four contexts. For each controller, the behavior (output) of
each internal neuron is stored. As the computation of the
goal-oriented fitness already requires the simulation of the
robot behavior on these contexts, no additional evaluation
is required.

An individual has N internal neurons — N may vary from
individuals to individuals and during evolution. b%(t) is the
output of the i-th internal neuron in context s at time-step
t, after the presentation of letters (¢ > 150). The goal of
the consistency objective is to force individuals to obey the
following rules:

Vs € 8, bax(t) # bi(t)

Vs, s €8, bi(t) = bl (t)

where S = {AY, BX, BY'}. In other words, the consistency
objective rewards the existence of at least one internal neu-
ron that exhibits a similar behavior for AY, BX, BY con-
texts, and a different one for AX contexts. The behavior
is computed after the presentation of letters, i.e. when the
input letters are no longer active. The existence of a differ-
ence between the contexts should reflect the emergence of a
memory.

For each internal neuron i two partial fitnesses fi and f3
are computed, they measure how well the internal neuron
respects the two previous rules:

L1 L [l (1) — i)
_Ezfz%

seS t

fi

- 1 1 o [B() = bla(t)
f2_1_[|S|Qf|S|ZZTZ ]

s2€S s#s2 t

The fitness of each internal neuron is computed as follows:
Fr=H+r

As the goal of this experiment is to select individuals that
have at least one internal neuron that represents the infor-
mation, the final fitness is computed as the maximum of all
internal fitnesses f*:
T
f= o?f??v f
The fitnesses f compare the four letter sequences evaluated
in the same setup. The overall consistency objective corre-
sponds to the average of the 12 fitnesses thus defined (one
for each setup).
To test the influence of each objective, experiments are
launched with various combinations of objectives:
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Setup Objectives to be optimized
1| G Goal-oriented
2| G+D Goal-oriented + Diversity
31 G+C Goal-oriented + Consistency
4| G+ D + C | Goal-oriented + Div. 4+ Consistency

The multi-objective evolutionary algorithm is NSGA-II
and each of the setups is run 30 times.

4. RESULTS

Figure 3 shows that a simple fitness rewarding the com-
pletion of the task has poor results. This is confirmed by
Figure 4 in which one can see that a fitness plateau is quickly
reached. The fitness plateau is at f = 0.5, which corresponds
to controllers that always go to the same side of the maze.
Adding a diversity objective significantly increases perfor-
mance and delays fitness plateaus. This result is compatible
with our hypothesis that the evolution of a memory is a
deceptive problem and shows that selective pressures have
indeed a significant impact on the success rate.

The use of the Consistency Objective also increases the
performance significantly, to the same extent as the diversity
objective. There is no statistical difference between G + D
and G + C setups.

Using both objectives further increases performance, and
as no fitness plateau was reached during the 2000 generations
(Figure 4). One can then expect the fitness to be even better

with more generations.
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Figure 3: Best of run values for the goal-oriented
objective (30 runs for each setup).

A network is considered to exhibit a reliable memory if at
least one internal neuron respects the two following points:
(1) After presentation of the letters, the neuron has a differ-
ent output for AX contexts and for AY, BX, BY contexts.
(2) The memory is not affected by the duration of the pre-
sentation of the letters. While during evolution the duration
of the presentation was 50 time-steps for each letter, the ac-
tivity of the network is tested —after evolutionary process—
with a duration of 400 time-steps. This is aimed to detect
networks that rely on complex dynamics to have different
activities after exactly 50 time-steps, but would not work
with a different duration. In the same way, we assess the
generalization ability by testing an individual on 180 setups
unseen during evaluation.

While diversity objective slightly encourages memory, the
consistency objective significantly affects memory emergence
(figure 5). Interestingly using both helper objectives at the
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Figure 4: Evolution of fitness objective (median
value of all 30 runs).

same time has less impact on memory than the consistency
objective alone. Figure 5 also shows that the diversity and
consistency objective significantly increase the generaliza-
tion ability.
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Figure 5: Proportion of runs matching different cri-
teria: (1) achieving maximal fitness (2) having mem-
ory (3) having both (4) having both and generalizing
to 60 of the 180 extra setups.

5. CONCLUSION

These experiments confirm that the emergence of mem-
ory is a challenging problem. With the simple direct en-
coding used in these experiments, structures with memory
require several mutations to appear. They are thus unlikely
to appear without paying particular attention to selective
pressure. The helper objectives considered, both diversity
and the newly defined consistency objective, significantly in-
crease the convergence rate on this task.

The consistency objective —and, to a lesser extent, the
diversity objective— promote memory in the resulting net-
works. Moreover, the helper objectives are shown to have
a large impact on generalization ability even though they
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aren’t specifically designed to do so. We can hypothesize
that there is a link between the presence of memory in agents
and the generalization ability on this task. The consistency
objective does not assume a specific structure and could po-
tentially be used in any neuroevolution experiment.

Another methodological aspect highlighted in this paper
is the use of a multi-objective evolutionary algorithm. New
objectives are simply added to reward individuals that have
a low goal-oriented fitness value, but an original behavior
or an efficient internal representation. No new parameter is
introduced concerning the relative weight of these different
objectives.
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