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ABSTRACT
In this work, the modifications in the fitness landscape in
two simple Dynamic Optimization Problems involving Evo-
lutionary Robots are theoretically investigated. In the first
dynamic problem, a robot with control laws optimized by
a Genetic Algorithm should navigate in a simple environ-
ment. The changes in the fitness landscape are caused in
this case by sensor faults. The second problem investigated
here is when Evolutionary Robots are employed to repro-
duce the behaviour of rats in a maze. Changes in the rat’s
condition cause the modification in the fitness landscape.
Simulations using the exact model of the Genetic Algorithm
in each problem are presented, what allows studying the dy-
namical behaviour of the population of the GA, helping in
the analysis of the performance obtained in practice.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; I.2.9 [Artificial
Intelligence]: Robotics—Autonomous vehicles; G.3 [Analysis
of Algorithms and Problem Complexity]: Non-numerical
Algorithms and Problems—Computations on discrete struc-
ture

General Terms
Algorithms, Theory
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Genetic algorithms, dynamic optimization problem, robotics,
fitness landscape, dynamical systems approach
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1. INTRODUCTION
In last decade, a large number of applications of Evolu-

tionary Algorithms (EAs) in the design of robots and their
control laws have been described in the scientific literature.
One of the main motivations for the use of EAs in Robotics
is the need for adaptability in unstructured, flexible and par-
tially unknown environments [6]. Interestingly, in this case,
the connection between Biology and Robotics is not in only
one direction because robots can also be used for testing
cognitive and evolutionary models of biological systems [4].

In several real world problems, where the control laws and
navigation strategies are optimized by the EA, changes in
the problem occur during the optimization process, what im-
plies in changes in the fitness landscape. Such changes in the
optimization problem occur due several reasons, like faults,
environmental changes, platform modification, transfer of
solutions from simulation to real environments, and coop-
eration and competition problems. In this way, strategies
developed for Evolutionary Robots (ERs), i.e. robots de-
signed using EAs, in dynamic environments have appeared
in recent years, like noise addition [5], the fusion with other
learning strategies [6], the insertion of random immigrants
to maintain the diversity level [3], and the mutation distribu-
tion adaptation [13]. In such applications, the performance
of the EA is experimentally tested, i.e., the EA is executed
and the obtained results are analysed.

According to the author’s knowledge, theoretical works
analysing EAs applied in robots in dynamic environments
were not produced in the literature. In fact, the lack of
theoretical investigations on the operation of EAs does not
occur only in Robotics, but also in a myriad of other areas.
Overall, the number of investigations involving theory does
not follow the fast growth of other areas of EAs. The prob-
lem is even worse in EAs in dynamic environments, where
very few investigated the theory behind the algorithms (e.g.,
[1, 2, 8, 9, 10]). However, one could argue, the theoretical
analysis should be general, independent of the application
area, as some tools of theoretical analysis do not take into ac-
count the particularities of the search space associated with
the problem. However, such tools have had limited success
in explaining some particularities of the operation of EAs
[7]. On the other hand, tools in which the particular search
space must be known, as analysis by Markov Chains or by
the Dynamical Systems Theory, have been successfully ap-
plied in many cases, despite of various limitations, the most
important being the need to treat simple problems due to
the size of the mathematical models.
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Particularly in the case of modelling Genetic Algorithms
(GAs) as dynamical systems, approach developed mainly
by Vose [16] and whose model is known as exact model,
although demanding a large number of equations to track
all possible solutions represented the individuals of the GA,
its use is quite interesting because it allows a complete de-
scription of the population dynamics [7]. Few works used
the dynamical system approach to analyse GAs in dynamic
environments. In [9], the standard GA with mutation and
selection was investigated on Dynamic Optimization Prob-
lems (DOPs) with regular changes In [14], the authors pro-
posed the use of the exact model to study the GA in dy-
namic environments created by the XOR DOP Generator
[17]. Subsequently, this analysis was extended in [15] to the
0-1 knapsack dynamic problem.

In this paper, the modifications in the fitness landscape
when a change occurs in two simple DOPs involving ERs
are investigated. The choice of simple applications involv-
ing mobile robots is justified by the need for a complete
description of the fitness landscape of the GA. The study
of the fitness landscape changes is very important in under-
standing the DOP properties and the performance of an EA.
It is still useful for the development of new benchmark DOP
generators and the analysis of the properties of generators
already used in practice, like the XOR DOP Generator,

Here, in the first investigated DOP, presented in Section 2,
a robot with control laws optimized by a GA should navigate
in a simple environment. Section 3 presents the second prob-
lem, where ERs are employed to reproduce the behaviour
of rats in a maze. In both problems, the search landscape
changes during the optimization process, due to faults in the
robot’s sensors in the first problem, and due to changes in
the rat’s condition in the second case. In Section 4, the GAs
used to control the robot in the dynamic environments are
simulated through their exact models, what allows studying
the dynamic behaviour of the population of the GA, helping
in the analysis of the performance obtained in practice. The
conclusions of the paper are presented in Section 5.

2. PROBLEM 1: NAVIGATION OF A ROBOT
IN A SIMPLE ENVIRONMENT

In this application, a mobile robot with one frontal sensor
should navigate in a simple square environment. The robot
can occupy one of nine different positions (squares) of this
environment and its distance sensor generates a signal equal
to s = 1 if the robot is facing a wall and s = 0 otherwise.
The robot is controlled by a finite state machine with l bits,
where each bit determines the action of the robot for each
possible combination of sensor signal s and internal state m.
The objective of the optimization process executed by the
GA is to find a control law (finite state machine) that allows
the robot to navigate in the environment without hitting the
walls. Two models are investigated here, one with l = 4 bits
and other with l = 8 bits.

In the first model, the robot can execute two actions: to
move forward (0), i.e., the robot moves to next position lo-
cated in its front, or to rotate clockwise (1), i.e. the robot
changes its orientation without changing its position. The
internal state signal m (internal memory) indicates the last
action performed by the robot, i.e., a rotation (m = 0) or
not (m = 1). In this way, the finite state machine has 4 bits,
each one indicating a action for each possible combination

of sensor input and memory, i.e. (s,m)= { 0,0 ; 0,1 ; 1,0
; 1,1 }. For example, if the finite state machine is given
by x = [0, 0, 0, 1]T, the robot rotates only when it moved
one step forward in last iteration and finds a wall in front
of its current position. Then, the search space is composed
by only n = 16 possible solutions. In the second model, 4
actions can be executed: to stay in the same position and
orientation (00), to rotate clockwise (01), to rotate counter-
clockwise (10), and to move forward (11). Then, the finite
state machine has 8 bits, two for each one of the 4 combina-
tions of sensor input and memory. In this case, the search
space is composed by n = 256 possible solutions.

In both models, the fitness is given by the number of po-
sitions occupied by the robot (i.e., the number of times it
moves forward plus 1) until a collision with a wall or, other-
wise, until a limit of 10 iterations. As the robot always starts
in the same position and orientation (the first position and
toward right), the maximum fitness that can be achieved is
8, because it should turn (without leaving its position) at
least 3 times. The objective of this study is to investigate
the modifications on the fitness landscape when a change
occurs in the problem of applying the GA to find the finite
state machine that produces the highest fitness. A simple
problem of robot navigation is chosen here in order to allow
monitoring the fitness of all possible solutions of the search
space. In this DOP, changes are introduced in the problem
by simulating three types of faults in sensor readings.

In the first fault (fault 1), the sensor readings are always
equal zero. This type of fault can occur, for among other
reasons, due to malfunction of the sensor or by a disruption
of the cables connecting the sensor to the microcontroller
controlling the robot. In the second fault (fault 2), the re-
verse occurs, i.e., the sensor readings are always equal to
one, what can occur in case of a short circuit. In the third
fault (fault 3), the readings from the sensor are inverted, i.e.,
when there is an obstacle in front of the sensor its reading is
equal to s = 0, while s = 1 otherwise. This fault can occur
due to malfunction of the sensor or the microcontroller.

In order to understand how the changes caused by faults
affect the dynamical behaviour of the GA, we should inves-
tigate how the fitness landscape is modified in the transition
of two consecutive change cycles (a change cycle is the pe-
riod between two consecutive changes). In case of fault 1,
the sensor reading is always s = 0, which results that the
combinations of sensor input/memory are reduced to (s,m)
= {0,0 ; 0,1 }. As a result, the actions given by the third
and fourth elements of the vector x are respectively equal
to the actions given by the first and second elements of the
same vector. A similar effect occurs in case of fault 2, in
which the sensor reading is always s = 1. In this case (s,m)
= {1,0 ; 1,1 }, and as a result, the actions provided by the
first and second elements of the vector x are respectively
equal to the actions given by the third and fourth elements
of this vector. In case of fault 3, in which the input signal is
inverted, there is a permutation among the elements of the
vector x (the exchanges are between the first and third ele-
ments and between the second and fourth elements). Thus,
we can write that when a fault occurs in change cycle e, as-
suming that the robot is in normal operation in cycle e− 1,
the vector x(e) is:

x(e) = B(e)x(e− 1) (1)

where, for model 1 (with l = 4), B(e) is for faults 1, 2 and
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3 respectively given by:

Bf1(e) =
[

I2 02

I2 02

]
,Bf2(e) =

[
02 I2
02 I2

]
,

Bf3(e) =
[

02 I2
I2 02

]
.

where 02 is a 2 × 2 matrix compose by zeros and I2 is the
2× 2 identity matrix. As a consequence of Eq. 1, the fitness
vector in change cycle e (faulty robot) can be computed
through the fitness vector in change cycle e − 1 (normal
operation). The fitness vector contains the fitness of each
possible solution of the search space [7]. In case of fault
1, the fitness of solutions in which the actions (elements of
vector x) are equal for s = 0 and s = 1 in cycle e−1 replace
the fitness of solutions whose respective actions for s = 0 are
equal (i.e., solutions with the same first half of the vector
x). The same occurs for fault two, but now replacing the
solutions whose respective actions for s = 1 are equal (i.e.,
having the same second half of vector x). Finally, for the
third fault, there will be a permutation of the fitness vector
elements corresponding to solutions that present different
actions for different values of s. For the remaining elements
of the fitness vector, the values remain unchanged. Thus,
we can write:

f(e) = A(e)f(e− 1), (2)

where f(e) is the fitness vector and, for the model with l = 4,
A(e) is respectively given for faults 1, 2, and 3 by:

Af1(e) =

⎡
⎢⎢⎢⎢⎢⎣

Md 02 02 02 02 02 02 02

Md 02 02 02 02 02 02 02

02 02 Me 02 02 02 02 02

02 02 Me 02 02 02 02 02

02 02 02 02 02 Md 02 02

02 02 02 02 02 Md 02 02

02 02 02 02 02 02 02 Me

02 02 02 02 02 02 02 Me

⎤
⎥⎥⎥⎥⎥⎦
,

Af2(e) =

⎡
⎢⎢⎢⎢⎢⎣

Ma 02 Mc 02 02 02 02 02

02 02 02 02 02 Mb 02 Mc

Ma 02 Mc 02 02 02 02 02

02 02 02 02 02 Mb 02 Mc

Ma 02 Mc 02 02 02 02 02

02 02 02 02 02 Mb 02 Mc

Ma 02 Mc 02 02 02 02 02

02 02 02 02 02 Mb 02 Mc

⎤
⎥⎥⎥⎥⎥⎦
,

Af3(e) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ma 02 MT
b 02 02 02 02 02

02 02 02 02 Ma 02 MT
b 02

Mb 02 Mc 02 02 02 02 02

02 02 02 02 Mb 02 Mc 02

02 Ma 02 MT
b 02 02 02 02

02 02 02 02 02 Ma 02 MT
b

02 Mb 02 Mc 02 02 02 02

02 02 02 02 02 Mb 02 Mc

⎤
⎥⎥⎥⎥⎥⎥⎦
.

where: Ma =
[

1 0
0 0

]
,Mb =

[
0 1
0 0

]
,Mc =

[
0 0
0 1

]
,

Md =
[

1 0
1 0

]
,Me =

[
0 1
0 1

]
.

In Figure 1, the fitness vector for each environment in
the simple navigation problem is plotted. The best so-
lutions for the robot in normal operation are solutions 1
(x = [0, 0, 0, 1]T) and 3 (x = [0, 0, 1, 1]T), i.e., when the
robot rotates only when it moved forward in the last itera-
tion and found a wall in front of its current position (solution
1), or when it finds a wall in front of the current position

regardless of its state (solution 3). In both cases, the fit-
ness is equal to the maximum fitness (8), and the strategy
adopted by the robot is navigating in a clockwise direction
at positions along the walls. In the solutions that have best
fitness in the following (solutions 5 and 7), the robot rotates
always after a forward movement. In this case, the fitness is
equal to 6, as the robot turns 5 times while for the strategies
with maximum fitness, the robot rotates only 3 times. Note,
however, that this strategy generates the maximum fitness
when the robot has faults 1 or 2 because it does not use
the sensor to navigate (one can remember that the sensor
readings are always equal to a fixed value for faults 1 and 2).
Two other solutions indicating strategies where the sensor
readings are not used in the navigation have the maximum
fitness too in cases of faults 1 and 2. In case of fault 3, the
fitness for the solutions is maintained, only being reordered
according to the inversion of the sensor readings.

According to Eq. 2 and the classification of DOPs pre-
sented in [15, 14], one can observe that the faults generate
linear homogeneous DOPs, i.e, dynamic problems where the
fitness landscape in change cycle e− 1 is modified according
to a linear homogeneous transformation:

f(e) = A(φ(e))f(e− 1), (3)

where A(.) ∈ R
n×n and φ(e) is the control parameters vec-

tor that define the dynamism of the problem. Furthermore,
as Af3(e) is a permutation matrix, fault 3 generates a DOP
with permutation, i.e., where the linear transformation of
the fitness landscape is given by a permutation matrix. In
this way, the problem has characteristics similar to those
found in DOPs produced by the XOR Generator [17], which
is widely used by researchers to test EA for dynamic dis-
crete optimization. However, while in DOPs produced by
the XOR Generator the elements of the vector f are re-
ordered according with a uniform permutation, where all
elements of the fitness vector are reordered in the same way,
fault 3 causes a non-uniform permutation, where some ele-
ments of the fitness vector are reordered, while others remain
fixed. Anyway, in both cases, the values in the fitness vector
remains equal, only being rearranged.

As discussed in [14], in a DOP with permutation with the
characteristics of the problems produced by the XOR Gener-
ator or by the problem presented here, any metastable state
in change cycle e (in case of a robot with fault 3) can be ob-
tained by permutation of the corresponding metastable state
in change cycle e−1 (normal operation). In addition, the av-
erage fitness in the metastable states for both environments
are equal. In cases of faults 1 and 2, the linear transforma-
tion of the fitness vector causes the disappearance of some
values of change cycle e − 1. Thus, the metastable states
are different for each cycle change, as well the correspond-
ing average fitness. These results can be observed in the
simulations of the robot presented in Section 4.

3. PROBLEM 2: USE OF ROBOTS FOR THE
INVESTIGATION OF THE BEHAVIOUR
OF RATS IN A MAZE

In [11], a robot controlled by an Elman Artificial Neural
Network (ANN) was used to reproduce the behaviour of rats
in an Elevated Plus-Maze (EPM). The EPM is used in Psy-
chobiology for the study of behaviour and to test the effect of
different drugs. The maze is composed by four united arms
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Figure 1: Fitness space (f) for problem 1 with l = 4.

elevated from the floor. Two opposite arms of the EPM are
surrounded by walls. In [11], the weights of the ANN are
optimized by a GA in order that the robot reproduces the
behaviour observed in experiments with real rats, what is
obtained after some generations.

The problem studied here is a simpler version of the prob-
lem investigated in [11]. Here, the same robot described in
Section 2, added with a sensor to detect the colour of the
floor, is used to reproduce the rat’s behaviour. The new
sensor is used to detect if the robot is in a closed or open
arm as the squares of the closed arms are painted in a dark
colour. The EPM here is composed by 9 positions (squares):
one central square and 2 in each arm.

Here, the robot is controlled by a finite state machine
with 8 bits optimized by the GA. Each bit of the state ma-
chine defines an action for the respective combination of
frontal sensor reading (s), memory bit (m) and floor sen-
sor reading (r). For example, if the finite state machine is
x = [0, 0, 0, 0, 0, 0, 0, 1]T, the robot rotates only when it finds
a wall in front of its current position, moved one step for-
ward in last iteration, and is located in a close arm (i.e., the
floor is dark coloured). In this way, the search space has
n = 256 possible solutions. When a individual (candidate
solution) is evaluated, the robot with the respective state
machine navigates during 150 iterations in the EPM, start-
ing from the central position and headed toward one of the
closed arms. The fitness of the individual x is computed by:

f(x) = 0.5
3

∑3
i=1

(
1− |timed(i)− time(x, i)|)+

0.5
2

∑2
i=1

(
1− |entd(i)− ent(x, i)|), (4)

where time(x, 1), time(x, 2) and time(x, 3) are respectively
the percentage of time spent in the central square, open arms
and closed arms by the robot with solution x; ent(x, 1) and
ent(x, 2) are respectively the percentage of entrances in open
and closed arms; and d means a desired value. The desired
values were obtained by Silvio Morato and co-workers at the
Laboratory for Exploratory Behaviour of the Department
of Psychology, FFCLRP, University of São Paulo in exper-
iments with real rats under three conditions [12]: normal
and under effect of anxiolytic (chlordiazepoxide, 5 mg/kg)

and anxiogenic (pentylenetetrazol, 30 mg/kg) drugs. When
compared to the behaviour of the rat under normal condi-
tion (called here condition 0), the movement rate and time
spent in the open arms increase for the rat under the effect
of the anxiolytic drug (condition 2), while they are reduced
for the rat under the effect of the anxiogenic drug (condition
1).

Here we investigate how the fitness landscape changes
when the optimization problem changes from condition 0
(normal) to conditions 1 or 2. Starting the evolutionary
process from the population evolved for condition 0, when
compared to restarting the evolutionary process, can save
substantial computational effort for the optimization of con-
trol laws for conditions 1 and 2. Besides, the analysis of the
modifications in the fitness landscape can help to under-
stand how the navigation strategies change when data from
the experiments with the rats under the effect of anxiolytic
and anxiogenic drugs is used instead of data of the experi-
ments with the rat in normal condition. Figure 2 shows the
fitness landscape for the three conditions. When the differ-
ence (Δf) between the fitness vectors for condition 1 and
condition 0 are analysed, some observations can be made.

First, it is possible to observe that Δf assumes one of
three values: 0, −Δfc, and +Δfc. The first value (Δf = 0)
always occurs when the second bit of the individuals is equal
to 1, i.e., when the robot turns (action 1) for {s,m, r} =
{0, 0, 1}. In this case, as the robot always starts in the cen-
tral square of the maze with m = 0, the robot will rotate in
this position for all iterations. Thus, only the percentage of
time spent in the central square is higher than 0. As the de-
sired percentage of time spent in the central square is equal
for conditions 0 and 1, the fitness for the solutions where the
second bit is equal to 1 does not change when the problem
is modified from condition 0 to conditon 1.

From analysing Δf , one can identify three other bits (third,
fifth and seventh bits) whose values do not care for the
change in the fitness . One can also identify values of bits
responsible for Δf = −Δfc and Δf = +Δfc. In order to
facilitate the analysis of the bits’ influence, schemata, i.e.,
templates with bits 0, 1 and * (do not care), can be associ-
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Figure 2: Fitness space (f) for problem 2.

ated for each subset of solutions where the fitness difference
is −Δfc or +Δfc.

For the subsets of solutions associated with the fitness dif-
ference −Δfc, the schemata ∗0∗0∗∗∗∗ and ∗0∗1∗0∗0 can
be identified. For the subsets of solutions associated with
changes +Δfc, we can identify the schemata ∗0 ∗ 1 ∗ ∗ ∗ 1
and ∗0 ∗ 1 ∗ 1 ∗ 0. Those schemata represent subset of so-
lutions related to actions associated with the closed arms,
being important for the navigation strategies. When the en-
vironment changes from condition 0 to condition 1, the time
spent in the closed arms should increase. As a consequence,
solutions with actions that makes the robot to spend more
time in the closed arms generates an increase (+Δfc) in the
fitness. However, the fitness should be decreased for those
solutions with actions that makes the robot to spend less
time in the close arms.

A similar analysis can be made when fitness landscape
changes for the problems from condition 0 (normal) to con-
dition 2. The analysis in this case is more complex as Δf
assume 10 different values. In this case, actions where the
robot spends more time in the open arms should be explored
for condition 2, what is not done in conditions 0 and 1, re-
sulting as a consequence in a more complex fitness landscape
change pattern. Anyway, in this case, it is possible to iden-
tify 18 schemata in order to describe the different subsets of
solutions associated with the different values of Δf .

For both DOPs, the changes in the fitness vector from
change cycle e−1 (condition 0) to change cycle e (condition
1 or 2) are ruled by:

f(e) = f(e− 1) + b(Ω(e)), (5)

where Ω(e) is a set of schemata and the i-th element of
b
(
Ω(e)

)
is given by:

bi(Ω(e)) =

|Ω(e)|∑
j=1

a(xi, sj(e), e) (6)

where sj(e) ∈ Ω(e) and:

a(xi, sj(e), e)
)
=

{
Δfj(e), xi ∈ sj(e)
0, xi /∈ sj(e)

(7)

By Eq. 5 and according to the classification of DOPs pre-
sented in [15], one can observe that the changes in the envi-
ronments generate linear DOPs.

4. SIMULATION RESULTS
In this section, the exact model [16, 7] of the GA is simu-

lated in the problems described in last two sections. In the
exact model, the dynamical behaviour of the GA is described
by the trajectories of the the population vector, which de-
fines the proportion of each possible solution in the popula-
tion at generation t. In a DOP [14], the population vector
at generation t is given by:

p(t) = G(p(t− 1), t
)
, (8)

where G(., t) : Λ × N
+ → Λ is the generational operator

(map) at generation t, p(t) is the expected population at
generation t ∈ N

+, p(0) is the initial population vector, and
Λ is the simplex where the population vector is contained:

Λ =

{
p ∈ R

n : pk ≥ 0, for k = 0, . . . , n−1 and

n−1∑
k=0

pk = 1

}
,

(9)
where n is the number of possible solutions in the simplex.
In the limit N → ∞ (infinite population case), where N is
the population size, the trajectory of the population in the
simplex can be deterministically described. The analysis of
the generational operator can provide important insights in
understanding the behaviour of the GA. The fixed points of
Eq. 8, called metastable states, play an important role in
the evolutionary process as they can change the trajectory
in the simplex, attract the population vector, and trap finite
populations for several generations.

Here, the trajectories of the populations of GA with flip
mutation and proportional selection when applied to the
problems described before are simulated and analysed. In
the simulations presented here, rather than execute the GA,
its dynamical system is simulated, i.e., the evolution of the
population vector is simulated according to Eq. 8. In the
simulations, the initial population is uniformly distributed
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and the mutation rate is equal to 0.01. For the problem
described in Section 2, the duration of each change cycle
is τ = 40, while for the problem described in Section 3,
τ = 100.

4.1 Results for Problem 1
Due to space limitations, we present here only the results

for the simulations of the second model (l = 8) for the prob-
lem presented in Section 2. However, similar behaviour of
the dynamical system is observed in the simulations of model
1 (l = 4). Figure 4 shows the simulations of the dynamical
system of the GA with l = 8. In the simulations, the robot
is in normal operation in the first τ = 40 generations and
has one fault in the remaining generations.

In Figure 4, the average fitness of the population and the
Euclidean distance between the vector population in the cur-
rent generation and the three eigenvectors with the highest
eigenvalues at the end of the simulations are presented. For
the GA with flip mutation and proportional mutation [7],
the generational operator is given by:

G(p) = UF p

fTp
. (10)

where U is the mutation matrix, f is the fitness vector, and
F = diag(f) is a diagonal matrix. In the GA with flip mu-
tation and proportional mutation, the eigenvectors of UF
define de metastable states (fixed points) of the dynamical
system. In Figure 4, the first eigenvector (i.e., the eigenvec-
tor with the largest eigenvalue) always corresponds to the
main metastable state of the dynamical system, i.e. that one
in which the number of individuals in the current global op-
tima is greater than the number of individuals in any other
location for the problems presented here. The other eigen-
vectors correspond to other metastable states that have im-
portance for understanding the population dynamics.

The simulations presented here help to understand the
behaviour of the GA when a change occurs in the fitness
landscape for the navigation problem. One can observe that
in the first change cycle (robot without faults), the popula-
tion vector quickly converges to the main metastable state,
where most of the population is distributed between the two
global optima of the fitness landscape, and as a consequence,
the average fitness of the population is near the maximum
allowed fitness. When a fault occurs, the population is lo-
cated in the main metastable state of the first change cycle,
which is different from the main metastable state of the sec-
ond change cycle (i.e., when the robot has a fault). Thus,
the population vector must migrate to the new metastable
state when the fault occurs. In this case, depending on the
type of fault, two situations can occur. In the first situation,
even with the change of the main metastable state, this one
is still the state closer to the current position of the popula-
tion (i.e., the position of the former main metastable state).
As a consequence, the population vector easily reaches the
new metastable state after the fault. This is the case for
fault 2, in which the metastable states before and after the
fault are close due to the fact that one of the solutions that
presents maximum fitness before the fault also presents the
maximum fitness after the fault. One can observe that for
the second fault, the average fitness rapidly converges to a
value close to the maximum fitness (value equal to 6).

Note, however, that this does not occur for faults 1 and
3. In these cases, when the fault occurs, there are other

metastable states closest to the current position of the popu-
lation vector (corresponding to the position of the metastable
state for change cycle 1, i.e., before the change caused by the
fault) than the main metastable state after the fault. One
can observe in Figure 4 that, in these cases, the population
approaches in a first moment one of these states, spending
a time in its neighbourhood, before converging to the main
metastable state of change cycle 2. As a result, the popula-
tion needs more time in order to converge to the new global
optima, what can be observed in the graphs of the mean
population fitness. In this way, faults 1 and 3 represent
changes more severe than fault 2 for this dynamic optimiza-
tion problem. Another important factor that influence the
difficulty of the dynamic optimization problems is the dura-
tion of the change cycles. Note that in case of faults 1 and
3, change cycles lasting less (i.e., in which changes occur
more frequently, as in the case of fast intermittent faults),
the performance can be more affected because the popula-
tion does not have enough time to reach the neighbourhood
of the current main metastable state, staying in the neigh-
bourhood of another metastable state. It is important to
observe, however, that a worse performance would depend
on other properties of the dynamical system, like the average
fitness in each metastable state.

4.2 Results for Problem 2
Figure 4.2 shows the simulations of the Dynamical System

of the GA for the experiment with the use of robots for
the investigation of the behaviour of rats in the EPM. In
the simulations, the fitness of the solutions are computed
using the data from the rats in condition 0 for the first τ =
100 generations, and in conditions 1 or 2 for the remaining
generations.

One can observe that the population vector reaches the
neighbourhood of the main metastable state for the changed
landscape after some generations. In the figure, we can ob-
serve that the convergence to the new main metastable state,
where more individuals are located in the global optima than
in any other part of the fitness space, is faster for condition 2
than for condition 1. From Figure 4.2 it is possible to observe
that the new main metastable states for both conditions 1
and 2 are locate closer to the old main metastable state (for
condition 0) than any other state. However, this distance
is smaller for condition 2 (distance equal to 0.2310 against
0.2730 for condition 1), what explains the faster convergence
of the population vector for condition 2.

5. CONCLUSIONS
In this paper, the modifications in the fitness landscape

for two simple robotic DOPs were studied, as well the be-
haviour of a simple GA when applied to such dynamic prob-
lems. In Section 2, the changes caused by faults in the fitness
landscape for the first problem (navigation in a simple envi-
ronment) were analysed. It was observed that the changes
caused by the faults generate linear homogeneous DOPs,
where the fitness vector is changed according to a homoge-
neous linear transformation. Also, in case of fault 3, the
problem is also a DOP with permutation. DOPs with per-
mutation are also produced by the XOR DOP Generator,
but while this generator produces uniform permutations in
the whole fitness landscape, fault 3 produces permutations
only in some solutions of the fitness space. Section 3 showed
that DOPs with linear transformations are also produced
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Figure 3: Mean fitness and distances from the population to three metastable states for problem 1 with l = 8.
The solid line shows the distance to the main metastable state.

in the second problem (use of robots to investigate the be-
haviour of rats in a maze). However, in this case, the trans-
formations occurs in subset of solutions, what was described
using different templates (schemata).

In Section 4, simulations of the dynamical system of the
GA in the studied problems were analysed. In the first prob-
lem, it was observed that the DOPs generated by faults 1
and 3 are harder than those generated by the second fault.
This is due to the fact that, for these faults, metastable
states different from the main one after the fault are closer
to the main metastable state before the fault. Thus, the pop-
ulation stays for a time in the vicinity of these states prior
to converge to the main metastable state (after a fault). As
a result, the GA takes longer time to reach the global op-
tima, which causes a deterioration in the performance (in
relation to fault 2). In case of the second problem, the dis-
tance between the old (before the change) and new (after the
change) main metastable states explain the difference in the
velocity of convergence in landscapes for conditions 1 and 2.
The study of the modifications of the fitness landscape af-
ter a change and the use of the dynamical system approach

helps the investigation of the behaviour of the GA from a
theoretical point of view, which is extremely useful for the
study of performance, mostly based on experimental analy-
ses. The main disadvantage of this theoretical approach is
the applicability to small problems, requirement to allow the
monitoring all possible solutions of the problem. As future
works, this approach should be applied to other DOPs. The
study of the modifications in the fitness landscape is still
important in order to study and propose DOP benchmark
problems generators, like the XOR DOP Generator.
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