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ABSTRACT

Fitness landscape analysis methods have become an increas-
ingly popular topic for research. The future application of
these methods to metaheuristics can yield advanced self-
adaptive metaheuristics and knowledge bases that can take
the role of expert systems in the field of optimization. One
important feature of such an expert system would be the pre-
diction of algorithm effort on a certain instance. Estimating
whether a certain algorithm is able to tackle the problem
adequately or not is a valuable piece of information that
currently only an experienced human expert can give. The
ability to generate such an advice automatically is, there-
fore, an important milestone. While fitness landscape anal-
ysis methods have been developed for exactly this purpose,
it has been shown in the past that single-value analyses have
limited applicability. Here, a general method for extracting
fitness landscape features will be shown in combination with
regression models that indicate a strong correlation between
the actual and the predicted effort. Significant potential to
increase the prediction quality arises when combining sev-
eral measures each derived from several different sampling
trajectories.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms

Experimentation, Measurement

Keywords

parameter landscapes, fitness landscapes, quadratic assign-
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1. INTRODUCTION
In the past many attempts have been made to describe

and predict problem instance hardness. There are two ba-
sic possibilities, one is to simply try and repeatedly execute
various optimization methods and measure the effort nec-
essary to solve a particular problem instance. While this
reveals relevant information about the problem instance, it
provides little practical value as the process is time con-
suming. Therefore, methods under the umbrella of fitness
landscape analysis have been developed to create a more
practical approach. Again, there are several approaches
that have been employed in the past. One approach is to
exhaustively enumerate the solution space to identify local
optima, basins of attraction, barriers and their connecting
structures[25, 20]; While this gives good descriptions and in-
sight into fitness landscapes and the inherent structure and
provides the basis for fundamental analysis of whole problem
classes, it is even more impractical than repeated optimiza-
tion due to its enormous calculation efforts. Furthermore,
problem-specific properties of problem instances can be de-
rived to describe hardness, such as flow dominance[19] for
the quadratic assignment problem or depot eccentricity for
the vehicle routing problem[21]. On the other hand, stochas-
tic fitness landscape analysis methods have been developed
that enable the rapid measurement of certain characteristic
features of problem instances. Most of these measures were
intended to directly measure problem hardness.

We are skeptical that any single fitness landscape measure
can effectively capture problem hardness on its own. In com-
bination, however, using different “perspectives” of a fitness
landscape, these measures can jointly provide useful insights.
In this particular paper we have improved upon the modest
correlation between single fitness landscape analysis values
and were able to build good predictors of problem hardness
using simple combinations of these different perspectives.

In the past, there have already been several attempts to
create problem hardness measures. In essence, most pa-
pers about fitness landscape analysis have the ultimate goal
of problem hardness prediction. One comprehensive pre-
diction of problem hardness for the Quadratic Assignment
Problem (QAP) has been created in [19], where, in addition
to pure fitness landscape analysis methods, some problem-
specific measures are used. Moreover, some of their analysis
measures require expensive measurements such as knowl-
edge of the global optimum for the Fitness Distance Corre-
lation Coefficient[15] or a list of all local optima. Another
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interesting analysis is performed in [5], where a theoretical
decomposition of QAP fitness landscapes is described that
yields a method to directly and efficiently calculate the auto
correlation coefficient without stochastic sampling. In [23]
another summary and analysis of combinatorial optimiza-
tion problems with the help of fitness landscape analysis
is given. There, the focus lies on the algorithm selection
problem which is linked to hardness prediction as different
hardnesses of instances obtained with different algorithms
can be used as a selection criterion.
In this work we concentrate on practicability and speed

of the analysis methods that can initially be used before ap-
plying any algorithm to quickly get an estimate of problem
hardness. With these measures—or more exactly a combi-
nation thereof—we are building a simple regression model of
problem hardness for instances of the quadratic assignment
problem library.
This article is structured as follows: In Section 2 we give

an introduction of the quadratic assignment problem (QAP),
followed by an overview of the public quadratic assignment
problem library (QAPLIB) in Section 2.1. Section 3 de-
scribes a specialized variant of the tabu search algorithm,
namely the Robust Taboo Search that has been conceived
to efficiently solve QAPs. Section 4 describes how parameter
landscapes were explored and visualized as the basis for ef-
fort estimation. In Section 5 we give a short introduction on
fitness landscape analysis methods, sampling strategies and
measures as well as an overview of the experimental setup to
derive these results from the QAPLIB. Finally, Section 6 de-
tails how hardness can be measured and predicted in general
and reports results on the application to the QAPLIB.

2. QUADRATIC ASSIGNMENT PROBLEM
The Quadratic Assignment Problem (QAP) was intro-

duced in [17] and is a well-known problem in the field of
operations research. It is the topic of many studies, treating
the improvement of optimization methods as well as report-
ing successful application to practical problems in keyboard
design, facility layout planning and re-planning as well as
in circuit design[8, 11, 6]. The problem is NP hard in gen-
eral and, thus, the best solution cannot easily be computed
in polynomial time. Many different optimization methods
have been tried, among them popular metaheuristics such
as tabu search [26, 13] and genetic algorithms[7].
The problem can be described as finding the best assign-

ment for a set of facilities to a set of locations so that each
facility is assigned to exactly one location which in turn
houses only this facility. An assignment is considered better
than another when the flows between the assigned facilities
have to be hauled over smaller distances.
The QAP is also a generalization of the traveling salesman

problem (TSP). Conversion of a TSP can be achieved by
using a special weight matrix[17, 19] where the flow between
the ”facilities” is modeled as a ring that involves all of them
exactly once. The flow in this case can be interpreted as the
salesman that travels from one city to another.
More formally the problem can be described by an N ×N

matrix W with elements wik denoting the weights between
facilities i and k and an N ×N matrix D with elements dxy
denoting the distances between locations x and y. The goal
is to find a permutation π with π(i) denoting the element at

position i so that the following objective is achieved:

min
N
∑

i=1

N
∑

k=1

wik · dπ(i)π(k) (1)

A permutation is restricted to contain every number just
once, hence, it satisfies the constraint of a one-to-one assign-
ment between facilities and locations:

∀i,ki 6= k ⇔ π(i) 6= π(k) (2)

The complexity of evaluating the quality of an assignment
according to Eq. (1) is O(N2), however several optimization
algorithms move from one solution to another through small
changes, such as by swapping two elements in the permu-
tation. These moves allow to reduce the evaluation com-
plexity to O(N) and even O(1) if the previous qualities are
memorized[26]. Despite changing the solution in small steps
iteratively, these algorithms can, nevertheless, explore the
solution space and interesting parts thereof quickly. The
complete enumeration of such a “swap” neighborhood con-
tains N ∗(N−1)/2 moves and, therefore, grows quickly with
the problem size. This poses a challenge for solving larger
instances of the QAP.

The QAP can also be used to model cases when there are
more locations than facilities and also when there are more
facilities than locations. In these cases dummy facilities with
zero flows or dummy locations with a high distance can be
defined.

2.1 QAPLIB
The quadratic assignment problem library (QAPLIB)[4] is

a collection of benchmark instances from different contribu-
tors. According to their website1, it originated at the Graz
University of Technology and is now maintained by the Uni-
versity of Pennsylvania, School of Engineering and Applied
Science. It includes the instance descriptions in a common
format, as well as optimal and best-known solutions or lower
bounds and consists of a total of 137 instances from 15 con-
tributing sources which cover real-world as well as random
instances. The sizes range from 10 to 256 although smaller
instances are more frequent. All 103 instances between 12
and 50 have been selected for this study with the exception
of esc16f, which does not have any flows.

3. ROBUST TABOO SEARCH
Tabu search (TS) is a general metaheuristic that was pro-

posed by Glover in [10]. It behaves like a local search, ex-
cept that it will always make a move in each iteration, even
if the current fitness deteriorates. The name, however, re-
sults from the use of a memory that forbids to make certain
moves and forces the search trajectory to explore new parts
of the fitness landscape.

The Robust Taboo Search (RTS) algorithm was proposed
by Taillard in [26] and the code has since been further de-
veloped2. The main difference between the tabu search
described by Glover lies in the stochastic choice of tabu
tenures. For every move, the time to keep it tabu is a ran-
dom variable. In an earlier version of the algorithm, the tabu
tenure varies between a minimum and a maximum value but
in a later version the minimum parameter is abandoned and

1http://www.seas.upenn.edu/qaplib/
2http://mistic.heig-vd.ch/taillard/
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the random variable is drawn from a left-skewed distribution
instead. This random tabu tenure lowers the possibility of
search cycles returning to the same solution over and over.
Another important aspect of the RTS is its aspiration

tenure. When applying the tabu search to the QAP it was
discovered that in some cases the search process got stuck in
suboptimal regions of the fitness landscape. For this reason,
a parameter was introduced that would diversify the search
after a number of iterations. The diversification aims to
perform moves which have not been seen in the past few it-
erations. There are, thus, two important parameters in the
RTS that have to be configured for the search to perform
well on a given problem instance: These are the maximum
tabu tenure and the aspiration tenure.

4. PARAMETER GRID AND EFFORT VI-

SUALIZATION
The performance of metaheuristics usually depends to a

large degree on the choice of their parameters. Good pa-
rameters result in fast convergence, high quality solutions,
or ideally both. Bad parameters can significantly delay or
prevent convergence and are usually undesirable. However,
there is no best a-priori parameterization of metaheuristics
and, thus, it takes time and computational resources to find
the right settings. A task that has to be performed for ev-
ery new instance. Additionally, some of the instances might
be rather difficult to parameterize because of a small set of
parameters that work well in comparison to the overall pa-
rameter space while in other instances the parameters do
not seem to affect the performance and equal results are
obtained for any of them.
In order to have an estimation on the performance of the

RTS for several instances of the QAPLIB, tests were per-
formed that sample the parameter space at certain inter-
vals and visualize the performance for all of these samples.
The results indicate, for each instance, the optimal setting
with respect to the chosen grid and the expected perfor-
mance. A total of nine different tabu tenures (25, 50, 100,
150, 200, 300, 400, 600, and 800) and ten different aspira-
tion tenures (100, 500, 750, 1000, 1500, 2000, 3500, 5000,
7500, and 10000) have been chosen, resulting in 90 different
configurations. Each of these have been evaluated 20 times
on every instance to account for stochastic variability, re-
sulting in a total of 183,600 runs that have been conducted.
The tests have been made with HeuristicLab[29, 30] and the
resulting experiment can be downloaded3 and studied.
In these tests, the number of iterations until convergence

to the optimal or best-known solution were recorded as well
as the quality deviation if this solution could not be found
within 100,000 iterations. The visualizations were created
using pivot charts in Microsoft Excel and are shown in Fig-
ure 1. As can be seen, the quality difference and the it-
erations show a similar picture of the algorithm’s perfor-
mance. The iterations allow to judge convergence speed,
while the quality difference allows to judge the achievable
solution quality when the best-known solution could not be
found.

3http://dev.heuristiclab.com/AdditionalMaterial

(a) esc32a iterations (b) esc32a difference

(c) lipa50a iterations (d) lipa50a difference

(e) els19 iterations (f) els19 difference

Figure 1: Parameter landscapes showing the performance
of various configurations and instances: Figures (a), (c),
and (e) show the average number of iterations till conver-
gence to the best known solution, while Figures (b), (d),
and (f) show the average scaled quality difference in per-
cent. The axes are labeled MT for the setting of maximum
tabu tenure and AT for different values of alternative aspi-
ration tenure.

5. FITNESS LANDSCAPE ANALYSIS
Since the inception of fitness landscapes in Sewall Wright’s

description of populations’ biological evolution in [32] it has
also been applied to evolution-inspired algorithms and opti-
mization methods in general. While apparently an intuitive
concept, it is important to give a formal description as well.
Mathematically, a fitness landscape F is defined by the so-
lution space S, a fitness function f : S → R and a notion
of connectivity X . In many cases, connectivity can be de-
fined in terms of neighboring solution candidates through a
neighborhood function N : S → P(S) where P(S) is the
power set of S. Alternatively, and more conveniently, we
can also use a distance measure d : S × S → R between two
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solution candidates as our connectivity. While the first form
is more practical when thinking about mutation operators
of evolutionary algorithms, the second form is more gen-
eral and better comparable across different algorithm types
and manipulation operators. This is also the reason, why
connectivity is often omitted from the definition of a fitness
landscape and a distance metric is implicitly assumed.
Based on the formal definition, several possibilities of fit-

ness landscape analysis (FLA) of a problem instance have
been devised. While several theoretical approaches have
been proposed[24, 3, 5], we focus on automatic sampling-
based fitness landscape analysis techniques. Therefore, the
first step in analyzing a problem instance is deriving interest-
ing samples. While a random sample would obviously give
a good overview of the fitness distribution in general, it has
little to say about the neighborhood structure. In fact, we
use random samples for establishing a base-line or average
fitness which can then be used to compare fitness improve-
ment over different problem instances with different extents
of fitness values. While relative difference between the ob-
tained solution’s fitness f(s) and the best known solution f∗,
given as (f(s) − f∗)/f∗, can be used to compare different
algorithms on the same problem instance, a different range
of fitness values makes this infeasible for comparing different
problem instances. Therefore, we use the average fitness of
a random sample f̂ to equalize this ratio and obtain a scaled
difference as (f(s)− f∗)/(f̂ − f∗).

5.1 Trajectories
In addition to random samples, which have been used for

calculating the scaled difference, we are using series of ad-
jacent solution candidates, i.e. trajectories inside the fit-
ness landscape, to explore the neighborhood structures in
more detail. In the following sections, different exploration
strategies are explained that greatly increase the insight into
fitness landscapes due to their complementarity to random
walks. These different walk types should be seem comple-
mentary instead of competing in later analysis, as different
perspectives of the fitness landscape are important to obtain
a complete view.

5.1.1 Random Walks

Probably the most popular way of trajectory generation
in the field of fitness landscape analysis is the random walk.
Here, based on a randomly-selected initial solution candi-
date a neighbor is chosen at random. In discrete spaces
such as the permutation encoding used most often for the
quadratic assignment problem any of the popular mutation
operators can be used to obtain such a random neighbor.
In our study, we have used only the SWAP-2 mutator as it
is also the only operator used for the Robust Taboo Search.
However, it can be insightful to include other mutation oper-
ators and, hence, other mutation landscapes when perform-
ing a comprehensive study of problem instances.

5.1.2 Adaptive and Up-Down Walks

Another interesting trajectory is similar to what a tra-
jectory based optimization algorithm would see: A trajec-
tory that seeks to improve solution quality. In an adaptive
walk several neighboring solutions are examined first and
the most promising is chosen in the next step. This simple
optimization scheme, tends to quickly become trapped in lo-
cal optima. Therefore, we have also implemented up-down

walks[14] which consecutively seek positive and negative ex-
trema instead of single-minded optimization only. Since we
are not trying to find a good solution when doing fitness
landscape analysis, but instead try to collect as much infor-
mation about the landscape as possible this presents a good
compromise between perceiving optimization-relevant prop-
erties of the landscape and the exploratory attitude required
to gain maximum insight.

5.1.3 Neutral Walks

A fascinating property of fitness landscapes is neutral-
ity[22, 16, 1]. Neutral areas are connected neighborhood
structures that have the same fitness. While low-dimensional
cases can be problematic for simple algorithms that get
stuck because of a missing direction to continue, in higher-
dimensional instance they can be beneficial. An intelligent
population-based algorithm that can deal with neutrality
can spread across a neutral area without fitness penalty and
increase population diversity. Once the “edges” are reached
more neighboring solutions are accessible than from a single
local optimum. To explore this property, we perform special
neutral walks that measure the extents of these areas by re-
membering the staring point and subsequently seeking new
neighbors with equal fitness that increase the distance to the
starting point. Then, the next neutral area is searched by
moving away from the last point on the last neutral area.
This trajectory repeatedly searches for and crosses neutral
areas more or less diametrically.

5.2 Measures
So far, most FLA measures have been proposed only for

random walks. Most of these can easily be extended to other
trajectories as well. In the following, we will give a short
overview of the employed fitness landscape analysis mea-
sures.

5.2.1 Ruggedness

One of the first general measures to describe fitness land-
scapes, introduced in [31], was auto correlation. It describes
the average correlation between consecutive fitness values
in e.g. a random walk. Based on these measures, the cor-
relation length can be defined as the first step that is not
significantly correlated with the initial step in the autocor-
relation function[12]. This definition differs slightly from
the more ubiquitous standard definition where the correla-
tion length is typically assumed to be the reciprocal value
of the auto correlation of the first step[14]. The definition of
the auto correlation function ρ(ε) and the variance-corrected
auto correlation coefficient ρ are defined as follows:

ρ(ε) :=
E(fi · fi+ε)− E(fi) · E(fi+ε)

Var(fi)
(3)

ρ :=
Cov(fi, fi+ε)

√

Var(fi) ·Var(fi+ε)
(4)

where fi is the random variable describing the fitness trajec-
tories, fi+ε is the series of fitness values shifted by ε, E(x)
is the expected value of x and Var(x) is the variance of x.

5.2.2 Information Analysis

Related to ruggedness, by analysis of consecutive steps of a
trajectory, is the information analysis[28], which is based on
the discretization of fitness changes and a subsequent slope
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analysis. Given a sequence of fitness values {fi}
n
i=0, initially

the sequence is transformed into a sequence of fitness differ-
ences {di}

n
i=1 = {fi − fi−1}

n
i=1 which is then discretized by

a relaxed sign function which gives -1 or 1 when x exceed −ε
or ε and 0 otherwise, yielding a sequence of slopes {si}

n
i=1.

Two simple measures can directly be derived from this se-
quence. One is the partial information content which gives
the relative number of slope changes. This simply reduces
the sequence of slopes s by removing all zeros and all con-
secutive equal slopes giving s′. The resulting quotient is
denoted as M(ε) = |s′|/n, where n is the length of the tra-
jectory. Another simple measure is the smallest value of ε
for which no slopes remain after applying the relaxed sign
function, i.e. the maximum fitness difference between con-
secutive steps in the trajectory. This value, the information
stability, is denoted as ε∗. In addition, the following slightly
more complex entropy measures have been defined for de-
termining the information content H(ε) and density basin
information h(ε):

H(ε) := −
∑

p 6=q

P[pq] log6 P[pq] (5)

h(ε) := −
∑

p=q

P[pq] log3 P[pq] (6)

These information measures are based on the idea of “an
ensemble of objects, which are characterized by their size,
form, and distribution”[28]. In other words, each solution
candidate together with its surroundings is taken as an in-
dividual and forms either a flat area, a local optimum or
neither. Finally, the information measures give an estimate
of the difficulty to reconstruct the configuration of these in-
dividual objects. One addition in comparison to previous
ruggedness analysis was the “zoom level” ε, which allows
considering the landscape structures at various extents.
An additional, seemingly trivial, measure that carries a

good deal of information is the so-called regularity. It is
simply the number of distinct fitness values that were seen
during the landscape exploration. Typically, this measure
is similar for different but large trajectories or other sam-
ples of the landscape but can be an important indicator. A
higher number gives finer grained comparability of solution
candidates and, hence, can improve homing in towards the
optimum.

5.2.3 Intermediate Walk Lengths and Distances

In addition to the measures described in the previous sec-
tions, the different trajectories provide some even more ba-
sic but informative characteristics. While the total number
of steps for any of random, up-down, and neutral walks is
usually predetermined, the intermediate sub-walk lengths
are interesting. In the up-down walks, we can analyze the
number of steps it takes to reach the next local maximum
followed by the number of steps to the next local minimum.
In addition we can analyze the upper and lower fitness levels
that are usually achieved. Similarly, for the neutral walk it
is revealing to examine the number of steps inside a neutral
area. Moreover, we can also look at the difference in terms
of solution representation distance[2] between entry and exit
points in the neutral area. At a first glance this might appear
to be the same as the number of steps, however, firstly, differ-
ent mutation operators have different magnitudes of change
in the solution representation, and secondly, the concrete

steps in the neutral area might lurch about in several dimen-
sions while actually staying close to the starting point. For
these additional intermediate walks we include both average
length and variance and for neutral areas also the average
distance between start end end points of the neutral walks
and the corresponding variance.

5.3 Experiments
One important aspect of our analysis was the execution

time. Therefore, we have only used fitness landscape analy-
sis methods that give good insights in relatively short time.
For this reason, we exclude all methods that require exhaus-
tive analysis, knowledge of global or local optima. Instead,
we rely solely on the application of stochastic, trajectory-
based fitness landscape measures. We have used three tra-
jectories, a random walk, a neutral walk, and an up-down
walk and collected several measures for each of the produced
fitness trajectories. We have conducted the analysis using
four different mutation operators and five different analysis
algorithms. For this evaluation, however, only three dif-
ferent algorithms and one mutation operator were used. In
Table 1, the number of steps per walk type as well as the con-
sidered neighbors and the resulting run-times are shown. In
summary, the presented fitness landscape results have been
obtained quickly, especially in comparison to the optimiza-
tion results for different parameter configurations, described
in Section 4. While the fitness landscape analysis took only
seven minutes, the effort prediction took 11 hours when cal-
culated in parallel on 14 Blade Systems, each with two Intel
Xeon E5420 quad core CPUs with 2.50 GHz.

In addition to the measured results, we have added the
auto correlation coefficients which are calculated as c =
1/(1 − x) and the normalized auto correlation coefficient
and normalized correlation length values which are simply
the actual values divided by the respective problem sizes.

Table 1: Trajectory configurations and average run-times
per problem instance

trajectory steps neighbors average run-time
random 100,000 1 59 secs
up-down 100,000 10 190 secs
neutral 10,000 100 140 secs

6. HARDNESS ESTIMATION
Classically, problem hardness is defined as the difficulty

to find optimal or good results for a certain problem in-
stance. This is typically measured as the necessary effort to
reach a certain quality, or the quality achieved after making
a certain effort[33, 23, 18]. However, the parameterization
of metaheuristics, such as Robust Taboo Search, can have
a significant impact on its performance and success. There-
fore, to estimate a more general problem difficulty we are
measuring the effort on a whole parameter grid as shown in
Figures 1a through 1f. As described in Section 4 we have
tested 90 configurations with 20 repetitions for each prob-
lem instance to get an insight into the algorithm’s perfor-
mance on different instances. Additionally, for each of these
instances, we have calculated 44 different fitness landscape
analysis values. We have limited the iterations in the RTS
to 100,000 steps and stopped execution once the best-known
or global best solution had been found.
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6.1 Hardness Measurement
With the experiments of different parameter settings at

hand, there are several possibilities for deriving a hardness
value. There are two basic measures that we can use to
derive hardness. One is the achieved quality after the max-
imum number of iterations and the other is the expended
effort in case the global optimum or best known solution
was found earlier. Each of these measures describes the per-
formance of a certain algorithm run. In addition we can cre-
ate a combined measure of difficulty. In summary, we can
create a single performance measure that spans the whole
range between early successful solution over late successful
solution, non-successful solution close to the optimum to
non-successful solution far from the optimum. Given the
maximum number of iterations and an assumed worst case
scaled difference of 1 (which is the average scaled difference
in a random sample) the performance for an individual run
can be expressed as p = i/imax + s where i is the number of
iterations and s the scaled difference.
We have performed 20 repetitions of each run to account

for stochasticity. For these repetitions we can directly use
the averages of iterations and scaled differences. Alterna-
tively we can use the average combined performance as de-
scribed above. In this case, however, we should empha-
size that the scaled difference plays a more important role
than the number of iterations which is reflected by a differ-
ent scaling that puts more emphasis on the solution quality
than convergence speed. Experiments with unscaled addi-
tion have shown that quality can otherwise easily be over-
shadowed by convergence speed when taking averages over
the combined measure.
Many metaheuristic algorithms, in contrast to exact meth-

ods, have several parameters that can have a large impact
on the performance of the algorithms. For this reason, we
have tried 90 different parameter configurations of the Ro-
bust Taboo Search as described earlier. Now, these differ-
ent experiments can be combined further to derive a notion
of hardness pertaining to a particular problem. The most
straightforward measurement of problem hardness we have
used is the average performance over all studied parameter
configurations. In addition, we have also included the perfor-
mance of the best parameter configuration as the minimum
hardness of a problem. The difference between the aver-
age performance over all configurations and the best pos-
sible configuration can be seen as another related measure
of hardness, albeit not problem hardness, but specificity of
parameter selection or the difficulty of finding the right pa-
rameter combination for a problem instance.

6.2 Simple Correlations
An initial analysis revealed interesting correlations be-

tween fitness landscape measures and average hardness, which
are summarized in Table 2. Only few typical FLA results
have a correlation with average problem hardness, despite
their aspiration to do just that. Correlations with average
iterations are comparable (not shown) while other hardness
measures such as effort of the best configuration or average
scaled difference have hardly any correlations with any of
the FLA results.
In the scatter plot of average hardness and problem size

in Figure 2 we can see that there seems to be a simple cor-
relation. Interestingly, there also seem to be two classes of
problems with different correlation coefficients.

Table 2: Simple Correlations with Average Hardness

Variable r2

U/D Auto Correlation Coefficient 0.59
Rnd Auto Correlation Coefficient 0.59
Problem Size 0.56
U/D Down Walk Len 0.44
U/D Correlation Len 0.41
U/D Up Walk Len 0.41
U/D Inf Content 0.36
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Figure 2: Average Hardness vs. Problem Size

6.3 Regression
To show the improved usability of multiple “perspectives”

of problem instances’ fitness landscapes we have built sev-
eral regression models to describe the problem hardness with
easily obtainable fitness landscape measures. Table 3 shows
the results of linear regression of average hardness. We have
used the Lasso method[27, 9] to efficiently select variables
from an initial set of 44 measures and created eight differ-
ent regression models using different trajectories only or the
whole variable set. For each of these configurations we se-
lected two models, one with the smallest error, and another
model with the least number of variables denoted as either
best or minimal model. The obtained variable selections
were then input to HeuristicLab and a tenfold cross valida-
tion was performed where the reported values are predictions
using the respective test sets. We have built similar models
for all other hardness measures, such as minimal hardness
(results of most successful parameter setting), individually
for just average iterations and average scaled difference and
specificity. However, the strongest correlation was observed
for the, intuitively most interesting, combined effort with
scaled influences, paying more attention to scaled difference
than iterations.

Most interestingly, the typically ubiquitous random walk
trajectories create the models with least correlation. We
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Table 3: Cross validated regression models for average hard-
ness: A “•” denotes inclusion of the value, while “◦” denotes
the inclusion of the value divided by the problem size, and
“∼” denotes inclusion of the variable’s variance along the
trajectory. The symbols on the left of each column shown
the inclusion in the best model while the symbols on the
right denote the inclusion in the minimal model.

Measure Rnd U/D Neut Full

b
es
t

m
in

b
es
t

m
in

b
es
t

m
in

b
es
t

m
in

Problem Size • • • • • • • •

Rnd Auto Correlation ◦ ◦ ◦

Rnd Correlation Len ◦

Rnd Density Basin Inf • • •

Rnd Part Inf Content •

U/D Auto Correlation • • ◦

U/D Correlation Len ◦ •

U/D Density Basin Inf • •

U/D Regularity • •

U/D Up Walk Len • ∼

U/D Down Walk Len ∼ ∼ ∼

U/D Lower Level ∼

Neut Auto Correlation • ◦ ◦

Neut Correlation Len • ◦ • •

Neut Density Basin Inf •

Neut Inf Stability •

Neut Regularity • •

Neut Avg Walk Dist • • • •

Neut Avg Walk Len ∼ ∼ ∼ ∼

Best Train r
2 0.68 0.76 0.77 0.84

Best Test r
2

0.60 0.67 0.70 0.74

Min Train r
2 0.65 0.72 0.75 0.77

Min Test r
2

0.59 0.67 0.70 0.71

can see in Table 3 that both the up-down walk as well as
the neutral walk generate measures that are superior. One
could argue that this is due to the larger number of vari-
ables that were used in these configurations, however, even
using only the corresponding measures selected for the ran-
dom walk in e.g. a neutral walk model creates slightly su-
perior regressions. This emphasizes the importance of these
alternative trajectories that are often ignored. Another in-
teresting point is the near equal performance of the minimal
models in the trajectory specific cases. Even though, they
are slightly worse on the training sets, the performance on
the test sets is almost on par with the bigger models.
Figure 3 shows a scatter plot of the predicted values in

the full model using only the test sets of the respective folds
plotted against the target values. We can see acceptable cor-
relation between these two sets. Some interesting cases can
be seen for easy instances, where the predicted values vary
wildly. Even more interestingly, these are instances which
are easy for the Robust Taboo Search while they are difficult
for many other algorithms. We postulate that FLA methods
are able to measure this difficulty, which coincidentally does
not pose a problem for the Robust Taboo Search.

7. CONCLUSIONS
We have shown how popular fitness landscape analysis

measures can be used effectively by combining them not
only with each other but also by measuring them along
different trajectories. These measures have been used to
fulfill their original intention of predicting problem hard-
ness. While no perfect prediction was achieved, given the
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Figure 3: Scatter plot of average actual hardness vs. pre-
dicted hardness using several trajectories’ measures.

simplicity of the method and the promising results we are
confident that extensions of this method can perform even
better. In this work we have emphasized the importance of
different perspectives of a fitness landscape, obtained by per-
forming several different analyses, combining different mea-
sures and different sampling strategies, in our case differ-
ent types of walks. We have also observed that the most
prevalent walk type, the random walk, might not be the
best choice to obtain insight into a particular fitness land-
scape, but that more advanced sampling strategies such as
up-down or neutral walks can be advantageous. In the fu-
ture, we plan to extend this approach using more measures
and more sampling strategies to obtain a more complete
picture through even more “perspectives” of a problem in-
stance’s fitness landscape.
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