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ABSTRACT
In developing effective search and optimization algorithms,
it is crucial that the specific features of the problem be taken
into account. This observation has led to a great deal of re-
search in how to abstract away trivial details in favor of the
core concept that describes such features, with the goal of
developing a more general theory of search algorithm per-
formance. However, our efforts have not taken advantage
of the great developments in data-driven machine learning
that have arisen in the past decade or so. Rather, most
work still starts from a clean slate and focuses on collect-
ing and analysing only the limited landscape data that each
researcher deems useful for each specific problem. In this po-
sition paper, I argue for the development of an open reposi-
tory of this data – open both in the sense of freely available
to all researchers as well as in the sense of an “open-world”
assumption concerning the types of data to be collected and
analyzed. This paper discusses some of the important issues
that would need to be resolved to build such a system in a
way that would provide the most value for the field.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]

General Terms
Algorithms, Experimentation, Standardization

Keywords
Machine Learning, Landscape Analysis

1. INTRODUCTION
It has been known for some time that problem-dependent

structures can have a large impact on the performance of
search algorithms. One consequence of this has been that a
number of researchers have worked on analysis of particular
combinations of problems and algorithms with the goal of

producing a more general theory to guide the selection of
suitable algorithms. However, to date, it has proven diffi-
cult to generalize the results of any particular study. Often,
the particular tools and techniques developed for one prob-
lem are difficult to apply to others, and what information is
valuable for a given search algorithm may not be valuable for
another. As a result, most researchers have not taken a cu-
mulative approach to landscape analysis in which data from
earlier projects or experiments directly informs newer work.
It has been left to the researcher to track down relevant pa-
pers, often reimplementing landscape analysis metrics from
scratch or adapting them to different problems, and apply-
ing them to newer problems or algorithms.

In the machine learning community, there has been a rapid
shift towards data-driven approaches. There are countless
algorithms for detecting subtle patterns in various types of
data, and modern computing power enables many of these
algorithms to work on vast data sets using desktop calibre
hardware. Landscape and search algorithm analysis can pro-
duce data in a form that should be usable by these methods,
but we need a concerted effort on the part of researchers to
aggregrate our data together in a consistent form amenable
to this type of analysis. In this paper, I hope to make the
case for why we should attempt to build such a collaborative
approach, and I will present what I see as the major issues
that would need to be addressed.

2. PREVIOUS WORK
Obviously, there is a great deal of existing work relating to

landscape and search space analysis, all of which is relevant
to the proposed goal. The issue is how to facilitate greater
collaboration around the output of all these disparate re-
search studies. There have been a few steps in the right
direction.

In GECCO 2011, Mersmann et. al. [15] presented a very
nice paper describing a machine learning approach to one of
the core problems facing those of us working on landscape
analysis – how to tie observable properties of a search space
(what they call “low-level” features) with the higher-level
and more abstract ideas that we tend to associate with be-
ing well or poorly suited for particular types of search strate-
gies. An obvious path along which this work will continue
to develop is to then learn mappings on these high-level fea-
tures to help predict which search algorithms will be most
effective.

However, there were also a number of limitations in that
paper. Only the BBOB problems were considered, discussed
below. These benchmarks are nice in that they are designed
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in terms of “groups” which makes it somewhat easier to ex-
tract hypotheses around algorithm performance, but many
of the problems are trivial to solve, and there’s little reason
to believe that one can learn much from a sphere model that
will be directly relevant to, e.g., scheduling problems with
real-world constraints. In addition, while they used a multi-
objective algorithm as part of the learning step, the analysis
was confined to only single-objective problems. In short, we
need to both generalize this work to arbitrary problems and
search algorithms as well as define some consistent repre-
sentations that allow researchers to easily take advantage of
each other’s work with as little friction as possible.

For the past few years, there has been an ongoing work-
shop series on black-box optimization benchmarking (BBOB)
[9, 7, 8]. In this program, researchers are given a set of
benchmark problems in various languages and a fairly com-
plete set of tools for comparing performance measures across
the set of algorithms applied. However, thus far there have
been fairly substantial limitations. Most importantly, the
focus has been exclusively on real-valued single-objective op-
timization problems. In addition, as the focus of the BBOB
suite is strictly on comparing performance of algorithms, it
has no particular focus towards lower-level features. That
is, we expect intuitively that the performance of some algo-
rithm on some problem is strongly dependent on the compo-
nent features of both. The goal of understanding problems
is to be able to predict the BBOB (and other) results from
a more fundamental understanding of the problem.

In addition to the BBOB problems, there have been sev-
eral other widely accepted benchmark problems, many of
which have already been subjected to intensive studies of
various properties of their fitness landscapes. For instance,
the CEC benchmarks [17, 18] have been updated multiple
times and cover a much wider range of problem types. The
CEC-2005 benchmarks have been completely characterized
in terms of their fitness landcapes [16]. However, as of yet,
these studies have not been carried out in a systematic way
allowing other researchers to easily combine the different
approaches taken in these analyses.

This paper argues that we need to decide on a way to al-
low the type of research done by Mersmann and colleagues to
be shared throughout the community, as well as to support
extensions to that work. Ideally, there would be a shared
corpus – as each researcher developed new analysis meth-
ods or approached new problems, the insights gained would
be directly combined with the work of numerous other re-
searchers. I want to be able to pull data concerning the
relationship between autocorrelation and local search per-
formance from numerous problems contributed by numerous
researchers as effortlessly as possible.

In that work, the authors constructed a grid, where each
row represented a particular problem instance, and each col-
umn contained some type of information about the instance,
in particular very low-level features observed directly. This
data was then used to map these low-level features onto
higher-level notions such as “smoothness”. I am proposing
that this basic idea be generalized and adapted into a struc-
ture that (a) allows a richer set of information regarding
landscape structure and algorithm performance to be di-
rectly represented, and (b) facilitates a much greater degree
of collaboration in both obtaining the raw data as well as in
the analysis of the data. Note that in their work, Mersmann
et. al. chose features that were universally applicable across

their entire study, a task made easier by the restricted do-
main from which the test functions were drawn. One conse-
quence of this is that there is actually very little information
carried along with each feature. Each is, in essence, nothing
more than a number attached to a label. Details of how
the feature was sampled, how it is to be interpreted, etc.,
are left to be documented external to the data, which is an
acceptible strategy given that the entire study is described
uniformly in a single paper. This simplifies matters greatly,
and we could choose to do something similar in designing
a system for collaborative landscape analysis. Many of the
problems associated with settling on static schemata mostly
go away if we abandon the idea of fully specifying what each
feature means.

In recent years, a number of research groups have turned
to the problem of generalizing metaheuristic performance,
with the goal of automating the design of good optimization
algorithms. Commonly referred to as hyperheuristics [5], the
convention here is to build algorithms to search the space of
search algorithms. Thus for each new problem to be solved,
a researcher or practitioner would simply run a search al-
gorithm to find the best algorithm and set of parameters
for the problem. Obviously, there are parallels to be drawn
here. Last year, there was a hyperheuristics challenge [4]
in which, similar to the BBOB work, participants were in-
vited to submit their algorithms to compete across a range
of problems, including some not known to the teams before-
hand. This type of interoperability will be an important
part of enabling researchers working in landscape analysis
to capitalize on each other’s work in similar ways.

Additionally, it would be a great boon to the hyperheuris-
tics community directly if large amounts of data concerning
how different search algorithms perform on different prob-
lems. Even more crucially, the availability of such data along
with modern data-mining and machine learning techniques
holds the promise for advancing the state of knowledge on
what types of search algorithm components work best on
what types of low and mid-level search space structures.

Looking beyond motivation into potential implementation
strategies, the PISA project [2, 12, 11, 1] is another poten-
tially relevant source of inspiration. While it has no partic-
ular support for landscape analysis, it does feature a similar
flavor in that it intends to support researchers working on
different optimization techniques and using different code
bases to more easily share information. In the case of PISA,
this information is mostly concentrated on a repository of
common algorithms and performance comparison methods
rather than landscape analysis, but it could be extended to
support this functionality or serve as an inspiration for a
different implementation.

Note that PISA is intended, not as a landscape analysis
framework, but as a framework for implementing and test-
ing new algorithms. In that niche, there are numerous other
projects that have been more successful in terms of attract-
ing active users. The ECJ system [14] and the ParadiseEO
system [6, 13] are particularly noteworthy in this regard.
However, both are self-contained, requiring that users live
within those systems. Choosing to build a collaborative
framework on one of these systems is to dictate language
and platform choices to the users, excluding those who wish
to choose differently from participating as easily. It may well
be worth considering those platforms as additional options,
but any open system for facilitating the type of collaboration
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we want must provide reasonably convenient access indepen-
dent of language or platform selection by its users. PISA is
an interesting choice in this respect, as it attempts to be
completely agnostic. However, the programming model it
imposes is likely part of the reason it never attracted the
volume of users as the other systems. This, likewise, must
be a consideration in deciding how to build a collaborative
landscape analysis tool.

For the remainder of this paper, I will assume (perhaps
wrongly) that there is general agreement that the basic idea
is desirable, and present the issues, options, and trade-offs
of various implementations as I see them.

3. WHAT LEVEL OF SUPPORT?
The high-level goal is to better enable researchers work-

ing on search space and landscape analysis to make use of
each other’s work. There are a number of avenues avail-
able to attempt to reach this goal, with varying degrees of
structural support. We can roughly categorize these options
along a single dimension – the amount of automated or semi-
automated functionality provided.

At the minimum level of support, the community could
establish a single hub for activity related to landscape anal-
ysis. Several communities maintain bibliographies, for in-
stance, where any relevant published paper can be added to
a growing list. In addition to a list of published papers, such
a hub could also host source code, datasets, or whatever else
was deemed to be of use to the community.

The downsides are obvious – it requires a large amount
of human effort to keep such a list maintained, particularly
as the community it serves grows. The emergence of wikis
helps greatly in this regard, and it is the view of the author
that this should be viewed as a minimum step to be taken.
However, it goes a relatively short distance towards the type
of analysis I would like to see made possible. It still requires
researchers to manually track down source code, potentially
from different contributors (e.g., I want to look at the work
done by group X and the work done by group Y on instances
of problem P). This means that problem instances need to be
obtained, code must potentially be ported from one frame-
work to another, results carefully checked by hand against
published data, etc. These are all the things we have to do
today to build on each other’s work, only made slightly sim-
pler by having a more reliable place from which one can get
the first step started.

To build significantly toward that goal, a more automated
approach is needed. Ideally, a researcher should be able to
directly use the results obtained by other researchers, with-
out this costly middle step of obtaining, customizing, and re-
producing each other’s data and code. Rather, if one wants
to look at the relationship between, for instance, tabu search
with a particular neighborhood operator and the smooth-
ness of the fitness landscape, he or she should be able to
obtain all the data contributed by other users relevant to
that particular experimental goal. In the optimum case,
such data could potentially be retrieved directly in a form
suitable for use with Weka [10] or another machine learn-
ing toolkit where the relationship between the variables of
interest could be more easily explored. Certainly, it is still
important that source code and problem instance data be
made available, both for reproducibility as well as the in-
evitable need for “tweaks”, but the automated retrieval of

relevant information would be a boon to research into search
algorithm performance.

Consider a complete static schema that could represent
any possible analysis technique, problem type, search algo-
rithm, and performance metric. Ignoring for the moment the
enormous difficulty of defining such a schema, this would al-
low very sophisticated tools to be developed. Researchers
could simply describe their work in terms of this schema,
and then upload the results to a central repository where
other researchers could use a very rich set of semantics to
obtain, analyze, and build on such data. Unfortunately, of
course, it isn’t possible to define such a general schema, at
least not in a way that is both usable and useful. Instead,
we need to consider different trade-offs and determine how
best to allocate the limited efforts of those in the commu-
nity to achieve the goal. The following section examines this
trade-off in more detail.

4. DEFINING A REPRESENTATION
At the core, the ability to more effectively share our data

and results in the proposed way comes down to to one key
issue: how do we define a common language that is rich
enough to allow each person to express his or her particular
data, and yet constrained enough so that any two people
can have some hope of reusing each other’s work? Our cur-
rent approach – each researcher starting from scratch – is
very well optimized for the first of those goals, but yields
insurmountable obstacles to the second. So in reality, the
problem is mostly about how to constrain the language peo-
ple use internally so that we can be more consistent. Note
that the second major issue (implementation and tool sup-
port) will be discussed in Section 6.

As mentioned in the discussion of the Mersmann et.al.
paper, there the authors were able to mostly sidestep the
issue because (a) they were in complete control of which
features they wanted to included in the dataset, and (b) their
analysis was restricted to a very particular type of question.
In attempting to generalize this idea to the wider realm of
arbitrary analysis, we have to admit a much broader notion
of what types of information will be needed, not only now
but also in the future.

Consider an example of the type of landscape analysis
that researchers actually perform. For simplicity, let’s look
at perhaps the best known idea in the field – fitness-distance
correlation (FDC) as performed by Boese [3]. In FDC analy-
sis, the goal is to estimate the degree to which being near the
optimum in terms of objective function value is correlated
with being close to the optimum in terms of the number of
steps needed for a candidate search algorithm to move there
from the given search point. To estimate this correlation,
we start a search algorithm from some set of randomly gen-
erated search points, for each recording the distance to the
nearest optimal solution in objective space as well as the
number of moves needed to get there under our search algo-
rithm. There are thus a number of parameters we need to
specify to determine the outcome of our analysis.

• Type of Analysis (Fitness-Distance Correlation)

• Problem class (TSP)

• Problem instance

• Search algorithm for probes
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• Neighborhood structure

• List of probes

– Starting point of probe

– Nearest optimal solution

– Number of steps to reach optimum

• Fitness-Distance Correlation coefficient

Note that this list is but one possibility. We might decide not
to include the individual search points, or we might include
additional information such as whether the TSP instance
was Euclidian, symmetric, etc.

In addition, we would want to include information, per-
haps in a separate data structure, information on algorithm
performance. Data such as the list shown above allows us to
collect information about the FDC coefficients for a poten-
tially large number of problems, but does not address the
next step of associating algorithm performance with these
properties. Again, to pick a specific but arbitrary example:

• Search Algorithm (Robust Tabu Search)

• Problem class (TSP)

• Problem instance (...)

• List of trials

– Number of evaluations

– Best solution found

– Evaluations to find best

If we imagine all this data being put into some form that
could be queried in a flexible way, we could suddenly allow
people to easily look at all of the algorithms that have been
tested on problems where the FDC coefficient was less than
−0.4, for example.

One obvious solution for representing this type of data
in a somewhat standard format would be to define an XML
wrapper for the relevant data, perhaps similar to that shown
in Figure 1. XML is terribly flawed in a number of ways, but
it does have the advantage of being very well understood by
pretty much everyone, which is important when considering
a format intended to foster collaboration. Other formats
could of course be selected instead, but I’ll stick with XML
for the purposes of illustrating the basic concepts in this
paper.

This somewhat bloated example demonstrates several is-
sues. First, it is necessary that the schema be general enough
to describe several different types of datasets relevant to
landscape analysis in general. The example makes some at-
tempt at that goal by providing general tags for things like
the problem class and encoding, but it will be very diffi-
cult in general to get it exactly right. Things like “probes”,
the way that solutions are represented, etc., may differ with
other problems and datasets, and the schema would need
to anticipate this generality. It is rather easily seen that
no single pre-specified design will cover all possible cases,
so the assumption of an open-world will be essential. How-
ever, there are two ways that such an assumption may be
manifest.

<dataset>

<metric>Fitness-Distance Correlation</metric>

<problem>

<class>TSP</class>

<encoding>permutation</encoding>

<instance>foo123</instance>

</problem>

<analyzer>

<type>local search probes</type>

<search-type>Next-descent</search-type>

<neighborhood>2-opt</neighborhood>

</analyzer>

<probes>

<data-point>

<start-point>

<solution>0 1 2 3 4 5 6 7</solution>

<fitness>495</fitness>

</start-point>

<end-point>

<solution>0 4 6 2 7 1 3 5</solution>

<fitness>307</fitness>

</end-point>

<nearest-optimum>

<solution>3 5 2 7 6 1 0 4</solution>

<fitness>289</fitness>

</nearest-optimum>

</data-point>

...

</probes>

<result>

<value>0.317</value>

</result>

</dataset>

Figure 1: Sample XML for a run collecting FDC
data on an example of the traveling salesperson
problem. Note that this schema is quite detailed,
which provides a great deal of information concern-
ing the data point, but at the expense of generality.
It is difficult to design such a detailed format that
is applicable to a wide range of different datasets.

One way that we might accomodate arbitrary datasets is
to dispense with the notion of a specified schema entirely. In-
stead, we simply allow each individual user to specify what-
ever data makes sense in a simple, basically untyped and
unchecked format like keyword-value pairs. Represented in
XML, the corresponding idea would be that any syntac-
tically valid XML would be acceptable, but the semantic
aspects (tag names, hierarchical structure, etc.) would be
completely arbitrary and left to each user.

The upside is obviously the great flexibility such a sys-
tem entails. Arbitrarily complex analysis and sampling tech-
niques could be specified using exactly the set of attributes
needed. However, this flexibility would come at the price
of consistency. If I want to look at FDC analysis on TSP
versus the quadratic assignment problem, I need to be able
to rely on the fact that everyone who has submitted data
in this area has used the same names and formats to de-
scribe the same ideas. Consistency becomes a social problem
rather than a technical one. That is, it shifts the burden to
the researcher to search the existing tags to see if someone
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else has already contributed data similar to his or her own
in some way, and then match the tags accordingly. This
process could be facilitated via tool support as well – the
submission system could parse each submitted contribution
and automatically generate a listing of all tags used in the
entire system, for instance. However, the ultimate burden
would fall to the users, and it’s not clear that such a system
would retain enough structure to be useful.

The other approach to allowing open-ended data collec-
tion is to provide much more rigidly defined schemata for
the cases we are aware of, and then allow the individual
researchers within the community to extend them as nec-
essary. Again, the advantages and disadvantages are both
fairly easily seen. As long as everyone uses the same sets of
information, the repository will provide the maximum ben-
efit. However, it seems quite difficult to determine how best
to build such a system up front. Ideally, the need for exten-
sion would be minimized; otherwise this method degenerates
to the schema-free method above. Thus it becomes impor-
tant to design schemata that are not brittle in the face of
non-substantive changes. That is, if two people are applying
very similar techniques on very similar problems, the minor
differences cannot cause them to need to extend the given
system in different ways, and preferably not have to extend
it at all.

In both of these approaches, there is another problem to
be addressed – how to “backport” new information onto ex-
isting data. That is, if user X submits a dataset containing a
particular type of analysis on a particular problem set, and
then user Y submits a slightly different set of analyses on the
same problems, how should the data be represented? Should
the different types of data be merged into a single record for
that problem instance or kept separate? If they are merged,
how should we handle overlaps (two researchers contribute
the same analysis on the same problem instance)?

Another way to look at the problem is to imagine the
data, not at the level of file formats and schemata, but as
the input to a machine learning technique. Viewed in that
way, we have a set of rows, each of which is a single data
point describing the outcome of some experiment. For ex-
ample, we might have one row that shows the performance
characteristics of a genetic algorithm using Edge-Assembly
Crossover (EAX) on a symmetric TSP instance. That TSP
instance may have a number of known properties – perhaps
we (or someone else) have looked at the FDC coefficient,
estimated the number of local optima, and estimated the
barrier height using a 2-opt local search heuristic. However,
other properties have not been examined yet – other prob-
lems may have been subjected to autocorrelation analysis to
estimate smoothness, but for our instance that data is not
known. Viewed in this way, we have a table: the columns
may contain some attribute relating to the structure of the
search space according to some metric, some aspect of the
performance of a given search algorithm, or human-assigned
labels such as problem class, while each row corresponds to a
particular problem instance about which we hope to record
information.

In the machine learning view, such a dataset is merely a
set of labeled columns with numbers or other measures for
each data point. Figure 2 shows an example of the kinds
of information we might store in this way. The advantage
of this type of representation, aside from the obvious ben-
efit of being well-suited for classification and data mining

techniques, is that it is also relatively easy to extend. One
can simply “fill in the gaps” in the data by testing particular
analysis methods or algorithms on known problem instances
and posting the results.

The goal in this view is to construct this table in the most
consistent way possible such that we may use it to derive
insights, probably via the use of data-mining and machine
learning methods, about the relationship between search al-
gorithms and problem features. Note that this is a somewhat
simplified view. In all likelihood, the data would not be a
single table, but rather a set of related tables, perhaps even
stored in a relational database somewhere.

The existing body of work on landscape analysis gives
us a reasonable common ground to build on. There are
key concepts that are relevant to a wide range of methods
for search space analysis – local searches used as “probes”,
with the associated notions of local search neighborhoods,
distance metrics, and encodings. In short, there are general
classes of landscape analysis methods. We could define one
such class as the set of methods that perform one or more
local search steps and report a numeric measure at the end.

Keeping with Mersmann et. al.’s terminology [15], we can
consider “low-level” features as those that can be directly
observed by some process. One of the key goals of any
landscape analysis method is the ability to tie these low-
level features into more abstract and meaningful high-level
features that cannot be directly observed. For instance, we
might deploy some number of random-walk probes and mea-
sure the autocorrelation along each path. This feature can
be thought of as an approximation for local smoothness, a
higher-level feature of the problem likely to have a meaning-
ful relation to the performance of different types of search
algorithms.

Because of the perceived difficulty in getting the modeling
step right, my intuition is that the preferable solution is to
focus explicitly on modeling low-level observed features and
search algorithm performance. In this view, there are essen-
tially only two types of records. The first contains problem
identifiers of some sort, probably at least the general class
of problem (e.g., TSP) as well as the specific instance of
the problem. In addition, this type of record would contain
only very simple feature measurements, essentially nothing
more complex than just a “feature-id” and “feature-value”
pair. Expressed in hypothetical XML, this version would
look something like that shown in Figure 3.

Compared to the much more detailed snippet in Figure
1, this version contains very little information. All of the
details concerning how each feature was measured have been
removed, presumably to be made available via associated
documentation. However, there are a number of benefits as
well. First, the schema is extremely general. With a bit of
thought, one could likely define a data format that was both
general enough to support a wide range of use cases, while
being specific enough to support automated checking (e.g.,
does the feature type already exist in the system?).

This model does mean that there will be some burden on
the researcher to look around a bit to determine if the metric
he or she wishes to include has already been submitted un-
der another name. However, this burden could be lessened
somewhat by having the upload process parse the data and
regenerate dynamically parts of the system documentation.
That is, an up-to-date list of problem classes, feature types,
etc., could be maintained directly from the submitted data.
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Figure 2: Sample of a data format useful for machine learning algorithms. One contains mappings of search
space features to problem instances (left), the other from search algorithms performance to problem instances
(right).

<dataset>

<problem>

<type>TSP</type>

<instance>foo123</type>

</problem>

<features>

<feature>

<type>FDC</type>

<value>0.317</value>

</feature>

<feature>

<type>Barrier-height</type>

<value>2.49</value>

</feature>

</features>

</dataset>

Figure 3: A much simpler form of feature represen-
tation.

In addition, the system could refuse to accept novel types
of certain tags until the user submitted some basic docu-
mentation covering their meaning. These processes would
of course require some degree of effort up front as part of
building the initial system, but the work required is fairly
minimal, and they are mostly optional niceties anyway.

Another limitation of almost all the relevant work is that
there has been a fairly strong focus on single-objective op-
timization. Many of the same techniques can be applied
to multi-objective optimization, but there are entire new
classes of analysis that are valuable as well. Basically, multi-
objective optimization involves two goals: move towards bet-
ter solutions and spread out across the set of mutually in-
comparable solutions. For the former goal, there is a very di-
rect analogue back to single-objective optimization. In both
cases, the goal is to move “downhill”. In multi-objective
search, there is no single direction corresponding to down-
hill, but many search algorithms impose a direction as a key
step in the search, and once this is done, the analysis is quite
similar (although the search space itself can be, and often is,
radically different). However, measuring diversity generally
requires different types of techniques. Because the output
of multi-objective optimization is always a set, any fitness-
based metrics must be recast into set-based metrics. Thus,
where many single-objective analysis methods take the form
F(s ∈ S) → R, where S is the set of candidate solutions,
multi-objective techniques most often take an entire set as

input, mapping it onto one or more numbers representing
the proximity to the desired Pareto-optimal set as well as
the diversity of solutions in the given set.

5. DATA CONSISTENCY ISSUES
It seems necessary for any such system to be very open in

terms of what types of data it allows. It is certain that no
predetermined set of properties will be able to naturally an-
ticipate all the varied things that clever researchers will want
to do going forward. It’s likely that no suitable static repre-
sentation could even encompass all the known approaches
that have already been done, at least not in any useful
manner. However, it seems equally well-established that a
completely unspecified system will tend toward chaos quite
quickly. These observations lead naturally to the ideas de-
scribed in the previous section – attempt to provide a useful
set of static descriptors that seem to make sense in general,
but allow for customization in a well-defined way.

Aside from the issue of figuring out a suitable schema or
schemata that can accomodate the needed flexibility while
maintaining as much consistency as possible, there is an-
other issue that may need to be addressed. Software bugs
will inevitably arise, leading researchers to contribute incor-
rect data to the repository. Thus one requirement is that
the data be traceable. Every piece of data contributed must
be tagged in a way that allows identification of its source.

If the data is distributed as a loosely coupled set of, e.g.,
zip files, erroneous data is easy to fix – one simply retracts
the affected files. However, if we attempt to merge results
in any way, it may become tricky to handle errors in the
data. For example, suppose that researcher A contributes a
FDC analysis on a set of TSP instances and shows the per-
formance using a particular search algorithm. Researcher B,
interested in the relationship between the number of local
optima and algorithm performance, contributes that data
to the repository. There are multiple ways the new informa-
tion could be integrated, some of which make it difficult to
recover in the case that it is later discovered that the data
was incorrect.

6. TOOL SUPPORT
Obviously, whatever use such a system has extends only

so far as people actually use and contribute to it. One of
the key factors affecting that would likely be how much of a
change it requires to the normal workflow of each researcher.
At a minimum, data must be collected and distributed in
a standardized format. I think to get the greatest benefit
though, more than that needs to be done. In particular, I
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think it is crucial to be able to merge two sources referring to
the same thing. That is, if person A collects metrics X and
Y for some problem, and person B collects metric Z on the
same problem, it must be simple to obtain a single dataset
contain all of X, Y, and Z for that problem.

This opens a number of possibilities. How should we re-
solve two different researchers supplying the same data (e.g.,
A does X and Y while B does Y and Z – which Ys do we
take?). What happens if B comes along later and says that
his or her data for attribute Z is actually incorrect? If the
system is merging results as they come in, it must store
enough information to be able to separate them again at
some point in the future, or alternately, checkpoint every-
thing.

6.1 Client Support
Different researchers will in general choose different lan-

guages and platforms for their own use, and clearly, any
solution intending to foster greater collaboration needs to
allow for that. One way to do this is to provide code that
manages the process of storing the feature and performance
data in an appropriate format, and provide ways for users
to call that code.

The approach taken by PISA is to build their system as
independent communicating processes which can be written
in any language and which communicate with one another
via the filesystem. My general impression is that most peo-
ple don’t like this model that much, feeling that it imposes
something of a “weird” constraint on the way they normally
write software. However perhaps the domain here is dif-
ferent enough that the filesystem is a more natural way of
passing the feature space and performance data around the
different components of a system. If that is the case, we
could simply provide ready-to-run code to read formatted
files and massage the data however made the most sense.

Another approach is to, instead of striving for maximum
flexibility at the expense of natural usability, simply dis-
tribute small modules in a few common languages such as
C++ and Java. Such modules could provide very basic func-
tionality, such as reading and writing the defined schemata.
Here is where the more popular heuristics frameworks such
as ECJ [14] and ParadisEO [6, 13] might be involved – once
a set of functionality was decided on, specific modules for
these systems could be provided in addition to a more gen-
eral method of interacting with the repository.

Much of the difficulty in making this entire idea into some-
thing workable revolves around how to define things tightly
enough that everyone is on the same page, and yet loosely
enough that people can do interesting things with it. It is
my belief that given the nature of the problem, there is a
strict limit on what can be done at a library or framework
level. The very idea of measuring properties of a landscape
can require quite detailed interactions with the rest of the
code in a system, and providing that sort of cohesion in an
agnostic module is not a realistic goal. Instead, I think the
best option is to define a few small APIs for reading and
writing the standard file formats. For instance, there could
be an API function to write a particular type of record (e.g.,
a data point for a FDC run). The user would collect this
data via whatever mechanism he or she would normal use,
and then call only the single API call passing in the required
data. As researchers need to extend the defined behaviors,
they can simply write and submit code to handle their ex-

tensions. As we generally have to write out our data in
some format anyway, the overhead imposed to write it in a
compatible format is not so great.

The other side of client support is the question of how
to enable researchers to obtain data from the repository in
a form that they can directly use. Models like the BBOB
suite that simply offer individual downloads work well which
each piece is self-contained. However, if I want to look at
all the available data for a particular problem, it may be
distributed over many different contributed datasets. Tool
support would be needed to provide easy ways to combine
(or split, or otherwise process) data from the repository.

6.2 Server Support
Probably the most important factor governing what sort

of infrastructure we should build is in how capable we want
the central repository to be. If we take the BBOB approach
(researchers simply send data and source code as files that
are linked from a web page), then the server needs are basi-
cally covered by an off-the-shelf web server. The client needs
then consist simply of whatever functionality is deemed use-
ful to get data into a consistent format, which as discussed
above, may involve fairly involved and intricate logic.

Alternately, if the server was more sophisticated, perform-
ing some sort of processing or filtering on the data coming in,
both the client and server sides might require more sophisti-
cated processing. Ideally, I think this is the preferred state
of affairs. Given a strict schema, the server could accept up-
loaded files, parse them, and perform more intelligent opera-
tions such as merging any new data with compatible existing
records. This would allow fairly sophisticated queries on the
data as well (e.g., “show me all the results for the CHC algo-
rithm on problems with plateaus.”). However, this approach
requires a great deal more effort up front and probably re-
quires considerable effort to ensure that the stricter data
schemata required have been adequately thought through.
For these reasons, as well as issues surrounding security and
traceability that would need to be considered, I don’t think
this is a reasonable first goal.

7. CONCLUSIONS
It is my view that a more coordinated effort could provide

very large benefits for the landscape analysis community. By
standardizing on a common language for modeling problem
structure and algorithm performance, we could much more
quickly build a large and varied corpus of data sufficient
to begin to see real results from the application of machine
learning tools to the problem of predicting the concordance
between the operational principles of a search algorithm and
the inherent structure of a given optimization problem.

In order to make this a reality, we would need to decide on
what the general form of the system will be. Do we want to
track only low-level features or should higher-level derived
features be present as well? How specific and detailed should
the data collected be? How much work should the system try
to do – just host static files in a compatible set of formats, or
process submitted data to provide more sophisticated data
validation, querying, and manipulation?

I have provided no real answers to these questions here,
and arriving at good answers will likely require much more
thought and the input of those in the community who think
that the idea is worth pursuing. However, I believe strongly
that there is much to be gained from aggressively pursuing a
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data-driven approach to building models of search algorithm
performance. As a community, we generate a substantial
amount of data, but currently, we aren’t exploiting it very
well.

That said, it is the feeling of the author that the right
approach is probably to try and start small. To develop
a bare-bones interchange format that captures very simple
measurements of low-level, directly observed features as well
as very high-level “algorithm X found solutions of quality Y
on problem Z” performance metrics. This data should then
be submitted to a centralized repository maintained by the
community itself with rudimentary tool support for things
like basic data validation and querying.

The specifics of how this should work probably cannot
reliably be imposed from above. Rather, I hope that the
argument I’ve made here will spark agreement within the
community and entice like-minded researchers to undertake
further discussions and come to a more considered under-
standing of the issues in a way that meets the goals set
forth here.
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