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ABSTRACT 
Evolutionary Computation and Swarm Intelligence (SI) are 
currently some of the scientific research fields where scientists 
and artists seek for tools and inspiration for creating what is 
known as generative art. Within the SI field, social insects and the 
concept of stigmergy, in particular, have inspired several 
significant artworks that question the borders and nature of 
creativity. This paper addresses generative art created with SI 
systems and presents a set of images that correspond to a working 
mechanism of an ant-based clustering algorithm, which uses data 
samples that interact via the environment and generate what we 
call abstract swarm paintings. The algorithm, called KANTS, 
consists in a simple set of equations that model the local behavior 
of the ants (data samples) in a way that, when travelling on a 
heterogeneous 2-dimensional lattice of vectors, they tend to form 
clusters according to the class of each sample. The algorithm was 
previously proposed for clustering. In this paper, KANTS is used 
outside a purely scientific framework and applied to data extracted 
from sleep-Electroencephalogram (EEG) signals. With such data, 
the lattice vectors have three variables, which are used for 
generating the RGB values of a colored image. Therefore, from 
the action of the swarm on the environment, we get 2-dimensional 
colored abstract sketches of human sleep. We call these images 
pherogenic drawings, since the data used for creating them are 
actually visual representations of the algorithm’s pheromone 
maps. As a visualization and creative tool, the method is 
contextualized within the swarm art field.   

Categories and Subject Descriptors  
H.4 [Information Systems Applications]: Miscellaneous 

General Terms 
Algorithms, Theory 

Keywords: Generative Art, Artificial Art, Swarm Art, Ant 
Algorithms, Pherographia, Pherogenic Drawings, Stigmergy. 

1. INTRODUCTION 
Generative (or artificial) art is a contemporary trend in which 
autonomous systems are employed for generating artworks or 
ornamental objects. There may be more or less human interaction 
with the automatic process, but, in general, the core of a 
generative artwork results of a computational and sometimes 
emergent process. Swarm Intelligence (SI) is one of the 
techniques used by generative art practitioners, whether as 
computational simulations for creating digital art that can be later 
translated to a physical medium, or as guiding rules for groups of 
agents (like robots, for instance) that act directly (i.e., physically) 
on a canvas. This paper focuses on a digital approach and 
describes a SI algorithm for data clustering called KohonAnts [18] 
(or simply KANTS) that the authors use as a tool for generating 2-
dimensional non-figurative images that represent a correlated data 
set of human sleep. 

KANTS is an ant-based algorithm that was proposed by Mora et 
al. in [18] for data clustering and classification. The method is 
loosely based on the Ant System (AS) proposed by Chialvo and 
Milonas [2]. The equations that model AS depend on a set of 
parameters that, when properly tuned, guide the swarm to a self-
organized state, causing complex patterns of global behavior to 
emerge. Instead of the 2-dimensional homogeneous lattice used in 
AS as an environment for the swarm, KANTS evolve on a 2-
dimensional regular lattice with one vector of real-valued 
variables mapped to each cell. The agents also differ from Chialvo 
and Milonas model, since KANTS uses data samples (with the 
same size as the environmental vectors) of different classes as 
artificial ants1. These ants travel trough the grid, changing the 
values of the variables so that they tend to be closer to their own 
values. At the same time, the ants are attracted to the sections of 
the habitat where the Euclidean distance between the ant’s vector 
and the sections’ vectors is minimized, i.e, the ants communicate 
via the environment, an ability that is a fundamental part of a 
process known as stigmergy [10]: communication via the 
environment, with modification of that same environment. The 
model’s simple set of rules leads to a global behavior in which 

                                                                 
1 Although KANTS is different from traditional Ant Algorithms, it is 

directly inspired by Chialvo and Millonas’ Ant System and its working 
mechanisms are simple extensions of the model’s set of equations. 
Therefore we use the terminology associated with this kind of 
algorithms and models: ants, pheromone, pheromone maps and 
evaporation. 
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clusters of ants/samples belonging to the same class tend to 
emerge.  

As stated above, the ants act upon the environmental lattice, 
changing the values of the vectors. Therefore, this array of vectors 
act as a kind of pheromone map (pheromone is the chemical 
substance used by real ants to communicate) that is shaped by the 
ants. In this paper, those pheromone maps are visualized and used 
for generating 2-dimensional colored images in RGB format. The 
vectors’ values are directly translated to the R, G, and B values, 
since a sleep data set with three variables is used here. Since the 
ants tend to gather in clusters, thus changing the values in that 
region, it is expected that the pheromone map, after a certain 
number of iterations, shows non-random patterns, something like 
a kind of a fuzzy patchwork. In addition, due to the stochastic 
nature of the process and the size and range of the data samples, 
these “sleep signatures” are unique, not only for each patient, but 
also for each night’s sleep. We believe that these results not only 
represent an interesting imagery related to human sleep, but could 
also provide a motivating conceptual framework for artists and 
scientists to work with.   

The present work is organized as follows. Section 2 discusses 
generative art in general and swarm art in particular, while giving 
a special emphasis on a set of works that preceded and inspired 
the KANTS-based drawings. Section 3 describes the simplified 
KANTS algorithm used for generating the EEG sleep data images. 
In Section 4, the EEG signals and the sleep staging problem is 
introduced. Section 5 presents the images generated by the 
algorithm on a set of sleep data recorded from voluntary sane 
adults. Finally, Section 6 concludes the paper and outlines future 
lines of work. 

2. SWARM ART 
Generative art is a term used for to classify art that, with varying 
degrees of human intervention, is mainly generated by artificial 
intelligence systems or other computational and autonomous 
models. There is an enormous amount of work in the area, and 
generative art is even gradually dividing itself into subfields, such 
as artificial music, and evolutionary art. From the large number of 
work created in the last decades, we will describe just a few, more 
related to the pherogenic drawings, technically or metaphorically. 

Like KANTS, Leonel Moura’s swarm paintings [19] are also 
based on Chialvo and Millona’s swarm model. The author started 
by experimenting on-screen computer drawings, using the ant 
system described in [2]. However, the results were disappointing 
until he used a CAD machine and a brush to create physical 
objects. Since then, Moura has been experimenting with swarms, 
self-organization and robotics [20].  

Like Moura, Monmarché et al. [17] also use ants for their research 
on the potentialities of swarms as “non-human artists”. The 
authors discuss the ant paradigm as a tool for generating music 
and painting.  

Using a common terminology in the History of Art, Moura and 
Monmarché swarm paintings may be categorized as abstract, 
while the proposal by Collomosse [4], for instance, which uses 
Evolutionary Computation to evolve aesthetically appealing 
techniques for photo rendering, is more related to figurative art. 
Semet et al. [24] also investigated the automatic generation of 
rendering. The authors propose a method for non-photorealistic 
rendering based on artificial ants. The ants move and sense the 

environment (image) and deposit “ink” on an output image, 
according to their location and the state of a short term memory. 
The user interacts with the ant colony, by choosing the 
parameters, defining “importance maps” and deciding when the 
rendering is finished.  

In 2001, Ramos and Almeida [21] proposed a modification of the 
Chialvo and Milonas ant systems in which the ants interact on a 
grayscale image (i.e., the 2-dimensional lattice stores the pixel 
values of the picture) and detect the edges of that image, 
generating pheromone maps that are sketches of the 
environmental grayscale images. Later, Fernandes et al. [7] 
described an evolutionary extension to the model that radically 
changes the aspect of the pheromone maps. In 2010, Fernandes 
proposed the term pherographia (meaning drawing with 
pheromones) as a designation for the resulting pheromone maps of 
the system, and projected a line of creative work based on 
pherographia, that resulted in several artworks which were 
exhibited to an heterogeneous audience [8]. In a sense, the 
pherogenic drawings described in this paper are also pherographs, 
since KANTS comes from the same base-system, and the images 
may be considered the pheromone maps of the algorithm. 
However, we use here the term pherogenic drawings in order to 
differentiate from the images in [21] and [7], which are closely 
related to photographia, the inspiration of the term pherographia.  

The above referred works do not rely on an explicit objective 
function to guide the exploration of the environment, but other 
approaches require a fitness functions that must be optimized. 
These approaches, usually termed as evolutionary art, may be 
divided in two classes: automated and interactive evolutionary art. 
Interactive evolutionary art is based on interactive Evolutionary 
Algorithms (EA) [26]. Interactive EAs use human evaluation for 
determining the quality of the solutions described by the 
population: i.e., one or more humans evaluate the solution and 
provide the algorithm with some measure of quality of the 
individual or guide the search by interacting with the reproduction 
process (human-guided EAs).  

Interactive evolutionary art is based on interactive and human-
guided EAs. Karl Sims [25], for instance, used a human-guided 
EA for generating 2-dimensional abstract forms. Sims has an 
extensive body-of-work on artificial and evolutionary art that has 
been exhibited in art galleries and important art festivals. Another 
important author in this field is William Latham. Like Sims, he 
used evolutionary algorithms and computer graphics in the early 
1990s to generate digital images [27]. Since then, several 
researchers and artists have been working on interactive 
evolutionary art, which has been also used in combination with 
swarm art. 

Aupetit et al. [1], for instance, use an interactive EA for evolving 
the parameters used by a swarm of artificial ants that interacts 
with the environment (canvas). Each ant competes with the other 
ants for color placement. Given a set of parameters, the ants are 
able to draw complex images, and they can even paint for several 
hours, giving a different painting in each moment. The sensory 
mechanism of the ants in [1] was modeled in such a way that they 
are responsive only to the luminance values of the colors. 

Greenfield [11] follows a different approach and uses ants that are 
responsive to tristimulus color values. Furthermore, he uses a non-
interactive EA by designing fitness functions for evolving ant 
behavior. Later, the author increased the complexity of his model 
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and designed ants that are responsive to both environmental 
stimulus and other ants’ direct stimulus, thus increasing the role of 
stigmergy in the model [12].  

These are just a few examples of swarm and evolutionary art, 
more related to the work described in this paper. There are many 
variants of generative art and other authors have been providing 
interesting compilations and state-of-the art reviews. Romero and 
Machado [23], for instance, edited a book on evolutionary and 
artificial art that gathers some of the most relevant proposals in 
the field. Lewis [15] provides an exhaustive review on the state of 
the art, not only on interactive and human-guided evolutionary art, 
but also on other types of artificial art. In this paper, we aim at 
contributing to this motivating field that blends art and science by 
applying the KANTS clustering algorithm as a swarm-art creative 
tool. For that purpose, we use a simplified version of the 
algorithm that is described in the following section.  

3. KANTS 
The KANTS algorithm [18] is an ant-based method for data 
clustering and classification. The term KANTS derives from 
Kohonen Ants, since the algorithm was partially inspired by 
Kohonen’s Self-Organizing Maps [14]. However, KANTS is also 
based on Chialvo and Milona’s AS and its working mechanisms 
are very similar to the algorithms in [2] and [21]. The way the 
concept of pheromone is implemented is the main difference when 
comparing KANTS with AS and Ramos and Almeida’s algorithm. 

In this section, a simplified version of KANTS is described. This 
is the used for generating the pherogenic drawings of sleep data 
described in Section 5. Since performance is not an issue here, the 
algorithm has been deprived of some parameters and constants 
that can be useful for fine-tuning its behavior, but are not 
fundamental when using the algorithm for generative art. The 
reader is referred to [18] for a detailed description of the original 
KANTS.  

KANTS is based on the emergent properties of a set of simple 
units that travel through a 2-dimensional grid. In KANTS, this 
habitat is mapped to an array with size ܰ ൈ ܰ ൈ ݀, in which ݀ is 
the dimension of the data vectors of the target-problem, and 
ܰ ൈ ܰ is the dimension of the grid. That is, each cell in the habitat 
is mapped to a ݀-dimensional vector. In addition, the ants also 
“carry” a ݀-dimensional vector that corresponds to a data sample: 
each ant is in fact one data sample of the data set. The main idea 
of the algorithm is having data samples (ants) moving on (and 
updating a) an array of real-valued vectors with the same size of 
the samples. The dimension of the habitat affects the performance. 
In general, a ratio between the number of data samples and the 

size of the habitat (measured in number of cells) in the range ሾ
ଵ

ଷ
,

ଵ

ଶ
ሿ 

provides a good basis for KANTS clustering abbility. 

The values of the grid’s vectors are set to a random value with 
uniform distribution in the range ሾ0, 1.0ሿ in the beginning of the 
search. Then, the ants are randomly placed in the grid (after the 
vectors they “carry” are also normalized within the range ሾ0, 1.0ሿ). 
In each iteration, each ant is allowed to move to a different cell of 
the habitat and modify that cell’s vector values.  The ants move to 
neighboring cells using equations 1 and 2, taken from AS [3]. 

ሺ݆ሻݓ ൌ ቀ1 
ߪ

1  ߪߜ
ቁ

ఉ
 (1)

Equation 1 measures the relative probability of moving to a cell ݆ 
with pheromone density ߪ. The parameter ߚ) ߚ  0ሻ is associated 

with the osmotropotaxic sensitivity. Osmotropotaxis has been 
recognized by Wilson [28]  as one of two fundamental types of an 
ant’s sensing and processing of pheromone, and it is related to 
instantaneous pheromone gradient following (the other type, 
klinotaxis, refers to sequential following, and it is not modeled in 
AS nor KANTS). In other words, parameter ߚ controls the degree 
of randomness with which the ants follow the gradient of 
pheromone.  

The parameter ߜ) ߜ  0ሻ defines the sensory capacity (1 ⁄ߜ ), 
which describes the fact that each ant’s ability to sense pheromone 
decreases somewhat at high concentrations. This means that an ant 
will eventually tend to move away from a trail when the 
pheromone reaches a high concentration, leading to a peaked 
function for the average time an ant will stay on a trail, as the 
concentration of pheromone is varied.  

The second equation, which models the probability of an ant 
moving to a specific cell in the habitat ݆ belonging to the current 
cell’s (݅) Moore neighborhood, is defined after the discretization 
of time and space:  

ܲ՜ ൌ
.ሺjሻݓ rሺjሻ

∑ .ெ אሺjሻݓ
 (2) 

ܲ՜ is the probability of moving from cell ݅ to ݆, ݓሺ݆ሻ is given by 
equation 1 and ݎሺ݆ሻ is set to 1 if the cell ݆ is within a user-defined 
radius centered on the cell ݅ (or any other type of permitted target-
region defined by the user) and 0 otherwise. 

The pheromone value ߪ in equation 1 is defined as the inverse of 
the Euclidean distance ݀ሺݒԦ,  Ԧሻ between the vector carried by theݒ
ant ݊ ݒԦ and the vector in the cell ሺ݅, ݆ሻ at time step t, ݒԦሺݐሻ: 

ߪ ൌ
1

݀ሺݒԦ, ሻሻݐԦሺݒ
 (3)

This way, an ant tends to travel to cells that are mapped to vectors 
which are “closer” to its own vector. (Please note that ݒԦ is a data 
sample and therefore constant, while the vectors mapped by the 
grid vary with time ݐ, modified by the ants). In addition, the ants 
update the cell’s vector where they are currently on, according to 
equation 4: 

ሻݐሬሬሬԦሺݒ ൌ ݐሬሬሬԦሺݒ െ 1ሻ  ߙ ቂ1 െ ݀ ቀݒሬሬሬሬԦ, ሻቁቃݐపఫሬሬሬሬሬሬԦሺݒ . ሺݒሬሬሬሬԦ െ ݐపఫሬሬሬሬሬሬԦሺݒ െ 1ሻሻ (4)

where ߙ א ሾ0,1.0ሿ is a learning rate that controls how fast the 
cells’ vectors acquire the information carried by the ants. This is 
the equation that modifies the environmental and shape the images 
presented in Section 5. Please note that this reinforcement action 
is proportional to the Euclidean distance between the ant’s vector 
and the cell’s vector: an ant tends to travel to cells with vectors 
more “similar” to its own vector, and, at the same time, they 
change that cell’s values, approximating them to their own values, 
at a rate that is proportional to the distance between the vectors.  

Finally, the vectors of the grid are all evaporated in each time step. 
Evaporation, in KANTS, is done by updating the values according 
to Equation 9: 

ሻݐሬሬሬԦሺݒ ൌ ሻݐሬሬሬԦሺݒ െ ݇. ሺݒሬሬሬԦሺݐሻ െ పሬሬሬሬԦሻ (5)ݒ

where ݇ א ሾ0,1.0ሿ (but usually a small value, in the range 
ሾ0.001, 0.1ሿ) is the evaporation rate and ݒపሬሬሬሬሬԦ is the vector’s initial 
state, i.e., at ݐ ൌ 0. Basically, the evaporation step “pushes” the 
values of the vectors towards their initial values. 
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With this simple set of equations, the ants (data samples) shape 
the environment, communicate via that environment, self-
organize, and, after a certain number of iterations, congregate in 
clusters that more or less represent each class in the data set. 
Figure 1 exemplifies the outcome of this stigmergic behavior of 
KANTS when applied to the iris flower data set [9].  

The iris dataset consists of  samples of vectors, 50 of each of 
three species (classes) of iris flowers. Each vector has four 
variables, representing the four features from each sample. 
Therefore, KANTS evolves with a population of 150 ants in a 
habitat of size . Parameters  and  are set to  and  
respectively, while  is set to  and the evaporation rate  is set 
to . Figure 1 shows the state of the swarm at different time-
steps. Each color represents a class (i.e., if red, the class of the ant 
is Setosa). The graphics show that after 50 iterations the ants start 
to form clusters. At , the Setosa cluster (red) is defined 
and separated. Versicolor and Viriginica are not separable but the 
algorithm has an interesting capacity of congregating Virginica 
samples (blue) in a region of the habitat. The stochastic nature of 
the algorithm, and the lack of any local refinement mechanism, 
makes that sometimes the clusters tend to desegregate — see 

. However, these results, and others described in [18], 
validate the KANTS algorithm as an ant-based non-supervised 
clustering algorithm.  

Mora et al. [18] also describe a classification algorithm that uses 
the information retrieved by the state of swarm at the end of the 
run.  However, the pheromone maps (i.e., the grid of vectors) are 
used by the algorithm only for the ants to communicate and they 
are discarded by the end of the run. The important components of 
KANTS as a problem solver are the clusters (the ants’ final 
positions in the grid) and the classification maps. Section 5 shows 
how this grid of vectors can be visualized as a kind of data’s 
fingerprints. But first, Section 4 introduces the sleep staging 
problem and describes the data used for generating the pherogenic 
representations of sleep. 

 
  

 
  

 

Figure 1. KANTS: Evolution of the position of the ants in the 
grid . Iris flower data set.   

4. SLEEP SIGNALS 
Sleep is a state of reduced and filtered sensory and motor activity, 
within which there are different stages, each one with a distinct set 
of associated physiological and neurological features. The correct 
identification of these stages is very important for diagnosis and 
treatment of sleep disorders such as apneas, narcolepsy and 
insomnia. However, sleep classification is not completely 
standardized and usually experts from different research centers 
have slightly different approaches  

Usually, sleep experts make the classification by visual methods, 
that is, they analyze the signals and then, according to the patterns 
of the signal in a specific time period, decide in which stage the 
patients were at that precise period. This method is time-
consuming and prone to errors. Therefore, it is very important for 
biomedical sleep research to devise methods to extract the proper 
information that is later used for classification. However, 
automatic sleep stage classification is a hard computational 
problem that requires efficient solutions at different levels of the 
process.  

A correct identification of the sleep stages requires competent 
classification tools, but, before that, it is necessary to extract the 
proper information from the signals associated with sleep: the 
electroencephalography (EEG), electromyography (EMG) and 
electrooculography (EOG) signals. Even though several attempts 
have been made to automate the classification process, so far no 
method has been published that has proven its validity in a study 
including a sufficiently large number of controls and patients of 
all adult age ranges. 

Traditional sleep classification is normally divided in three steps. 
First, significant data is acquired from the subjects. Then a human 
expert identifies, for each epoch, the relevant patterns. Finally, 
according to those patterns, the expert decides the sleep stage of 
the patient. Usually, the classification of sleep stages is made 
under the Rechtschaffen and Kales [22] guidelines (R&K 
classification rules), which divide sleep into five stages: REM, 
NREM1, NREM2, NREM3 and NREM 4, with WAKE as an 
additional stage. The complete EEG, EOG and EMG records, 
divided in epochs, usually, each one with 30 second. Therefore, an 
8-hour night-sleep consists in  samples of six possible classes.  

An automatic tool for classifying this set of data may be 
constructed under two different principles. First, the manual 
classification may be mimicked and translated into an automatic 
process. Under this approach, certain typical characteristics of the 
signal associated with each stage are searched, identified and 
measured and then some method is used to decide the stage.  

The second approach aims to extract relevant information from 
the signals, quantify it and then use traditional numerical 
classification system. In 1975, B. Hjorth [13] proposed a set of 
three parameters for describing the EEG signal. The first 
parameter is a measure of the mean power representing the 
activity of the signal. The second, called mobility, is an estimate of 
the mean frequency. The third parameter estimates the bandwidth 
of the signal and represents complexity. The main advantage of 
Hjorth parameters is its low computational cost when compared to 
other methods. Furthermore, the time-domain orientation of 
Hjorth representation may prove suitable for situations 
where ongoing EEG analysis is required.  

However, our choice of the Hjorth parameters is merely practical: 
the three variables may be directly translated to RGB values and 
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generated the desired 2-dimensional colored representation of the 
sleep signals. Besides Hjorth and power spectrum, there other 
feature extraction methods and, in fact, this is still an open 
problem. This paper does not deal directly with the sleep staging 
classification problem and therefore, novel techniques for 
extracting relevant features from the sleep signals are not required. 
The following section describes the resulting KANTS pheromone 
maps when applying the algorithm to a set of Hjorth parameters 
describing EEG signals of five adult sane patients. 

5. RESULTS 
For testing KANTS and retrieving its pheromone maps as images 
in the RGB format, real data from five adult sane patients were 
used. The patients are labeled as 04 ,03 ,02 ,01 and 05. 

 The EEG signals were analyzed and each epoch classified within 
one of the R&K classes by a medical expert team. Then, the 
Hjorth parameters were extracted from those EEG signals. Five 
files with the Hjorth parameters corresponding to the EEG signals 
of each patient were created. The files contain 844, 907, 769, 
685 and 865 samples (please remember that one sample 
corresponds to 30 seconds of sleep), respectively, from 01 to 

Figure 2. Hypnograms of patients , , ,  and 
 ; (top to bottom). States, y-axis: 1 (NREM1); 2 (NREM2)
3 (NREM3); 4 (NREM4); 5 (Awake); 6 (REM). 

 .Each vector is labeled with the class assigned by the experts .05
Each test uses one file: for instance, KANTS with patient 01 
uses 844 ants (data samples). Since there are three parameters in 
the data set, the ants are described by ݒԦ ൌ ሺݒଵ, ,ଶݒ  ଷሻ, whereݒ
 ଶ is theݒ ,ଵ is the Hjorth activity value in the data setݒ
complexity of the same vector in the data set value and ݒଷ is 
mobility value (see equation 3).  

The habitat size is set to 175 ൈ 175. With this size, the ratio 
between the number of ants and the number of environmental 
vectors is much smaller than the range suggested in Section 3. 
However, the objective of this work is not to optimize the 
clustering ability of KANTS, but instead to generate appealing 
images during the process. Given the size of the data sets, using 
the suggested ratio would generate very small images that could 
not be properly visualized and valued.  Therefore, input files of 
each patient’s data with 10 copies of each sample were created. 
The results in this section are the pheromone maps created by 
these enlarged sets, with sizes 8440, 9070, 7690, 6850 and 
8650. 

Figure 2 shows the hypnograms of each patient. A hypnogram is a 
graphical representation of the stages of person’s sleep in a time-
domain. This state-time graphic allows a quick observation of a 
night’s sleep and the identification of possible sleep disorders. 
This study uses data from sane adults without diagnosed sleep 
disorders, which, if present, would disturb a normal hypnogram, 
but it is possible to observe that each patient generates rather 
different hypnograms. When applied to a stochastic algorithm like 
KANTS, it is expected that the resulting pheromone maps are also 
very different.  

The algorithm was tested with the following settings. Parameters 
 are set to 32 and 0.2. These values are in the range of the ߜ and ߩ
parameter space that in [18] puts the system in the self-organized 
state. The learning rate ߙ is set to 0.5 and evaporation rate k is set 
to 0.01. The algorithm stops after 50 iterations and the grid’s 
vector values are then normalized into the range [0,255].   

A previous art project was conducted by translating the resulting 
pheromone maps into gray-scale images. Figure 3 shows an 
example of those works. The images were created by normalizing 
the final environmental vectors ݒԦ ൌ ሺݒଵ, ,ଶݒ  ଷሻ (see equationݒ
3) into the range [0,255], where ݒଵ represents the environmental 
values affected by the Hjorth’s parameter activity, ݒଶ by 
complexity and ݒଷ by mobility. Each set of values was stored in 
175 ൈ 175 arrays and then each array was used to create the gray-
scale images represented in Figure 3. 

 

 

Figure 3. Abstract monochromatic pherographic drawings 
created by KANTS from sleep data. Each image corresponds 
to one of the three vectors’ variables mapped to the Hjorth’s 

parameters: activity (left), complexity (center), mobility 
(right). Patient  
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Figure 4. Pherogenic drawing of   sleeping period. 

In this paper, these triptychs were extended to colored pherogenic 
drawings of sleep. For that purpose, the same values are used as a 
source for creating an image in the RGB format. The activity 
related values are used to model the R values, while G and B are 
defined by complexity and mobility, respectively. The resulting 
image, when applying this strategy to the environmental vectors 
used for creating the triptych in Figure 3, is shown in Figure 4. 

 Figure 5 shows the pherogenic drawings of patients 02 ,01, 
 It is clear that each night’s sleep data set generates .04 and 03
unique drawings, even if there are common features to all of them. 
However, each one shows a different pattern and some major 
differences are also observed, namely in the dominant color of the 
drawings. Pherogenic drawing 01, for instance, has a strong 
presence of a pinkish color, that is almost absent from the other 
pictures (except 04, where light patches of rose are present).  

 

 

 

Figure 5. Pherographic drawings of patients  (top-left), 
 . (bottom-left) and p04 (bottom-right) , (top-right)

 

Figure 6. Pherogenic drawing mixing the pheromone maps 
generated by ,  and . 

If we abandon the project of a univocal representation of a night’s 
sleep, the possibilities are endless. It is possible, for instance, to 
combine the pheromone maps generated by different data sets. 
Figure 6, for instance, shows the result of mixing the 
environmental vectors generated by applying KANTS to 01, 
 The image uses for R the activity-related vectors .03 and 02
generated by 01 data, G values are set by the complexity values 
generated by 02, and B is defined by the mobility-related values 
of the environment shaped by the data of patient 03. With such 
an uncorrelated input, the RGB image is much more dynamic and 
vivid than the images generated by a single night’s sleep.  

Although the hypnograms are clearly different for each patient, 
such state-time representations of the sleep do not help to interpret  

 

Figure 7. Distribution of the samples over the class-domain 
(the classes are assigned by medical experts). 
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the differences observed in the pherogenic drawings of each 
patient. The main characteristics in the hypnograms, for the 
untrained eye, are perceived in the time-domain. However, for 
KANTS, the sequence of events is not relevant. The behavior of 
the algorithm only depends on the values of the samples, not on 
their order. Therefore, in order to try to interpret the differences 
between the drawings, it is better to analyze the distribution of 
samples in each patient.  

Figure 7 shows the distribution of samples of each class in each 
patient’s data set. By comparing the distribution of 01 with the 
other patients, the main observable difference is the reduced 
number of class 4 (NREM4) samples (when compared to other 
patients). This fact could explain why the pherographic drawing of 
 ,03 has a clear distinct palette of dominant colors. As for 01
which generates a picture with much darker tones, it has a ratio 
between class 6 and other classes that is clearly higher than the 
same ratio in other patients’ data. This could explain its unique 
tone in the set of pherogenic drawings.  

These hypotheses are hard to demonstrate, due to the stochastic 
nature of KANTS and the high number of variables involved in 
the process. However, it is expected that radically different 
distributions produce radically different images, since the samples 
are the “artists” here. The samples act upon the environment, 
shaping it, and the result of such actions depend on the values of 
the samples. Therefore, different samples create different patterns 
in the pheromone maps, thus making it plausible that the main 
differences observed in the sleep pherogenic drawing are due to 
the disparity in the ratio between the samples of each class. This 
conclusion leads to us an even more daring hypothesis. 

Although it is surely a difficult project, it is not impossible that 
these (or similar) representations of the KANTS’s pheromone 
maps could help medical experts to detect sleep patterns with a 
previous inspection of such type of maps, before engaging in the 
daunting task of classifying each 30 seconds epoch of a night’s 
sleep2. Just like an EEG signal, the pherogenic drawings are 
unique fingerprints of a person’s night sleep, gathering 
information of that sensory period, even if this information may 
be hard to decode. In addition, KANTS was based on the 
Kohonen Maps, of which the resulting maps are used for the 
analysis of variables and data; therefore, it is possible that 
KANTS maps can be also used for the same purpose. On the other 
hand, the fact that the time-domain features are not reflected in the 
pheromone maps may limit such a hypothetical system sleep 
disorders’ fast screening.  

Being a swarm art project, there is an unavoidable (and desired) 
subjectivity in this work. However, for the authors, the results are 
motivating and appealing, not only in aesthetical terms, but also as 
a science-art experience. For long, sleep was a mysterious state 
that science and philosophy tried to study and interpret. In 
addition, the dreams, an inseparable feature of the human sleep, 
always added a mystic aura to this physiological state. Having the 
opportunity of generating 2-dimensional representations of whole 
night’s sleep with a novel bio-inspired and self-organized 
algorithm is surely inspiring. Furthermore, the whole process is 
based on a kind of distributed creativity, that is, the drawings are 
in part generated by the person/patient, since the data samples 
shape the environment, and in part created by the swarm and its 
local rules, from which global and complex behavior emerges.  

                                                                 
2 This hypothesis has been discussed with a medical expert. 

A final note on the term pherogenic drawings. Like pherographia 
[8], the term pherogenic drawings is also inspired by photography, 
or at least by the History of Photography. When William Henry 
Fox Talbot announced that he discovered a photographic process 
(which later became the major photo-process for more than a 
century: the negative-positive process), he coined those images 
with the term photogenic drawings, meaning that the origin 
(genesis) of those drawings was light (photos, in Greek). Later, 
the term was gradually replaced by photography, which means 
drawing with light. The expression pherogenic drawings is 
therefore a tribute to Talbot’s invaluable contribution to art and 
science. In addition, it perfectly describes the images generated by 
KANTS: the origin (genesis) of these images is the pheromone. 

6. SUMMARY AND CONCLUSIONS 
This paper describes a swarm art experiment conducted with an 
ant-based clustering algorithm called KANTS. The algorithm is 
able to create clusters of data samples by letting those samples 
(ants) travel through a heterogeneous environment. The ants 
communicate via the environment and modify it. This work uses 
the resulting environment (pheromone maps) to create 2-
dimensional color representation of data sets. In this case, sleep 
data is used. The input of the algorithm is the well known Hjorth 
parameters, which describe the EEG signal in the time-domain. 
The resulting images are aesthetically appealing, with dynamic 
patterns and colors that spread through the canvas in a balanced 
way. They also have the interesting characteristic of being unique 
representations of a night’s sleep: the pherogenic drawings of 
human sleep are fingerprints of that person’s night sleep. 

Relationships between the samples distribution and the general 
aspect of the drawings are hypothesized, as well the possibility of 
a medical usage of these pictures. Since the resulting image is 
unique and depends on the data samples, it is possible that major 
patterns or anomalies in the data samples can be detected by a 
fast-screening of the pherogenic drawings.   

There are still some technical issues that limit the size of the 
environment, and therefore the size of the images. The 
computational time of the KANTS algorithm grows at least 
linearly with the number of vectors in the habitat, which means 
that a 1750 ൈ 1750 size image requires a computational cost that 
is 100 times the cost of creating a175 ൈ 175   sized image. Since 
creating 175 ൈ 175 pheromone maps takes 5-10 minutes, it is 
easy to conclude that experiments with much larger sizes may be 
impractical at the moment.  

Sleep data with Hjorth parameters was chosen because the three 
parameters are suited for a direct translation into the RGB format. 
However, other feature extraction methods of the EEG signal 
could be used, providing that strategies for translating the values 
into the RGB image are devised. In addition, other type of data 
can also be tested. There are many benchmark problems and real-
world data set and it would be interesting to observe the resulting 
pherogenic drawings after different types of data. Another 
possibility is to create 3-dimensional objects, in which a fourth 
parameter shapes the object in a third axis. 
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