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ABSTRACT 
This paper presents a novel method for visualizing large 
experimental datasets called a Biaxial Box Plot which provides 
both an easily read general impression of the results that 
highlights performance trends whilst also allowing for careful 
comparison of individual results. The Biaxial Box Plot is 
compared against heatmaps and traditional box plots where it is 
argued that the new method provides a suitable combination of 
the two existing methods. In addition, a novel ranking method is 
presented called the Ordered Trial Rank (OTR) that is designed 
for use with results that contain a large number of related sets of 
samples – e.g. a group of algorithm performance results on the 
same problem. The OTR is compared against simple median and 
standard deviation scores and shown to provide a better statistical 
distinction between the sets of results. Both methods are presented 
in the context of EA experimental research but can be applied 
more generally to data with two orthogonal group that can be 
combined to create a matrix of numeric data sets. 

Categories and Subject Descriptors 
H.5.0 [Information Interfaces and Presentation]: General.  

General Terms 
Algorithms, Experimentation Theory. 

Keywords 
Visualization, Sorting, Algorithms, Experimental Design. 

1. INTRODUCTION 
Optimization techniques are becoming ever more general in their 
application. Algorithms in Evolutionary Computation, such as 
Evolutionary Algorithms (EAs), are widely applied across a 
number of problem domains and under a vast array of conditions 
[1]. In many cases, specific variations on well-known algorithms 
such as NSGA-II [2] are used, tailoring these general algorithm 
frameworks to more effectively solve specific problems. While, 
the trend for ever more abstracted search methodologies has 
recently led to the emergence of two fields of research: Hyper-
heuristics [3] and Memetic Algorithms [4]. 

The large number of EA variants and the increasing number of 
proposed methods for hyper-heuristics and Memetic Algorithms 
(for example) has led to an explosion in number of algorithms that 
need to be compared to one another when conducting 
optimization studies. It is no longer acceptable to simply compare 
against NSGA-II or other “benchmark” algorithms. Furthermore, 
the generality of these algorithms means that each method can be 
applied to increasing numbers of optimization problems. 
Consequently, methods for visualizing the large datasets 
generated by repeated runs of the algorithms (e.g., single 
objective, generational distance and hypervolume value results) 
are needed that both provide a good overview of each methods 
performance whilst also providing enough detail to allow for 
careful comparison between individual sets of results. 

This paper presents a novel method for visualizing large 
experimental datasets in a matrix structure called a Biaxial Box 
Plot which provides both an easily read general impression of the 
results and highlights performance trends whilst also allowing for 
careful comparison of individual results. The method mirrors the 
results in both the horizontal and vertical to allow for an analysis 
of results across rows and down columns. The Biaxial Box Plot is 
compared against heatmaps and traditional box plots where it is 
argued that the new method provides a suitable combination of 
the two existing methods. 

A novel ranking method is also presented called the Ordered Trial 
Rank (OTR) that is tailored specifically for use with sets of results 
where there are a large number of related sets of samples – e.g. a 
group of algorithm performance results on the same problem. The 
OTR is compared against simple median and standard deviation 
scores and shown to provide a better distinction between the sets 
of results. Both methods are presented in the context of EA 
experimental research but can be applied more generally to data 
with two orthogonal group that can be combined to create a 
matrix of numeric data sets. 

The source code is available in Java and C#.NET and can be 
downloaded from http://people.exeter.ac.uk/km314/. 

2. BIAXIAL BOX PLOT 
Consider, for example, a study of optimization methods which 
compares the set of algorithms that are applicable to real-valued 
optimization problems by applying each algorithm to every 
benchmark problem in the DTLZ [5], WFG [6], and LZ09 [7] test 
problem suites. Such a study would be useful as it would indicate 
which sets of problems each algorithm is well suited to as well as 
give an idea of the relative quality of the algorithms across the set 
of problems. The number of available optimization approaches is 
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very large and even a small subset of these methods would still 
yield significant number of results. 

2.1 Heatmaps 
A simple approach to representing these results would be to use a 
heatmap. Heatmaps are matrix structures that use cells to 
represent data associated with specific row/cell combinations. For 
example, a 4x3 heatmap would contain 12 cells representing each 
combination of row and column elements. The cells are coloured 
using a colour scale based on the value in each cell. The colour 
range is commonly scaled between the worst and best value in the 
matrix. This example is illustrated in Figure 1. 

 

Figure 1. Illustration of a heatmap of multiple algorithm 
results on a set of problems 

 

However, due to the stochastic nature of most optimizing 
algorithms, the results generated by a single optimization run are 
rarely representative of the algorithms’ average performance. 
Running an algorithm over a number of trial runs is common 
practice in optimization studies and provides means of assessing 
both the average performance of an algorithm as well as the 
consistency of results. 

Continuing with the example above, each cell in the heatmap 
would then represent a set of trial run results for an algorithm on a 
problem. A sensible means of representing this data would be to 
take the average result and use that to generate the colour value. 
However, this introduces data loss and the distribution of results 
is lost in this means of visualization. 

 

Figure 2. Illustration of a box plot of multiple algorithm 
results on a single problems 

2.2 Box Plots 
While heatmaps provide a reasonable means of depicting average 
results it is impossible to demonstrate the associated variance 
which is observed after a number of trial runs on of each 
algorithm on each problem. Box plots  (illustrated in Figure 2) 
display both median  and the variability in performance of set of 
trial run results and are well suited to demonstrating results from a 
set of algorithms  on one problem (or vice versa) but do not easily 
demonstrate large sets of results. 

However, the increase in information presented in the box plot 
figure format is accompanied by some negative consequences. 
Box plots are not an effective visualization method for showing 
the larger matrices of results depicted in heatmaps. When showing 
sets of boxplots together, they become difficult read and 
distinguish between. Heatmaps also allow for easy comparison of 
results in both axes – giving an overall picture of an algorithm’s 
performance on a large number of problems as well as the set of 
algorithms on one problem. 

2.3 Bagplots (Bivariate Boxplots) 
In [9], Rousseeuw et al. define a form of visualization called a 
bagplot. Rousseeuw et al. identify the limitations of the univariate 
box plot method and provide a means for visualization bivariate 
samples. The method extends the conceptual depiction of median 
and range values and uses a shaded region (the ‘bag’) to highlight 
and encase the 50% central samples and an outer shaded region 
(the ‘fence’) to highlight and separate the inliers from the outliers.  

In many respects, the bagplot is similar to the Biaxial Box Plot 
shown below, extending the function of the box plot for wider 
use. However, there are some crucial differences. A basic bagplot 
visualizes a single set of samples over two variables while the 
Biaxial Box Plot shows paired sets of samples from a single 
variable (i.e., each cell in the Biaxial Box Plot matrix represents a 
univariate distribution). 

In addition, the bagplot is drawn over a two dimensional real 
space while the Biaxial Box Plot is an unordered matrix of sets. 
Rousseeuw et al. [9] do demonstrate how the bagplots can be 
arranged in a matrix format to display a single series or groups of 
results. The same series is used for both dimensions in the matrix 
unlike the biaxial box plot which pairs two series or groups. 

The bagplot provides an excellent means for visualizing scalar 
bivariate data. The Biaxial Box Plot, in contrast, is a means for 
displaying paired series or groups of univariate data, providing a 
different extension of the boxplot format. 

2.4 Biaxial Box Plot 
Using the matrix format of heatmaps as a template, it is possible 
to restructure box plots to show less detailed information but 
across a wider set of data, as illustrated in Figure 3. 

2.4.1 Average and Variance 
Each cell in the matrix is used to represent the results from 
multiple trial runs of one algorithm on one problem in a box plot 
inspired depiction of results. The median average value is 
represented by a central line which is shown in both horizontal 
and vertical axes. The intersection of the two lines is surrounded 
by a dashed rectangle which shows the inter-quartile range – 
again shown for both axes. The mirroring/repetition of the results 
allows the box plots to be read along a row (for all algorithms on 
one problem) or down a column (for one algorithm on all 
problems). 

The red median value lines are drawn to a distance of two times 
the bound (upper or lower) in either direction, with a minimum 
length of 1/3 of the cell width/height to ensure they are suitably 
visible. The lines are also limited to within the boundary of each 
cell. The lengths of the median lines do not give an indication of 
value but are extended to make the median value visible. 
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Figure 3. Illustration of the Biaxial Box Plot of multiple 
algorithm results on multiple of problems 

 

Similarly to the heatmap, the results are normalized in the range 
[0, 1], unless the results are already normalized within this range. 
The Ordered Trial Rank, described later in Section 3, produces 
values in the range [0, 1] and so is ideally suited to this 
representation. In cases where the results have been normalized, 
the upper and lower values for each row should be appended to 
the right end of the row, illustrated in Figure 4. 

 

 

Figure 4. Biaxial Box Plot with ranges. 

2.4.2 Markers 
In addition to providing the median and variance results, the 
matrix is labeled with markers to indicate the best result for each 
row (again shown in Figure 3). This is shown by a black filled 
rectangle in the top right of the cell. The second best result is 
shown by a gray filled rectangle, again in the top right of the cell. 
The worst result is indicated by an unfilled (white) rectangle in 
the lower left of the cell. If multiple algorithms obtain the best, 
second best or worst value then a marker is placed for each 
algorithm, i.e., multiple black, gray or white markers can be 
placed in a row. 

The markers are used to more prominently illustrate which 
algorithm performs the best, next best and worst on each problem. 
As will be shown later, the markers also provide a good means of 
identifying trends in algorithm performance across the set of 
problems. 

3. ORDERED TRIAL RANK 
In addition to using the proposed visualization method, a method 
for summarizing performance scores is proposed called the 
Ordered Trial Rank (OTR). 

 

Figure 5. Illustration of the Ordered Trial Rank (OTR). 

When comparing multiple algorithms on multiple problems it is 
often the case that the scaling of the measures is not consistent 
across the set of problems or indeed algorithms. For example, on 
a measure of objective value, some problems may produce values 
in the range [0, 100] while others may produce values in the range 
[0, 1] (or any range for that matter). It is difficult to make direct 
comparisons between these results without normalizing the 
values. However, while linearly normalizing values within the 
range of known values can be acceptable in some cases, it does 
not reflect the bias in values that can occur. A linear 
normalization of results assumes no or little bias in the measures 
of performance, which is rarely the case in real-world and 
difficult benchmark problems. 

The benefit of the Biaxial Box Plot is that it allows for both 
comparisons down columns as well as across a row. For this 
reason it is important that the scales are appropriate and shared 
across all rows for the comparisons of column results to be 
meaningful. 

One method for overcoming this problem would be to substitute 
the measure values for a meta-value that is more appropriately 
scaled. The rank of each value in the set of corresponding values 
would provide this meta-value with a fixed linear scale that could 
easily be normalized in the range [0, 1]. However, simply ranking 
the algorithms based on a single value, such as the average of the 
trial results, would again result in data loss. The Ordered Trial 
Rank is a method for generating appropriate rank data for 
collections of sets of trial results which maintains the variance 
results whilst providing a uniformly scaled set of values. 
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It should be noted that the OTR method is not applicable to paired 
tests, i.e., the first trial run of each algorithm uses the same seed, 
the second trial a different seed, and so on. However, for many 
optimization experiments the same seed is used for all trials. In 
these cases the OTR can be applied. The sets of results must be 
independent and ordinal, interval or ratio. 

The ordered trial rank score is calculated by sorting each 
algorithm’s trial results on each problem, shown in Figure 5. The 
results are then compared across all algorithms for each row of 
trial results and ranked, i.e., the algorithms are ranked by their 
best result, and then ranked by their next best result and so on. 
The column vector of ranks can then be averaged for each 
algorithm and assigned as the average ordered trial rank result for 
each algorithm on the given problem. The ranks can be scaled in 
the range [0, 1] linearly for consistency. 

The sorting process ensures a fairer comparison between sets of 
samples rather than randomly comparing trial results in the order 
in which they are obtained. The sorting process ensures that the 
best result of each algorithm is compared with the best result from 
every other algorithm and, likewise, the worst results compared 
against the worst results. 

3.1 Average Rank 
While the average of the OTR score is similar to the method 
Average Rank, there is one important difference. OTR computes 
the rank of multiple samples in one dimension (which optionally 
can be averaged), unlike Average Rank which computes the 
average rank of one sample in multiple dimensions. As such, the 
set of average OTR results for an algorithm across multiple 
problems could be used to calculate an algorithms’ Average Rank 
across the set of problems. 

3.2 Statistical Testing 
While the OTR measure holds similarity to the Mann–Whitney U 
test or Friedman test, it is important to note that it is not a 
statistical non-parametric rank test. Paired tests like Mann–
Whitney U and Wilcoxon signed-rank are non-parametric 
statistical hypothesis tests which compare two related sets of 
samples and are used to determine whether their distributions 
differ. These types of tests determine whether the samples are 
drawn from statistically similar distributions and do not represent 
the distributions themselves. 

Furthermore, the OTR measure can be applied to two or more 
related sets of samples (unlike Mann–Whitney U or Wilcoxon 
signed-rank) and so bares a closer resemblance to tests such as 
Kruskal–Wallis one-way analysis of variance by ranks or the 
Friedman test. The Friedman test, for example, is used to analyze 
two or more related samples and uses the difference in mean 
ranks to determine the similarity of the distributions. 

While comparing the mean or median OTR values could give an 
indication of the statistical similarity of the samples, the OTR 
measure is not a statistical test in itself. Rather, the OTR provides 
an ordinal scale with preferable features (normalized, etc.) which 
are well suited to comparing sets of related distributions, such as 
those needed by the Biaxial Box Plot. The nature of the Biaxial 
Box Plot and OTR distributions allows for comparison along rows 
and down columns, while single statistical test values would be 
restricted to row comparisons. 

4. ANALYSIS 
An experiment was conducted demonstrate the efficacy of the 
proposed Biaxial Box Plot and Ordered Trial rank. A set of  
Evolution Strategies (ESs) were applied to a set of simple 
optimization test problems. Each ES was applied for 50 trial runs 
on each problem. Each trial was run for 5000 generations. The 
final best objective value obtained in each trial run was recorded. 
This generated a matrix of sets of trial run results for 
visualization. 

4.1 Algorithms 
A simple (1+1)-ES [8] was used as a basis for 7 optimizing 
algorithms. All (1+1)-ESs were given a passive archive which 
retained the best solutions found so far. Purely elitist selection 
was used. All (1+1)-ESs used only the single-point additive 
mutation operator. The perturbation values for the mutation 
operator were drawn from a Gaussian distribution. A different 
parameterization of the Gaussian distribution was used for each of 
the seven ESs, with standard deviations as follows, σ = 0.0003, 
0.0015, 0.003, 0.015, 0.03, 0.15, 0.3. 

4.2 Problems 
The optimization problems were all variations of a simple single-
parameter, single-objective problem, referred to as the cosine 
problem. The cosine problem was defined as follows: 
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The cosine problem produced a simple landscape with deceptive 
optima at intervals of λπ, shown in Figure 6. By varying the 
parameter λ, different landscapes can be produced with increasing 
or decreasing number of local optima at varying distances, as 
illustrated in Figure 7. 
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Figure 6. Illustration of the Cosine Problem. 

 

Thirteen instances of the cosine problem were used in this study 
with λ ranging from 0 to 100. The first instance (λ=0) was set as a 
linear problem (f(x) = x) while all following problems were 
variants of the cosine problem. The full set of parameters are as 
follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 100. 
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Figure 7. Demonstration of the effect of varying the cosine 
problem. 

4.3 Results 
Figure 8 shows the mean final objective value for each of the 
Gaussian Mutation variants of the (1+1)-ESs on the thirteen 
variants of the cosine test problem. The figure clearly indicates 
that the σ = 0.3 mutation is the most successful parameter setting 
across all the problems while the smallest σ = 0.0003 is the worst. 

 

 

 

Figure 8. Heatmap showing the average best objective value 
for each algorithm on each problem. 
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Figure 9. Box Plots showing the distribution of the Final 
Generation Objective Values (log scale) of each algorithm on 

selected problem (0, 2, 5, 8, 100) 
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Figure 10. Biaxial Box Plot of the Final Generation Objective 

Values (log scale) of each algorithm on each problem. 

 
Figure 8 displays clearly the largest differences in average values 
between the darker and mid blue colours and the light blue and 
white colours. However, in this plot it is difficult to distinguish 
between the lightest colours and also to determine the 
approximate mean objective value of each algorithm-problem 
pairing. 

Figure 9 shows some selected problem results in more detail. This 
figure demonstrates how the data shown in the heatmap (Figure 8) 
lacks the detail given in the box plots. For example, the first box 
plot ( cosine (0) ) illustrates the significant difference in 
performance between each of the algorithms despite each having 
a very similar white colour in the heatmap, with the second 
mutation variant producing results nearly three orders of 
magnitude better than the last on the first problem. 

In addition to providing a clearer visualization of the numeric 
value of the results, the box plots also supplement this with 
information about the distribution of results. For example, the 
poor mean average value of the first mutation variant shown in 
the heatmap can be seen to be a result of the heavy tail of 
distribution 

  

Figure 11. Biaxial Box Plot of the Ordered Trial Rank of each 
algorithm on each problem based on the best objective value 

result from each trial run. 
 

of results, shown in the first box plot of Figure 9. Furthermore, 
the results shown in the second plot ( cosine (2) ) illustrate a 
better distribution of results for σ = 0.03 compared to the smaller 
distributions whilst having similar median and mean averages – 
another important result which distinguishes between the 
algorithms’ performances. 

If these results were generated for the purpose of informing the 
selection of a suitable parameter value for solving the cosine 
problem, the heatmap visualization would appear to support the 
selection of the last parameter value while the 5 selected box plots 
indicate that the σ = 0.15 parameter value might equally be a good 
choice. If the majority of problem instances were with the lowest 
frequency values with a smoother landscape then the smaller 
distributions would also be a possible consideration. 

Clearly, while the heatmap provides an easily read overview of 
the results, it cannot be used reliably as a good indicator of the 
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actual comparative results of each algorithm on each problem. 
Conversely, while the box plot results shown in Figure 9 give a 
much more detailed visualization of the results, the figures are 
verbose and require significantly larger page space which is a 
strong limiting factor in modern scientific publications. The 
results are less easily compared between problems in the box plot 
format where the y-axis scales vary between plots and their 
spatial arrangement is less conducive to easy comparison. 

Figure 10 shows the same log scaled final generation objective 
values as given in Figure 9 using the Biaxial Box Plot (scaled    
[0, 1]). The Biaxial Box Plot shows the same median average and 
distribution shape results as the traditional box plots but in a more 
condensed matrix format which provides the same overview as 
the heatmap. 

The black and grey markers clearly indicate that both the σ = 0.15 
and σ = 0.3 mutation parameter values are effective across the 
whole range of problem instances. The white markers indicate 
that there is a shift in the worst result from the larger distributions 
on the smoother landscapes to the smaller distributions on the 
rougher landscapes. 

Reading across the rows, in the same way as the box plots, it can 
be seen than the second smallest Gaussian distribution variant is 
the most effective parameter selection on the cosine (0) and 
cosine (1). Reading down the columns, it can be observed that the 
smallest σ = 0.0003 algorithm variant becomes increasing worse 
as the problem frequency increases. Similarly, the σ = 0.15 and σ 
= 0.3 algorithms are less stable on the cosine (2) to cosine (10) 
problems, producing larger variances in their results. 

The results illustrated in Figure 11 demonstrate the efficacy of the 
Biaxial Box Plot for displaying large sets of experimental results. 
The matrix format enables easy comparison of results between 
algorithms and problems which is aided by the simplified, 
mirrored box plot format which provides similar detail on the 
distribution of results as given in the larger box plot format. 

4.4 Ordered Trial Rank 
Figure 11 uses a Biaxial Box Plot to visualize the ordered trial 
rank values of the experiment results. The OTR results are useful 
for identifying relative algorithm performance and trends in 
results. 

The black and gray markers (best results) replicate much of the 
same results given in Figure 10 which uses the raw objective 
value results which gives confidence in the OTRs transformation 
of the result data. 

However, there are some differences, such as the cosine (2) and 
cosine (3) results where the first distribution is marked as having 
a better average ordered trial rank. When examining the results in 
Figure 10, the best result given in Figure 11 is made clear by the 
large distribution of results produced by the smaller distribution. 
Clearly, when the algorithm is able to locate the region of the 
optimal parameter value it is able to find significantly better 
objective value results. Consequently, for many of the trial 
results, this mutation variant obtains the best result and therefore 
obtains a better average OTR score. 

The cosine(0) results also clearly delineate the relative 
performance results of the algorithms, with the second mutation 
variant consistently outperforming the other algorithms. 

The OTR results also highlight the variability in the results of the 
σ = 0.15 and σ = 0.3 mutation variances with large variances in 
their OTR scores. This is a consequence of the similar 

performance of these two algorithms as well as the interfering but 
less frequent good results generated by the other algorithms. 
These results suggest that the σ = 0.15 and σ = 0.3 results are not 
significantly different from one another. 

The results given in Figure 11 demonstrate how the OTR can be 
used to statistically examine the relative results of many 
algorithms on many problems over a number of trial optimization 
runs and compliments the visualization of the raw data results. 

5. CONCLUSION 
This paper presented a novel visualization method called the 
Biaxial Box Plot which is designed for displaying large sets of 
experimental data. The Biaxial Box Plot uses the matrix format of 
heatmaps as a template and restructures the box plots format to 
show slightly less detailed information but across a wider set of 
data. 

In addition, this paper presented a novel method for analyzing 
experimental data with multiple sets of samples – such as a 
number of algorithms’ performance on an optimization problem. 
The method, called the Ordered Trial Rank (OTR), is easily 
incorporated into the Biaxial Box Plot and provides a visual 
means of comparing the statistical significance of individual 
algorithm-problem pairs as well as performance trends of 
different algorithms on one problem or an algorithm across 
multiple problems. 

An illustrative experiment was conducted to produce sample 
optimization results of 7 algorithms on 13 problems. The results 
were used to demonstrate the efficacy of the Biaxial Box Plot for 
displaying large sets of experimental results when compared to 
heatmaps and traditional box plots. The matrix format enables 
easy comparison of results between algorithms and problems 
which is aided by the simplified, mirrored box plot format which 
provides similar detail on the distribution of results as given in the 
larger box plot format. The results also illustrated how the OTR 
can be used to statistically examine the relative results of many 
algorithms on many problems over a number of trial optimization 
runs and compliments the visualization of the raw data results. 
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