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ABSTRACT
Optimisation problems often comprise a large set of objectives, and
visualising the set of solutions to a problem can help with under-
standing them, assisting a decision maker. If the set of objectives
is larger than three, visualising solutions to the problem is a diffi-
cult task. Techniques for visualising high-dimensional data are of-
ten difficult to interpret. Conversely, discarding objectives so that
the solutions can be visualised in two or three spatial dimensions
results in a loss of potentially important information. We demon-
strate four methods for visualising many-objective populations, two
of which use the complete set of objectives to present solutions in a
clear and intuitive fashion and two that compress the objectives of a
population into two dimensions whilst minimising the information
that is lost. All of the techniques are illustrated on populations of
solutions to optimisation test problems.

Categories and Subject Descriptors
H.5.0 [Information Interfaces and Presentation]: General.

General Terms
Algorithms.

Keywords
Visualisation, Sorting, Multi-objective optimisation.

1. INTRODUCTION
Scientific and engineering optimisation problems are often de-

fined in terms of objectives, quantitative measures of solution per-
formance. Commonly, problems are defined by a set of objectives
that are in conflict with one and other, so that a solution that is good
with respect to one objective is often a poor candidate with respect
to another. Unlike single-objective problems that have a single opti-
mal solution, a multi-objective problem comprising objectives that
are in conflict with each other is generally characterised by a set of
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optimal solutions that trade-off the problem objectives. The image
of these solutions lie on the Pareto front. Formally, without loss
of generality, a multi-objective optimisation problem is solved by
finding a solution x which minimises a set of objectives

y = (f1(x), . . . , fM (x)) (1)

such that ym = fm(x).
A widely used approach for solving multi-objective problems is

to apply an Evolutionary Algorithm (EA) to generate a set of solu-
tions that approximate the Pareto front.

Evolutionary Algorithms are iterative, population-based, algo-
rithms, and visualising the change in the population of an EA can
reveal useful information about how successfully the algorithm is
exploring the search space. Furthermore, when the algorithm has
generated a set of approximately Pareto optimal solutions, a de-
cision maker is required to select the solution that will be imple-
mented to solve the problem. A visualisation of the solution set
that clearly illustrates the trade-off between objectives is a useful
tool to assist the decision maker in their choice.

The relative quality of solutions to multi-objective problems can
be determined with the dominance relation, and it is useful for a
visualisation to convey information about the dominance relation-
ships between solutions. A solution xi dominates xj , denoted
xi ≺ xj , if it is no worse than xj on any objective and superior
on at least one:

xi ≺ xj ⇐⇒ ∀m(yim ≤ yjm) ∧ ∃m(yim < yjm). (2)

If no solution dominates xi then it is non-dominated. An EA can
operate with two types of population. The first is the search pop-
ulation, which is used by the EA to generate new candidate so-
lutions to the problem and can contain dominated solutions. The
second, which is optional, is an elite archive of solutions which
represent the current best set of solutions found by the algorithm at
a given point in the algorithm’s execution. Such an archive com-
prises exclusively non-dominated solutions. Thus, we seek visu-
alisation methods that can visualise populations of dominated and
non-dominated solutions.

A distinction is often drawn between multi-objective problems,
comprising two or three objectives, and many-objective problems,
comprising four or more. Visualisation is, in part, the basis for this
distinction. Visualising populations of solutions to multi-objective
problems is relatively straightforward. The objective vectors can
be represented as a point on a set of two or three dimensional axes
and their location in objective space relative to other solutions in
the population provides an indication of the trade-off between ob-
jectives. Populations of solutions to many-objective problems are
particularly difficult to visualise since most visualisation methods
require some degree of dimension reduction and incur an undesir-
able loss of information. Therefore, we seek techniques that can
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visualise a population of objective vectors corresponding to puta-
tive solutions to many-objective problems in which any information
lost in the visualisation process is recoverable.

In this paper we illustrate four techniques that can be used to
visualise many-objective populations. Two of the techniques vi-
sualise a population based on the full set of objectives, while the
other two reduce the dimensionality of the population so that it can
be visualised with a conventional scatter plot. We introduce two
many-objective visualisation methods in Sections 2 and 3, and in
Sections 4 and 5 we illustrate dimension reduction techniques to
facilitate simple visualisations.

1.1 Illustration
Throughout the paper we refer to an example set of populations,

all produced by using an Evolutionary Algorithm to solve a well-
known multi-objective test problem. We present two instances of
DTLZ2 [5], comprising three and ten objectives respectively. The
solutions were generated with a basic multi-objective (µ + λ)–
Evolution Strategy (ES) where both µ and λ were set to 50. The
algorithm was run for 100 generations for each problem instance
and the search population at each generation was saved. An elite
archive of solutions was maintained throughout. At each genera-
tion the parent population was copied to produce λ child solutions
that were perturbed with a single point Gaussian mutation of stan-
dard deviation σ = 0.1. Selection was based on Pareto sorting [18]
of the combined population of parent and child objective vectors.
If a shell contains more solutions than are necessary to fill the new
population a subset of those solutions are chosen at random.

We illustrate the methods presented in this paper on two types
of population. One is the search population used by the algorithm
to evolve new solutions. Each search population contains 50, po-
tentially dominated, solutions. The other is the elite archive of so-
lutions resulting from an optimisation run. In the case of the 3-
objective DTLZ2 problem instance, the elite archive contains 305
solutions while the 10-objective problem archive contains 1217 so-
lutions.

2. VISUALISING WITH RANKS
The purpose of visualising a population of solutions is to inform

the decision maker, who must choose the solution that will be im-
plemented to solve the problem at hand. As such, a useful visuali-
sation will graphically convey relative quality between solutions so
that the best solutions in the population can be easily identified. A
common way of comparing solution quality is to rank them in terms
of their objective values. This is an approach which is often incor-
porated into the selection operator of an evolutionary algorithm, so
that those solutions which best optimise the problem are retained
as progenitors in the next generation.

Ranking a single-objective population is trivial; assuming, with-
out loss of generality, that the objective is to be minimised, those
solutions with the smallest values are given the best ranks. The po-
tential for conflict between objectives in multi- and many-objective
populations means that such a strategy is insufficient. One of the
most well known schemes for ranking a multi-objective population
is the Pareto sorting method used in the original NSGA algorithm
[18]. Pareto sorting constructs a partial ordering of solutions by
peeling away layers of non-dominated solutions and placing them
into Pareto shells. Those solutions that are Pareto optimal with
respect to the whole population are assigned to shell 1 and tem-
porarily discarded from the population. This leaves a new subset of
non-dominated solutions, which become shell 2. These solutions
are then also discarded, and the process continues until the entire
population has been assigned to a Pareto shell. Having done this,

we can consider the solutions in shell n to be notionally superior to
those in shell n + 1; each member of shell n + 1 is dominated by
at least one member shell n. Those in shell 1 are Pareto optimal.

Having constructed a partial ordering of the solutions we can
use this as the basis for a visualisation of the population [20]. We
define a directed graph in which a node represents a solution and
a directed edge from solutions yi to yj indicates that yi ≺ yj .
Solutions are arranged into columns according to the Pareto shell
in which they reside so that those on the left-hand side of the fig-
ure are the Pareto optimal solutions, and those on the right are the
most dominated. Figure 1 illustrates such a visualisation of a pop-
ulation; colour should be disregarded for the moment. The exam-
ples shown are for the three-objective DTLZ2 problem and are of
the search population used by the ES to generate an approxima-
tion to the Pareto front at three points during its execution. The
left-hand panel shows the initial random population; the central
panel shows the population after five generations; and the right-
hand panel shows the population after 10 generations. The objec-
tive vectors corresponding to the solutions in the three populations
have been ranked with Pareto sorting and arranged into columns
indicating their Pareto shell. For clarity, only those dominance re-
lationships between solutions in adjacent shells are shown. The
result is a visualisation that begins to illustrate the structure of the
population. Some solutions are clearly responsible for defining the
immediately inferior shell as they dominate large numbers of so-
lutions in that shell; those individuals are likely to be of interest
to a decision maker. However, many of the solutions do not dom-
inate anything in the next shell, and the visualisation as it is (un-
coloured) does not provide any means of discriminating between
them. Also, it is clear to see that as the algorithm identifies good
solutions the population sorts into fewer Pareto shells. This issue is
exacerbated for problems comprising larger number of objectives;
the 10-objective problem used in this paper generally sorts into a
single Pareto shell. Thus, all of the solutions in the population have
the same rank.

To ameliorate this, we introduce a second ranking method. As
mentioned previously, Pareto sorting is frequently used as a ranking
tool in evolutionary selection operators, so the lack of discrimina-
tion it provides in many-objective populations has motivated con-
siderable research to identify ranking techniques which can oper-
ate in a many-objective space. One of the simplest is average rank
[2], and it has been shown to provide much better convergence to
the true Pareto front of many-objective problems [4]. In order to
compute the average rank r̄i of a solution, the population is ranked
according to each individual objective in turn, producing a set of
ranks rm where rim is the rank of the ith solution on the mth ob-
jective. The solution with the best objective value for a given ob-
jective is ranked 1, and the worst is rankedN . These ranks are then
averaged, to provide an overall score for the solution:

r̄i =
1

M

M∑
m=1

rim. (3)

The colouring in Figure 1 indicates a solution’s average rank. The
solutions are coloured so that a blue solution has a very good aver-
age rank, while a red solution has a poor rank. By comparing the
colouring of solutions with their placement in the figure accord-
ing to Pareto sorting we can see some agreement between the two
methods; those previously highlighted dominant solutions are gen-
erally coloured in blue, meaning that they are seen as high-quality
solutions under both schemes. In some cases, however, there is dis-
agreement between a solution’s average rank and the Pareto shell
into which it has been sorted. Examples of such solutions are the
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Figure 1: Pareto shell visualisations of the search population in the (µ+ λ)–ES evolving solutions to the 3-objective instance of DTLZ2. Solutions are sorted
into their Pareto shells and coloured by average rank; a blue solution represents one with a good average rank while red indicates a poor rank. The value
in the node is an identifier for the solution it represents. Clearly, as the search proceeds and better solutions are found, the population becomes mutually
non-dominating.

orange and yellow solutions in shell 1 (Figure 1(a)). These are so-
lutions that, under Pareto sorting alone, would be deemed to be of
high quality. With the additional information we can see that this is
not the case. In fact, this indicates that a solution is performing very
well on one objective, but poorly on the remainder. Such a solution
is difficult to dominate, as it requires a better objective value on all
objectives, including one which is already fairly optimal. It does
not, however, guarantee a good average rank, since the remainder
of the ranks rim for that solution are poor; the overall average will
be poor too.

This illustration shows the useful information that combining
these two ranking methods can provide; indeed, it is possible to
combine Pareto sorting with any many-objective ranking technique
[20]. Average rank is used here because of its simplicity, as well
as its ability to provide a more discriminative ordering of many-
objective solutions. Unfortunately, however, this method is unsuit-
able for visualising a non-dominated population such as an archive
since there are no dominated solutions and it forms a single Pareto
shell. In the next section, we present a method which can visu-
alise non-dominated populations, as well as populations containing
dominated solutions.

3. SERIATION OF HEATMAPS
A common technique for visualising high-dimensional data is

to produce a heatmap (e.g., [23, 6]). Heatmaps are well suited to
the display of solutions to many-objective problems and have been
used for this in several instances [15, 13, 21]. In such a visuali-
sation, a row represents a solution and a column represents an ob-
jective. Objective values are assigned a colour by treating them as
temperatures, such that a small value is assigned a cool colour and
a large value a warm colour. Objectives must be normalised so that
they are all on the same scale prior to visualisation. A drawback
with visualising a population with a heatmap is that the arbitrary
ordering of solutions and objectives can lead to a visualisation that
is difficult to interpret. Ideally, it should be possible to infer pat-
terns in the population from the visualisation, and given an arbitrary
scattering of colour this is not possible.

Various approaches have been taken to enhance the clarity of a
heatmap. Eisen et al [6] and Pryke et al [15] used hierarchical clus-
tering techniques to arrange the heatmap by placing similar rows
and columns close together so that similar colours are grouped.
Nazemi et al [13] order the solutions in ascending order accord-
ing to the first objective. We illustrate spectral seriation methods
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for reordering a heatmap. Atkins et al [1] demonstrate a spectral
method for seriation which can be used to place similar solutions
close together based on a similarity measures S in which Sij repre-
sents similarity between objective vectors yi and yj . The seriation
problem is solved by minimising

g(π) =
∑
i,j

Sij (πi − πj)
2 (4)

where π is a permutation of the solutions. As the permutation is
discrete the problem is NP hard. Atkins et al [1] suggest that the
permutation can be relaxed to a continuous variable z so that we
instead minimise

h(z) =
∑
i,j

Sij (zi − zj)2 (5)

subject to constraints
∑

n zn = 0 and
∑

n z
2
n = 1. The solu-

tion to this problem can be found with linear algebra; the solu-
tion to the constrained problem can be written as zTLz, where
L = D − S is the graph Laplacian of S and D is the diagonal
matrix Dii =

∑
j Sij . The permutation of solutions is obtained

by ordering them according to their value in the Fiedler vector, the
eigenvector corresponding to the smallest non-zero eigenvalue of
L, such that the pth smallest value in the Fiedler vector occupies
position p in the permutation.

In order to obtain a measure of similarity, we consider the ab-
solute distance between the ranks of pairwise individuals. Since
it is necessary to normalise the objectives prior to constructing the
heatmap, we convert the objective vectors to rank space by ranking
each objective in turn, as with the calculation of average rank. This
results in a set of rank vectors such that ri is the rank vector corre-
sponding to an objective vector yi. Similarity between yi and yj

is computed with:

Sij = 1− 1

M(N − 1)2

M∑
m=1

(rim − rjm)2. (6)

A heatmap of the reordered population can then be constructed. As
well as permuting solutions, the seriation process outlined above
can be used to permute objectives so that similar objectives are
gathered together. To do this, we define a new similarity measure
which produces a M ×M matrix as follows:

Smn = 1− 1

(N − 1)3

N∑
i=1

(rim − rin). (7)

Alternative similarity measures employ methods for differentiating
between permutations such as Spearman’s footrule or Kendall’s τ
metric.

In order to provide a more complete illustration of a solution set,
it is also useful to visualise solution parameters alongside objec-
tives. The solutions themselves can be ordered by the same order-
ing generated by seriating objective vectors; objective vectors can
be ordered by a seriation of parameter-space solutions, however
a trade-off exists between finding a harmonious ordering in both
spaces, and it is therefore necessary to assert a preference for one
space over the other. The parameters can be seriated in much the
same way as we have shown for objectives. The principle differ-
ence between seriating objectives and parameters is that objectives
can be ranked and parameters cannot. In that case we propose using
the cosine similarity between the pth and qth parameters.

Spq =

∑P
p xipxiq√∑

p x
2
ip

∑
p x

2
iq

. (8)

Figure 2 presents two sets of heatmaps, both of the 10-objective
DTLZ2 archive. The top two panels show the unseriated archive,
parameter space on the right and objective space on the left, and
the bottom two panels show the same populations after seriation.
To produce the bottom two heatmaps the objectives were first nor-
malised by conversion to rank-coordinates. The objective vectors
were then seriated, and both the parameter space solutions and ob-
jective vectors reordered by the resulting permutation. As can be
seen, the objective with large values on most objectives have been
collected at the top of the heatmap, heatmap and those with lower
values, represented by blue, have been collected at the bottom. In
addition, solutions with similar parameter values have been clus-
tered together. Then, the parameters and objectives were seriated
to place similar parameters and similar objectives close together.
Some correlation between the objectives is apparent: most of the
objectives are well correlated, however the trade-off between op-
timising objectives f8 and f10 against the rest of the objectives is
clear to see. Such information was not visible in the unseriated ver-
sion of the heatmap. Correlation between parameters is also clear to
see, although the overall seriation of parameter space is less effec-
tive than that of objective space. If the solutions were seriated with
respect to parameter space, the parameter space heatmap would be
clearer but at the cost of reducing the quality of the objective space
heatmap. Since the decision maker is interested in observing the
trade-off between objectives we chose to prefer objective space.

4. VISUALISATION IN THE PLANE
Methods presented in the previous two sections have visualised

many-objective populations with respect to the full set of objec-
tives, however it can also be useful to visualise the population in a
low-dimensional space. Existing techniques, such as self organis-
ing maps [10], generalised tournament matrices [3] and Neuroscale
[12] have all been used to visualise solutions to many-objective
problems [14, 7] however they are ignorant of the dominance struc-
ture between solutions and as a result it can be difficult to infer the
trade-off between objectives using these methods. In this section
we present a technique, visualisation in the plane, which takes ad-
vantage of the mutually non-dominating nature of an elite archive
of solutions, and in the next section we compress the dimension-
ality of the solutions by ensuring that solutions that are similar in
terms of dominance remain close together.

In order to visualise solutions in the plane we map M -objective
solutions into a M -sided regular polygon. All objective values are
assumed to be positive. The simplex is the portion of the (hyper-)
plane that lies in the positive (hyper-) octant at distances λm from
the origin, where λm > 0 for all M , defined by n · y where all
ym ≥ 0 and the elements of the unit normal vector n are nm =
d/λm. We project an objective vector onto the simplex as follows:

ỹ = yi/(yi · n) (9)

where

d−2 =

M∑
m=1

λ2
m (10)

It is important to note at this point that any non-dominated set of
objective vectors is still non-dominated once it has been projected
onto the simplex.

The position of the objective vector on the simplex is determined
with barycentric coordinates, known for triangles but which gener-
alise to convex polygons and multi-dimensional simplices such as
the one described above [9, 22]. Given position vectors of the mth
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Figure 2: Heatmaps of both the solutions and objective vectors in the elite archive resulting from optimising the 10-objective DTLZ2 instance. The top row
shows parameter space (left) and objective space (right) in which the solutions are ordered arbitrarily. Parameters and objectives are in their original ordering.
The bottom row shows the result of permuting objective vectors with seriation and ordering the parameter space solutions by that permutation. Parameters
and objectives have also been seriated. The seriation in objective space illustrates the trade-off between objectives f8 and f10 with the rest of the objectives.
In parameter space, the seriation of parameters has also enhanced the clarity of the visualisation: a cluster of high-valued parameters is visible in the top-left
hand corner of the heatmap, where similar solutions and parameters have been gathered together.

objective λm = (0, . . . , λm, . . . , 0) the barycentric coordinates
ωm of an objective vector projection ỹ are defined as follows:

ỹ =

M∑
m=1

ωmλm (11)

with constraints ωm > 0 and
∑

m ωm = 1. The vector of the
firstM −1 barycentric coordinates corresponding to ỹ, noting that
since the second constraint requires that the coordinates sum to 1
we can recover the M th coordinate, are found as follows:

ω1:M−1 = B†(ỹ − λm) (12)

where B is theM×(M−1) matrix whosemth column isλm−λM

and B† = (BTB)−1B is the pseudo-inverse of B. The vertices
of the M -sided polygon P in the plane, centred on the origin, are
defined as

vm =

[
cos(2π(m− 1)/M)
sin(2π(m− 1)/M)

]
. (13)

AnM -dimensional point in the simplex ỹ is visualised by mapping
it to the point z in P that has the same barycentric coordinates ω as
ỹ, namely

z = Vω (14)

where V is the matrix whose columns are the vectors vm. The
vertices of P are identified with objectives to be minimised, thus an
objective vector yi with a large yim will be mapped close to the
mth vertex vm.

Figure 3 illustrates a visualisation in the plane of the 10-objective
DTLZ2 archive. Objective vectors have been coloured by their
average rank, and the method has clearly placed solutions with a
similar average rank close together. Clearly, as opposed to the seri-
ated heatmaps of the previous section, information pertaining to the
quality of a solution on each objective has been lost in the dimen-
sion reduction process, however objectives on which the solution
is particularly poor can still be identified by observing which ver-
tices it is positioned close to. The solutions with the best average
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Figure 3: Planar visualisation of the 10-objective DTLZ2 archived popula-
tion. Solutions are coloured by average rank and proximity of highly ranked
solutions to objective f10 indicates that those solutions perform poorly on
that objective; this corresponds with information inferred from the seriated
heatmaps in Section 3.

rank are placed close to objective 10, which implies poor objective
values for f10. Referring back to the seriated heatmap in Figure 2,
this is the objective on which solutions with the lowest ranks, and
hence the best average rank, show the worst performance.

Despite the drawback of losing information, visualising objec-
tive vectors in the plane is a useful technique as it is easily scalable
to large numbers of objectives and can be used with both convex
and non-convex Pareto fronts; illustrations of non-convex Pareto
fronts are omitted due to lack of space.

5. DOMINANCE SIMILARITY
Whilst the planar method demonstrated in the previous section

takes account of the mutually non-dominated nature of solutions, it
does not consider the dominance relationships between solutions.
In this section we describe dominance similarity [21] and show
how it can be used to visualise both search populations and elite
archives.

5.1 Dominance Similarity
The intuition behind our definition of similarity lies with the no-

tion that two solutions yi and yj are similar if they dominate the
same solutions. Given a third solution yp, we can extend this idea
by evaluating on how many objectives the solutions have the same
dominance relationships with yp. The dominance relationships are
the same if both yim and yjm are dominated by ypm, both dominate
ypm, or both are equal to ypm. The similarity of the two solutions
is then computed by counting the number of times that the relation-
ships are the same. Thus, we define dominance similarity between
yi and yj with respect to yp as:

S(yi,yj ;yp) =
1

M

M∑
m=1

[
I((ypm < yim) = (ypm < yjm))

+ I((ypm = yim) ∧ (ypm = yjm))
]

(15)

where I(p) is the indicator function that is 1 when the proposition p
is true and 0 otherwise. The second term accounts for ties between
solutions. The overall dominance similarity between two solutions
is then computed by considering the other N − 2 members of the
population as the test particle yp:

S(yi,yj) =
1

N − 2

N∑
p=1

p/∈{i,j}

S(yi,yj ;yp). (16)

Clearly, S is symmetric and 0 ≤ S(yi,yj) ≤ 1, being equal to 1
when yi = yj . From this, we obtain a distance measure thus:

D(yi,yj) = 1− S(yi,yj). (17)

This measure is equivalent to the Hamming distance between bi-
nary strings; we define two binary strings, bi and bj , one for each
solution. The mth element of bi is set to 1 if yim < ypm, and
the distance between the two solutions is obtained by counting the
number of positions they disagree on. Since the Hamming distance
is a proper metric, D(·, ·) is also a metric.

A method for quickly computing D is provided by considering
that in the single-objective case the distance is just the difference in
the ranks D(yi, yj) = |ri − rj |. Consequently

D(yk,yj) =
1

M

M∑
m=1

|rkm − rjm| (18)

so the distance between individuals is measured by the average
magnitude of the difference in their ranks on each objective (note,
that this is not the magnitude of the difference of their average
rank).

5.2 MDS and Isomap
Two common visualisation methods are to use multi-dimensional

scaling (MDS) and isomap to reduce the dimensionality of the pop-
ulation by projecting onto a set of new coordinate axes and visualise
the resulting low-dimensional population.

Having defined a metric D, obeying the triangle inequality, the
matrix with elements Dij ≡ D(yi,yj) is a Euclidean distance
matrix [17, 8] and there exists a set of points zi ∈ RN separated
by Euclidean distances ‖zi − zj‖ = Dij .

If F = ZZT is a decomposition of

F = −1

2

(
I − 11T

N

)
D

(
I − 11T

N

)
(19)

then the rows of Z are coordinates of the points that generate D.
Metric MDS [11, 16] finds a spectral decomposition of F, which is
positive semi-definite, and projects the embedding onto the princi-
pal eigenvectors of F, thus retaining the best linear approximation
(in a least squares sense) to the full embedding.

Whilst linear methods, such as MDS, can produce a suitable vi-
sualisation of a population, in some cases the data exist on a non-
linear manifold; in this event, a more appropriate method to use
is isomap [19]. Isomap is a global method for reducing the di-
mensionality of high-dimensional data by preserving geodesic dis-
tances. It assumes that the data lie on a low-dimensional mani-
fold and seeks to preserve pairwise distances along it, rather than
preserving Euclidean distances in the original space since two solu-
tions that are close in terms of Euclidean distance might be at oppo-
site ends of the manifold. The process of reducing the dimension-
ality of data begins by computing a graph of nearest neighbours,
either by placing edges between the nearest k neighbouring points
or by identifying all of the neighbours within a certain distance and
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placing edges between those. An edge is weighted with the Eu-
clidean distance between the two points that it connects. Then, the
shortest path between each pair of points in the data is computed,
and this collection of distances forms the basis of dimension reduc-
tion using MDS.

Figure 4 presents MDS embeddings for the 10-objective DTLZ2
problem, showing both the final population and elite archive of
solutions. The objective vectors in both populations have been
coloured by average rank and, as was the case in the visualisation
in the plane examples shown in the previous section, solutions with
a similar average rank have been clustered together. Interestingly,
this is also the case for the population containing dominated so-
lutions, which the planar visualisation could not visualise without
distorting the dominance relationships between solutions. In both
cases, the solutions have been arranged by the MDS procedure so
that the best ranked solutions are on the right-hand side of the em-
bedding and the poorly ranked solutions are on the left, so that the
x-axis of the embedding conveys the quality of the solutions.

Figure 5 presents similar results, but this time the solutions have
been embedded into a low-dimensional space using isomap. The
relationship between the x-axis and solution quality remains, and
in general solutions with similar ranks have been placed near to
each other. The embedding itself is different to that produced by
MDS, implying that there is an underlying structure to the solu-
tions that isomap has tried to preserve. Based on this, although both
methods provide an clear embedding of a many-objective popula-
tion, isomap provides additional information about the dominance
structure of the population.

6. CONCLUSION
With the quantity of many-objective problems that are currently

being tackled in the literature, the visualisation of many-objective
solution sets is an important but challenging problem. Unlike multi-
objective problems, it is not possible to plot the solutions on coordi-
nate axes because a decision maker often cannot comprehend more
than three spatial dimensions. In this paper we have presented four
methods for visualising such many-objective populations. The first
two represent the solutions based on the full set of objectives. One
of them visualised solutions as a graph to illustrate the dominance
relationships between them while the other used a spectral method
to enhance heatmaps of the population. The other methods employ
dimension reduction methods that project non-dominated solutions
onto the plane and compress the solutions taking into account their
dominance relationships with each other, respectively. These meth-
ods provide interesting ways of observing and interacting with the
solutions in a population that should prove useful to researchers
solving many-objective problems.
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Figure 4: MDS embeddings of the 10-objective DTLZ2 populations. The left-hand plot displays an embedding of the search population in the final generation
of the ES while the right-hand plot displays the final elite archive. Solutions are coloured by average rank and there is a agreement between the placement of
the solutions in the x-axis and the average rank of a solution. Solutions with a similar average rank have been placed together.
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Figure 5: Isomap embeddings of the 10-objective DTLZ2 populations. The left-hand figure again shows the final search population, while the right-hand
figure is again the final archive. As with the MDS figure, those solutions with a similar average rank have been placed close together, however the arrangement
of projected solutions is different from the MDS. We infer that this is because the solutions lie on a low-dimensional manifold, and the isomap embedding
attempts to preserve pairwise distances on this manifold.
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