
An Adaption of the Schema Theorem to Various Crossover
and Mutation Operators for a Music Segmentation Problem

Brigitte Rafael
brigitte.rafael@
heuristiclab.com

Michael Affenzeller
michael.affenzeller@fh-

hagenberg.at

Stefan Wagner
stefan.wagner@fh-

hagenberg.at

University of Applied Sciences Upper Austria
School of Informatics, Communications and Media
Heuristic and Evolutionary Algorithms Laboratory

Hagenberg, Austria

ABSTRACT
The schema theorem provides theoretical background for the
effectiveness of genetic algorithms and serves as a formal
model to explain their success. It describes the functional-
ity of genetic algorithms under very restrictive limitations of
a canonical genetic algorithm which applies a binary alpha-
bet, individuals of equal length, fitness-proportional selec-
tion, single-point crossover, and gene-wise mutation. Appli-
cations of genetic algorithms, however, are often based on
noncanonical variations and, therefore, are not verified by
the theory of the traditional theorem. This paper describes
the adaption of the theorem for various other crossover and
mutation operators focusing on the application of genetic
algorithms to a music segmentation problem.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods

Keywords
genetic algorithms, schema theorem, building block hypo-
thesis, Music Information Retrieval

1. INTRODUCTION
Segments of a music segmentation can start at any ar-

bitrary position of the composition. The high complexity
results in an exponential increase of runtime for longer com-
positions. Therefore, it is not possible to evaluate all poten-
tial segmentations but a solution of sufficient quality has to
be found in reasonable time. Given those circumstances, the
problem domain of music segmentation seems to be highly
suited for applying genetic algorithms (see [3, 12]). This pa-
per provides the theoretical background for the application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

of genetic algorithms to the music segmentation problem
based on the schema theorem.

The schema theorem was introduced by Holland [4] and,
later on, Goldberg [2] to provide a theoretical explanation for
the good performance of genetic algorithms. The theorem is
widely acknowleged but has also been criticized for two rea-
sons: It only holds for the canonical genetic algorithm and
it focuses on a worst case scenario. Plenty of work has been
done by various researchers like Stephens and Waelbrock [15,
16, 17], Whitley [18], Wright [20], Altenberg [1], Poli [8, 9,
10], and others to overcome those limitations. This paper
focuses on the adaption of the schema theorem for the music
segmentation problem based on former research of Whitley
[18].

In the section following the introduction the reader is in-
troduced to the music segmentation problem. The third sec-
tion describes the application of genetic algorithms to this
problem. Section four focuses on the schema theorem and
its adaption to various crossover and mutation operators. It
also provides an example for the development of schemata
in a genetic algorithm applied to the music segmentation
problem. The last section summarizes and concludes the
paper.

2. THE MUSIC SEGMENTATION
PROBLEM

During the last years plenty of research has been done
in the field of music information retrieval (MIR), also in-
cluding various aspects of music segmentation. Providing
structural information for a composition is crucial for sev-
eral tasks of MIR. Music segmentation targets at the iden-
tification of boundaries between structurally relevant parts.
There are two main aspects of music segmentation: bound-
ary detection and pattern detection. Orio and Neve [7] give
an introduction to both approaches as well as the results of
experiments using either of them. An approach to combine
both methods is described in [5].

Whereas boundary detection algorithms need extraopus
information and are limited to music complying with exist-
ing domain knowledge, pattern discovery algorithms can be
applied to a broader musical spectrum. As a downside, pat-
tern discovery algorithms are not successful in segmenting
music that does not contain any repeating patterns. The

469

Figure 1: Segmentation

approach presented in this paper applies pattern detection
as it concentrates on music with a high repetition factor.

Music data is represented in the MIDI (Musical Instru-
ment Digital Interface) format. For each note MIDI files
must save some information about the instrument that it
is meant for. Therefore, data in MIDI files is divided into
different tracks. Each track can be used for one instrument
or several tracks may express various voices of the same in-
strument. This concept provides an advantage over audio
formats in analyzing music. Each track can be analyzed
separately and track-related patterns can be found indepen-
dently of the other tracks.

The segmentation of a track contains a list of segment
groups that indicate where parts of the track are repeated.
It therefore gives an insight into the internal structure of a
track. All segments of the segment groups of a segmentation
must be distinct, which means that no overlap between any
pair of consecutive segments is allowed. A segmentation
must contain at least one segment group.

A sample segmentation is given in Fig. 1. The segmen-
tation contains two segment groups, A and B, with two seg-
ments each. Segments do not overlap and they are labelled
according to their segment groups.

The corresponding music sequence is displayed in the pi-
anoroll view (see [6] for details). The figure contains five
staff lines and an additional line for Middle C. Notes are
displayed as black boxes and the box widths indicate note
durations. Lines above notes indicate an increment of the
pitch value by one semitone. Rests are represented as grey
boxes and vertical lines represent bar changes.

The quality of a segmentation depends on the number
and average similarity of its segment groups as well as on
the coverage of the segmentation (i.e., the number of notes
that are covered by the segmentation). Details about the
evaluation of a segmentation are given in the next section.

3. APPLICATION OF A GENETIC
ALGORITHM TO THE MUSIC
SEGMENTATION PROBLEM

For each instrumental track there exists a high number of
potential segment combinations. Since segments can start
at any arbitrary position of the composition, the runtime
for the evaluation increases exponentially for longer compo-
sitions. Therefore, it is not possible to evaluate all potential
segmentations but a solution of sufficient quality has to be
found in reasonable time. Given these circumstances, the
problem domain of music segmentation seems to be highly
suited for the application of genetic algorithms.

A music track is encoded as a simple bit vector with one
bit for each beat in the music sequence. All bits of value 1
result in new segments starting at the corresponding beats
and, therefore, define the segment boundaries within the seg-
mentation. However, this representation does not contain
any information about relations between segments so some

sort of clustering algorithm has to be included in the eval-
uation function to detect similarities between segments and
to combine them into segment groups. This clustering algo-
rithm compares all segments and calculates similarities con-
sidering pitch and rhythm information. The resulting seg-
mentation is analyzed for the fitness calculation. Based on
the number of identical and similar segments the evaluation
function computes an initial fitness value. The higher the
similarities between segments, the higher the initial value.
To cover a broader range of characteristica the fitness func-
tion evaluates a set of musical features that are not related
to similarity. The quality of a segmentation increases if seg-
ments have similar durations or regular distances between
them. Segments starting at the same time as notes or bars
also result in a higher fitness value. Segments overlapping
notes or long rests decrease the fitness value as well as very
short segment durations or low average similarities. Details
about the problem representation and the evaluation func-
tion can be found in [11, 13].

To produce the inital population segments are created ran-
domly by assigning 0 or 1 to each bit in an individual. Since
segments must be of a minimum length, the probability of
0 is higher than the probability of 1. Various probability
ratios are used for different individuals leading to a wider
variation of segment durations. Average durations range
from the number of beats within a bar up to a maximum
value that is set as a parameter of the test run. With a low
probability the algorithm ignores the maximum parameter
and creates individuals with an average segment duration
of length/beatsPerBar with length as the duration of the
track in beats (= the length of the bit vector in bits) and
beatsPerBar as the number of beats within a bar.

To comply with the schema theorem proportionate selec-
tion is used for parent selection. For recombination the au-
thors apply single-point crossover, two-point crossover, and
uniform crossover together with the mutation operators that
are introduced in the following section.

3.1 Mutation operators
The concept of mutation is important for genetic algo-

rithms to keep diversity within the population and to ex-
plore new regions in the search space. Since the mutation
operator is problem dependent, it must be adapted to the re-
spective problem. This section lists two mutation operators
that are applied to the music segmentation problem.

3.1.1 Bitflip Mutation
Bitflip mutation is the most popular mutation operator

for bit vectors. It is also applicable to the music segmenta-
tion problem. A bit change from 0 to 1 in a segmentation bit
vector corresponds to splitting up an existing segment into
two new segments. Changing a bit from 1 to 0 merges two
segments into one longer segment. As a result, the bitflip
mutation operator creates a new segment or destroys an ex-
isting one. The number of segments within a segmentation
is usually changed by bitflip mutation.

3.1.2 Bitshift Mutation
The application of bitflip mutation to a bit vector repre-

senting a segmentation often has a strong effect on segment
boundaries. Therefore, the author introduces a new muta-
tion operator to perform slight changes only: bitshift mu-
tation. The bitshift mutation operator randomly chooses a

470

Figure 2: Bitshift mutation

bit of value 1 and shifts it by one bit (see Fig. 2). As a
result, the segment boundary is shifted by one beat. The
direction of the shift is chosen randomly except for the first
and last bit where only one direction is possible. In contrast
to the bitflip mutation, the number of segments within the
segmentation does not change.

4. THE SCHEMA THEOREM AND THE
MUSIC SEGMENTATION PROBLEM

A schema (or similarity template) is built like an individ-
ual of the population enhanced with an additional wildcard
symbol * which represents don’t care. The binary alphabet
0,1—the standard alphabet for bit vectors and quite com-
mon for genetic algorithms—is extended to 0,1,*. *1**0* is
a sample schema for a population of bit vectors with length
6. All bit vectors in the population that have 1 on the 2nd
and 0 on the 5th position match the pattern of the schema
and, therefore, belong to the sample schema.

Schemata can be described by their defining length and
their order. The defining length δ(H) gives the distance be-
tween the first and last fixed position in the schema. Fixed
positions are positions that hold values <> ∗. For the sam-
ple schema *1**0* the defining length is δ(H) = 3. The
order of the schema o(H) is defined by the number of fixed
positions which equals the total length minus the number
of wildcard symbols. The order of the sample schema is
o(H) = 2.

A schema represents a region of the search space. Develop-
ing various bit vectors of the same schema means exploring a
region of the search space in detail whereas the consideration
of various schemata leads the genetic algorithm into differ-
ent regions of the search space. For an individual of length
l and an alphabet of cardinality k there are (k+ 1)l possible
schemata. Each individual of the population is a representa-
tive of kl schemata. A population of n individuals contains
at most n ∗ kl different schemata. During the evolution of
the population schemata with higher fitness values will in-
crease whereas weak schemata will disappear. According to
Holland’s schema theorem the lower bound of the expected
number m(H, t+1) of individuals belonging to schema H in
generation t+ 1 is given with

m(H, t+ 1) ≥

m(H, t) ∗ f(H)

f
∗
[
1 − pc ∗ δ(H)

l−1
− o(H) ∗ pm

]
(1)

where f(H) is the average fitness of schema H (i.e., the
average fitness of all individuals belonging to the schema),
f is the average fitness of the population (i.e., the average

fitness of all individuals in the population), pc∗ δ(H)
l−1

gives the
probability that H is destroyed by crossover with a crossover

Figure 3: Single-point crossover preserving a schema

Figure 4: Single-point crossover creating a schema

rate of pc, and o(H) ∗ pm gives the probability that H is
destroyed by mutation with a mutation rate of pm.

The traditional schema theorem focuses on a canonical ge-
netic algorithm which applies a binary alphabet, fixed length
individuals of equal length, fitness-proportional selection,
single-point crossover, and gene-wise mutation. Further-
more, it represents the worst case only. It does not consider
that schemata can be preserved in spite of a crossover point
within the schema when both parents match parts of the
schema, or that children can even match a schema although
the parents did not.

Let us consider schema **10001*******. Fig. 3 gives an
example for the first case. Although the crossover point
lies within the schema boundaries and the second parent
does not match the schema, it is still not destroyed by the
crossover. At least on of the children still matches the
schema.

An example for the second case is given in Fig. 4. None of
the parents matches the schema, but after crossover at least
one of the children does match and, therefore, a new individ-
ual of the schema is produced. Neither schema preservation
nor schema creation are considered by the original schema
theorem, therefore an adaption of the theorem is necessary.

The limitations of the schema theorem mentioned above
have been widely criticized and much work has been done
to reformulate the theorem. An exact schema theorem has
been introduced by several researchers such as Stephens and
Waelbrock [15, 16, 17], Whitley [18], Wright [20], Altenberg
[1], and Poli [8, 9, 10]. There are two main approaches basing
either on strings (microscopic, fine grained) or on schemata
(macroscopic, coarse grained).

On the microscopic level Whitley [18] introduced the con-
cept of string losses and string gains for a genetic algorithm
using crossover but no mutation. String losses represent
strings s that are crossed with other strings and cannot pre-

471

serve the original string s. String gains occur when two
strings that differ from s are crossed and produce s as off-
spring. Based on this concept the fraction of the population
matching schema H at time t+ 1 is defined as

P (H, t+ 1) = pH ∗ (1 − pc ∗ losses) + pc ∗ gains (2)

with pH = P (H, t) ∗ f(H)

f
. This gives an exact value in-

stead of a lower bound only. Furthermore, losses and gains
are not limited to the canonical genetic algorithm but can
be defined for various crossover operators. For a genetic al-
gorithm with crossover and mutation the theorem can be
extended to

P (H, t+ 1) = pH ∗ (1 − pc ∗ lsc − pm ∗ lsm
+pc ∗ lsc ∗ pm ∗ lsm) + pc ∗ gnc + pm ∗ gnm (3)

with lsc and lsm for the string losses occuring through
crossover and mutation, respectively, and gnc and gnm for
the string gains resulting from crossover and mutation, re-
spectively.

The authors have chosen Whitley’s approach since the
schemata for the music segmentation problem can be ex-
pressed on a microscopic level. A segment of size l(s) is
always defined by a schema of l(s) + 1 bits. The extra bit is
necessary to lock the end of the segment. A segment must
start with 1 followed by a series of 0 and concluded by 1. The
last 1 does not belong to the segment itself but represents
the start of the next segment. Nevertheless it belongs to the
schema since it is necessary to define the segment. Other-
wise the segment might be turned into a longer segment if
followed by 0. All bits within the segment must be 0 since a 1
would end the current segment and start a new one. As a re-
sult, there are no wildcards within the definition of a schema
representing a segment. To give an example, all segments of
size 4 are expressed as schema 10001. Embedded in a track
a schema is preceded and/or followed by wildcards. As an
example the schema for a segment of size 4 (sl = 4 + 1 = 5)
starting at beat 8 of a track of 16 beats (L = 16) is defined
as ********10001***. Consequently, a schema is defined by
a coherent string surrounded by wildcards so the concept of
string losses and gains can be applied.
pc can be omitted from the equation since crossover is

always applied. String losses are considered only for the case
that the second parent does not match the schema (since
a second parent that matches the schema always preserves
it). String gains only occur if both parents do not match
the schema. The fraction of the population that does not

match the schema can be defined as pH = P (H, t) ∗ f(H)

f
.

Since f = P (H, t) ∗ f(H) + P (H, t) ∗ f(H) and P (H, t) =

1 − P (H, t) this can be transformed to pH = f−P (H,t)∗f(H)

f
.

For simplification we assume that strings not matching the
schema are equally distributed among pH . Whitely included
this probability in his losses and gains calculations. Since
the probability to choose a string not matching the schema
is independent from the crossover and mutation operators,
the authors decided to include it in the general equation
instead of the losses and gains calculations. As a result,
the equation is rewritten as

P (H, t+ 1) = pH ∗ (1 − pH ∗ lsc − pm ∗ lsm
+pH ∗ lsc ∗ pm ∗ lsm) + p2

H
∗ gnc + pm ∗ pH ∗ gnm (4)

The following sections define losses and gains for various
crossover and mutation operators for the music segmenta-
tion problem.

4.1 Crossover Operators
The first conditions of a canonical genetic algorithm hold

for the genetic algorithm which is applied to the music seg-
mentation problem. Individuals are decoded using a binary
alphabet and all individuals representing segmentations of
the same track have the same fixed length (which is defined
by the duration of the track in beats). The other conditions
are met by some of the test settings only. For each crossover
and mutation operator string losses and gains must be com-
puted separately.

4.1.1 Uniform Crossover
Uniform crossover combines two parents according to a

crossover mask which defines the alleles that should be taken
from the first or second parent, respectively. For a track of
size L there are 2L possible crossover masks. However, for a
segment of size sl − 1 only 2sl of them are relevant since it
does not matter what happens outside the defined segment
area of the schema.

A schema is preserved by uniform crossover if the second
parent matches the schema in all positions where there is a 1
in the crossover mask. The same is true for all positions with
a 0 in the mask. For a mask with x bits of value 1 there are
2x possibilities for the first case and 2sl−x possibilities for the
second case. Since both cases include the schema itself, there
are 2x + 2sl−x − 1 possible strings that do not destroy the
schema when uniform crossover is applied. For a a crossover
mask with x bits of value 1 there will be 2sl−(2x+2sl−x−1)
out of a total number of 2sl − 1 strings that destroy the
schema (the schema itself is excluded). The probability for
each crossover mask to be selected is 1/2sl. For 0 < x < sl
there are

(
sl
x

)
crossover masks to be constructed. As a result,

the probability to choose a crossover mask with x bits of

value 1 is defined by
(slx)
2sl

. The sum over all values of x gives
the total losses for the uniform crossover:

lossesc =

sl−1∑
x=1

(2sl − 2x − 2sl−x + 1)

2sl − 1
∗
(
sl
x

)
2sl

(5)

Two strings not matching the schema can produce off-
spring matching the schema if one parent matches the sche-
ma at all positions that have value 1 in the mask and the
other parent matches all positions that have value 0 in the
mask. For a mask with x bits of value 1 there are 2x

strings for the first case and 2sl−x for the second. Since
the schema itself is excluded from both cases, there are
(2x − 1) ∗ (2sl−x − 1) = 2sl − 2x − 2sl−x + 1 possible string
combinations out of a total string combinations of (2sl−1)2.
The sum over all values of x gives the total gains for the uni-
form crossover:

gainsc =

sl−1∑
x=1

(2sl − 2x − 2sl−x + 1)

(2sl − 1)2
∗
(
sl
x

)
2sl

(6)

472

4.1.2 Single-Point Crossover
Single-point crossover can be expressed as special cases of

uniform crossover. For single-point crossover the crossover
mask must consist of a coherent set of values 1 and a co-
herent set of values 0. As a result, there is only one valid
mask for each x. String losses can be calculated the same
way as for uniform crossover, only the probability to get the
specific crossover mask changes. For single-point crossover
there are L − 1 valid crossover masks for the whole track.
The crossover mask for the schema is a submask of the whole
mask. If the submask contains only 0s or only 1s then the
crossover point lies outside the schema boundaries. Those
masks do not result in string losses so they are not consid-
ered. For a schema of length sl there are exact sl − 1 valid
crossover masks. The sum over all values of x gives the total
losses for the single-point crossover:

lossesc =

sl−1∑
x=1

(2sl − 2x − 2sl−x + 1)

2sl − 1
∗ 1

L− 1
(7)

String gains meet the same conditions for the crossover
mask. Therefore, string gains for single-point crossover are
calculated as

gainsc =

sl−1∑
x=1

(2sl − 2x − 2sl−x + 1)

(2sl − 1)2
∗ 1

L− 1
(8)

4.1.3 Two-Point Crossover
Like single-point crossover also two-point crossover is a

special case of uniform crossover. A crossover mask for two-
point crossover must consist of a coherent set of 1s followed
by a coherent set of 0s and concluded by a coherent set of
1s. Each set must contain at least one bit. As a result,
there are x − 1 masks for x bits of value 1. For a track of

length L there are
L−1∑
x=2

x− 1 = (L−2)(1+(L−2))
2

= L2−3∗L+2
2

valid masks. From the schema’s point of view there are
different valid positions for the crossover points. If both
points are outside the schema, the submask contains only
bits of value 0 or 1, respectively. If both points hit the
schema, the submask has the structure described above. If
only one crossover point lies between schema boundaries,
the submask is similar to single-point crossover. However,
the probabilities change since either the first or the second
crossover point can hit the schema. The probability for one
point to hit the schema is sl−1

L−1
so the probability for each

possible point within the schema to be hit is 1
L−1

. The
probability for a crossover point to be outside the schema
boundaries is L−sl

L−1
. Since the second point cannot be on the

same position as the first one, it changes to L−sl
L−2

. Either the
first or the second crossover point can be inside the schema
boundaries, so the probability that exactly one point hits

the schema is 2∗(sl−1)∗(L−sl)
(L−1)∗(L−2)

. This results in a probability

of 2∗(L−sl)
(L−1)∗(L−2)

for each crossover mask with x bits of value

1 if exactly one point falls within the schema boundaries.
For the case that only one point lies inside the schema

boundaries the losses are defined as

losses1c =

sl−1∑
x=2

(2sl − 2x − 2sl−x + 1)

2sl − 1
∗ 2 ∗ (L− sl)

L2 − 3 ∗ L+ 2

(9)
and for the case that both points hit the schema as

losses2c =

sl−1∑
x=2

(2sl − 2x − 2sl−x + 1)

2sl − 1
∗ 2 ∗ (x− 1)

L2 − 3 ∗ L+ 2

(10)
so the total losses for two-point crossover are defined as

lossesc = losses1c + losses2c. (11)

String gains can be calculated the same way:

gainsc = gains1c + gains2c (12)

with

gains1c =

sl−1∑
x=2

(2sl − 2x − 2sl−x + 1)

(2sl − 1)2
∗ 2 ∗ (L− sl)

L2 − 3 ∗ L+ 2

(13)
for the case that only one point lies inside the schema

boundaries and

gains2c =

sl−1∑
x=2

(2sl − 2x − 2sl−x + 1)

(2sl − 1)2
∗ 2 ∗ (x− 1)

L2 − 3 ∗ L+ 2

(14)
for the case that both points hit the schema.

4.2 Mutation Operators
The schema theorem for a canonical genetic algorithm

only holds for gene-wise mutation. Some of the mutation
operators applied, however, are not gene-wise, so the schema
theorem must be adapted for them.

4.2.1 Bitflip Mutation
The bitflip mutation operator applied to the test runs

changes exactly one bit of the whole individual. As a con-
sequence, the probability for each bit to be changed is 1/L
and the probability that a schema is destroyed by mutation
is defined as

lossesm =
sl

L
. (15)

New instances of the schema can be created from all strings
with Hamming distance 1 to the schema string if exactly the
differing bit is mutated. There are sl out of 2sl strings with
the required Hamming distance, so string gains for bitflip
mutation are defined as

gainsm =
sl

2sl
∗ 1

L
=

sl

2sl ∗ L. (16)

473

4.2.2 Bitshift Mutation
The bitshift mutation operator shifts a 1 from the individ-

ual by one position. As a consequence, the probability of a
schema to be destroyed is independent from its length since
every schema contains two bits of value 1 (one to start and
one to end the segment). The only factor that influences
the probability to destroy a schema is the number of bits
of value 1 within the individual. Each individual is created
based on a 0:1 ratio z (with z > 1) which results in an aver-
age number of L/(z+ 1) bits of value 1. A schema is always
destroyed if the chosen 1 is shifted to the inside (p = 1/2).
If it is shifted to the outside and the outer bit does not have
value 1 (p = 1/2 ∗ 1/2 = 1/4) it is also destroyed. An outer
value of 1 preserves the schema since an exchange of two
bits of value 1 does not change the string. As a result, the
losses for bitshift mutation are defined as

lossesm =
2 ∗ (z + 1)

L
∗ 3

4
(17)

where z in a best case scenario is defined by the length of
the schema so that z + 1 = ls.

A shift to the right of a bit of value 1 creates a new in-
stance of the schema if this bit is either the start of an ex-
tended schema string with an additional 0 (e.g., 100001 for
schema 10001) or if it is the end of a shortened schema string
with one 0 missing followed by 0 (e.g., 10010 for schema
10001). The same holds for a shift to the left by exchanging
the two cases. For the first case, there is one out of 2sl+1

strings matching the required pattern since the extended
schema is defined by sl + 1 positions. For the second case
there is one matching string out of 2sl since sl− 1 positions
define the shortened pattern plus one position for the fol-
lowing 0. As a result, the gains for bitshift mutation are
defined as

gainsm =
2 ∗ (z + 1)

L
∗ (

1

2sl+1
+

1

2sl
). (18)

If a bit of value 1 is the first or last bit of a bit vector,
it can be shifted in one direction only. For simplification
reasons this case has been omitted since it would only give a
slight change to the equation and can be neglected for longer
L.

4.3 Schema Theorem for a Concrete Music
Segmentation Problem

A very well known children’s song, Frere Jacques, has been
chosen as a sample track. Fig. 5 displays the song’s notes,
the solution to the segmentation problem for this song, and
the bit vector representing this solution.

The sample track has a duration of 32 beats, so L = 32. sl
is defined by the duration of the segments which is 4 beats.
As a result, sl = 5. This does not hold for the last segment
since it is only defined by 4 bits plus the end of the track,
but this exception will be ignored.

10001000100010001000100010001000 is the bit vector re-
presenting the best solution containing all segments from
Fig. 5. The schemata defining the segments of the optimal
solution are given in Table 1 and comply with the building
block hypothesis formulated by Goldberg [2]: short, low level
schemata (i.e., schemata of low defining length and low or-
der) with high fitness values have a higher chance to survive
the evolution process. Those building blocks are combined

Figure 5: Segmentation for Frere Jacques

during the evolution of generations to form longer, highly fit
blocks which, in the end, result in the optimal solution.

4.4 Concrete Values for Various Crossover and
Mutation Operators

The previous sections defined string losses and gains for
various crossover and mutation operators. The following
sections will compute concrete values for the given music
track.

4.4.1 Uniform Crossover

lossesc =

4∑
x=1

(33 − 2x − 25−x)

31
∗
(
5
x

)
32

= 0.5746 (19)

gainsc =

4∑
x=1

(33 − 2x − 25−x)

312
∗
(
5
x

)
32

= 0.01854 (20)

4.4.2 Single-Point Crossover

lossesc =

4∑
x=1

(33 − 2x − 25−x)

31
∗ 1

31
= 0.07492 (21)

gainsc =

4∑
x=1

(33 − 2x − 25−x)

(31)2
∗ 1

31
= 0.00242 (22)

4.4.3 Two-Point Crossover

lossesc =
4∑
x=2

(33−2x−25−x)
31

∗ 54
930

+
4∑
x=2

(33−2x−25−x)
31

∗ (x−1)∗2
930

= 0.11426 (23)

gainsc =
4∑
x=2

(33−2x−2sl−x)

312
∗ 54

930

+
4∑
x=2

(33−2x−2sl−x)

312
∗ (x−1)∗2

930
= 0.00369 (24)

Although uniform crossover is more disruptive than single-
point or two-point crossover (see [19]), there are other ad-
vantages of this operator. Spears and DeJong [14] stated
that ”With small populations, more disruptive crossover op-
erators such as uniform or n-point (n >> 2) may yield better

474

Table 1: Schemata for Segments of the Best Solution
Segment Schema name Schema
A (first occurence) H1 10001***************************
A (second occurence) H2 ****10001***********************
B (first occurence) H3 ********10001*******************
B (second occurence) H4 ************10001***************
C (first occurence) H5 ****************10001***********
C (second occurence) H6 ********************10001*******
D (first occurence) H7 ************************10001***
D (second occurence) H8 ****************************1000

Figure 6: Average fitness of individuals matching
one of the schemata

results because they help overcome the limited information
capacity of smaller populations and the tendency for more
homogeneity.” In small populations uniform crossover can
help to avoid premature stagnation in local maxima.

4.4.4 Bitflip Mutation

lossesm =
5

32
= 0.15625 (25)

gainsm =
5

32
∗ 1

32
=

5

1024
= 0.00488 (26)

4.4.5 Bitshift Mutation

lossesm =
8

32
∗ 3

4
= 0.1875 (27)

with a ratio of 3:1 for bits of value 0 : bits of value 1 so
z = 3.

gainsm =
8

32
∗ (

1

64
+

1

32
) = 0.01172 (28)

4.5 Development of Schemata for the Concrete
Music Sequence

This section examines the generation-wise development
of individuals matching the schemata given in Table 1 for
single-point crossover and bitflip mutation. Schema names
are used according to Table 1.

Fig. 6 displays the average fitness of each schema as well
as the average fitness of the whole population during the
first 150 generations. The algorithm was run with 1000
generations but values do not change significantly in later
generations. With the exception of some schemata during
the first 50 generations, the fitness of individuals matching

Figure 7: Average count of individuals matching one
of the schemata

a schema is always higher than the average fitness of the
whole population. Corresponding to the building block hy-
pothesis the number of individuals matching the schemata
increases during the evolution process. This process is illus-
trated in Fig. 7 which shows the average count of individu-
als matching a schema. The number of individuals for some
schemata increases faster than others, but after generation
90 all schemata have an individual count of around 450 (out
of 500 individuals in the whole population).

The previous sections presented an adapted version of the
schema theorem to compute the expected numbers of indi-
viduals in a population that match a schema. To conclude
this section the observed numbers of schema matching indi-
viduals are compared to the expected values. Schema H3 is
chosen as a sample schema. Fig. 8 gives the expected and
observed development of the number of individuals in a pop-
ulation of 500 matching schema H3. Small differences stem
from the asumption in the equation that the population is
infinite. However, the observed numbers almost match the
expected ones, so the equations presented in this paper give
a good approximation for the development of schemata dur-
ing a genetic algorithm.

5. CONCLUSIONS
Genetic algorithms can successfully be applied to the mu-

sic segmentation problem. This paper described the the-
oretical background for their success by adapting the well
known schema theorem to this specific problem. The reader
was introduced to the music segmentation problem as well
as to the theory behind the application of genetic algorithms
to this problem.

A practical example illustrated some schemata for a given
music sequence and the development of individuals matching
them during the evolution process. The results are promis-
ing since they show that the expected numbers of individuals

475

Figure 8: Expected and real number of individuals
matching schema H3

are generally met. Furthermore, the building block hypoth-
esis holds for the sample music sequence. Short segments of
above-average fitness survive the evolution process and, in
the end, result in the optimal solution.

Future work will include more test runs for other combi-
nations between mutation and crossover to evaluate if the
expected numbers of schema matching individuals given in
this paper are also met for those combinations.

6. REFERENCES
[1] L. Altenberg. The schema theorem and price’s

theorem. In Foundations of Genetic Algorithms 3,
pages 23–49. Morgan Kaufmann, 1995.

[2] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley
Longman, 1989.

[3] C. Grilo and A. Cardoso. Musical pattern extraction
using genetic algorithms. Computer Music Modeling
and Retrieval, 2771:124–154, 2004.

[4] J. H. Holland. Adaptation in Natural and Artificial
Systems. Ann Arbor: The University of Michigan
Press, 1975.

[5] B. S. Ong. Structural Analysis and Segmentation of
Musical Signals. PhD thesis, Universitat Pompeu
Fabrat, 2006.

[6] N. Orio. Music Retrieval: A Tutorial and Review. Now
Publishers Inc, 2006.

[7] N. Orio and G. Neve. Experiments on segmentation
techniques for music documents indexing. In
Proceedings of the International Conference on Music
Information Retrieval (ISMIR), 2005.

[8] R. Poli. Exact schema theorem and effective fitness for
gp with one-point crossover. In Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 469–476. Morgan Kaufmann, 2000.

[9] R. Poli. Hyperschema theory for gp with one-point
crossover, building blocks, and some new results in ga
theory. In Genetic Programming Proceedings of
EuroGP2000, pages 163–180. Springer-Verlag, 2000.

[10] R. Poli. Recursive conditional schema theorem,
convergence and population sizing in genetic
algorithms. In Proceedings of the Foundations of
Genetic Algorithms Workshop (FOGA 6, pages
143–163. Morgan Kaufmann, 2000.

[11] B. Rafael and S. Oertl. A two-layer approach for
multi-track segmentation of symbolic music. In M. H.
Hamza, editor, Artificial Intelligence and Applications,
pages 157–164. ACTA Press, 2010.

[12] B. Rafael, S. Oertl, M. Affenzeller, and S. Wagner.
Music segmentation with genetic algorithms. In
Twentieth International Workshop on Database and
Expert Systems Applications, pages 256–260, 2009.

[13] B. Rafael, S. Oertl, M. Affenzeller, and S. Wagner.
Using heuristic optimization for segmentation of
symbolic music. In Computer Aided Systems Theory -
EUROCAST 2009, pages 641–648, 2009.

[14] W. Spears and K. DeJong. An analysis of multi-point
crossover. In Foundations of Genetic Algorithms. G.
Rawlins, 1991.

[15] C. Stephens. Some exact results from a coarse grained
formulation of genetic dynamics. In Proceedings of
GECCO 2001, pages 631–638. Morgan Kaufmann,
2001.

[16] C. Stephens and H. Waelbroeck. Schemata evolution
and building blocks. Evolutionary Computation,
7:109–124, 1998.

[17] C. R. Stephens and H. Waelbroeck. Effective degrees
of freedom in genetic algorithms. Phys. Rev. E,
57(3):3251Ű3264, 1998.

[18] D. Whitley. An executable model of a simple genetic
algorithm. In Foundations of Genetic Algorithms 2,
pages 45–62. Morgan Kaufmann, 1992.

[19] D. Whitley. A genetic algorithm tutorial. Technical
report, Colorado State University, 1993.

[20] A. H. Wright. The exact schema theorem. Technical
report, University of Montana, 1999.

476

