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ABSTRACT 

This paper presents a novel framework for scalable multi-

objective genetic programming. We introduce a new program 

modeling aiming at facilitating programs’ creation, execution and 

improvement. The proposed modeling allows making symbolic 

executions in such a way to reduce drastically the time of 

programs’ executions and to allow well-founded programs 

recombination.  

Categories and Subject Descriptors 

I.2.2:[Automatic Programming]; D.2.5:[Symbolic Execution]; 

F.3.1:[Pre and Post Condition]. 

General Terms 

Algorithm; Languages; Design; Performance. 

Keywords 

Genetic Programming; Program Representation; Weakest 

Precondition; Semantic Crossover. 

 

1. INTRODUCTION 
Genetic programming (GP) is an evolutionary-based methodology 

inspired by biological evolution to find computer programs that 

perform a user-defined task.  GP is a method of automatically 

generating computer programs to perform specified tasks [1]. It 

uses a genetic algorithm to search through a space of possible 

computer programs for one which is nearly optimal in its ability to 

perform a particular task. GP develops programs, usually 

represented in memory as trees. Trees are recursively evaluated. 

Every tree node has an operator function, and every terminal node 

has an operand. Accordingly traditionally GP favors 

predominantly the use of programming languages that naturally 

embody tree structures such as functional programming languages 

[3]. Usually, genetic operators are designed so that the resulting 

children are syntactically valid individuals. However there have 

been several attempts in using semantics to enhance GP in solving 

problems. The use of formal methods is one of these attempts 

which have been raised just recently.  Formal methods are a class 

of mathematically based techniques for the specification, 

development and verification of software and hardware systems. 

[6, 7, 8, 9] are the first works which pioneered this area of 

research for GP. Two kinds of formal techniques have been used 

in GP, abstract interpretation [11] and model checking [5]. 

Abstract interpretation performs analysis on abstract domains 

instead of concrete ones. Using abstract interpretation, we can 

deduce information about some interesting program’s properties.  

In [6, 7], this information is used as a measure of the fitness. A 

placement problem is studied in [6]. With this kind of problem, it 

is very difficult to use traditional fitness measures that are based 

on a set of sample cases. Firstly, generating a set of sample cases 

is not easy in this situation. Secondly, even if a set of sample 

cases can be created, we cannot guarantee that the desired 

constraints will always be satisfied as the list of sample cases 

cannot cover all situations.  In [14], abstract interpretation is used 

to check if an individual can be undefined in the whole range of 

input values. For example, if an individual contains the function 

log(x) and one can infer that the variable x can take negative 

values; this individual will be considered as an undefined 

individual, so it must be deleted from the population.  Model 

checking is an algorithmic technique to verify a system 

description against a specification represented as a temporal logic 

formula. In [9], a system is modeled by a set of temporal logic 

formulas. The fitness function is measured by counting the 

number of satisfied formulas. Individual satisfies more 

propositions, it has a greater fitness value. The drawback of this 

approach is that a formula, which is nearly satisfied, will be 

considered as an absolutely unsatisfied formula. This weakness is 

considered by some later research in [12, 13], which used GP with 

model checking to check if a path in the graph that represents the 

behavior of the system, is satisfied by the formula. The fitness 

function is based on scores depending on the number of satisfied 

paths in the graph. The advantage of formal methods lies in their 

rigorous mathematical foundations, potentially helping GP to 

evolve computer programs. However, they are high in complexity 

and difficult to implement, which explains why they have been 

used mainly for fitness measures. In this paper, we present a new 

program representation for GP. It allows: 

1. An easy program manipulation. 

2. A rapid population evaluation.  

3.    “Semantically justified” programs’ recombination.  

The rest of the paper is organized as follows:  Section 2 presents 

program modeling. In the section 3 we introduce our framework, 

we describe how is performed each of the well-known steps of 

GP. We focus on individual evaluation and semantic crossover 

operator. These points are illustrated by clarifying examples. 

Section 4 concludes by highlighting contributions of this paper, 

and exposing some possible future directions. 

2. PROGRAM MODELING 
Since individuals must be widely manipulated by: evaluation, 

recombination and mutation it is essential to design a program 

modeling which is as simple as efficient. We represent an 

individual by two tables. The first table, called: Variable Table, 

records the different expressions allowing computing program 
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variables values. The second table:  Architecture Table describes 

the program structure. 

 

2.1 Variable Table: VT 
The variable table is composed of three columns the first one is an 

integer representing the statement location in the program. The 

second column represents the variable name; the last one is the 

expression allowing to compute the corresponding variable value. 

An expression could be: An input, a constant or a call to a 

predefined function. 

2.2 Architecture Table: AT 
The Architecture Table describes the program’s structure. It 

contains constraints that make possible the execution of each 

statement of VT.  AT models the conditionals loop statements. 

Conditional statements: There are two sorts of conditional 

statements: alternative statement (with the else branch) and the 

simple conditional (without the else branch).  

An alternative statement is modeled by (C,CT,CF,End)  where:  

- C: is a Boolean expression representing the condition of the      

       statement. 

- CT: is the location of the first instruction to perform if Cd is   

         TRUE 

- CF: is the location of the first instruction to perform if Cd is  

         FALSE 

- End: is the location of the first instruction  after the conditional   

          statement. 

A simple conditional   statement is represented by (C,CT,End) 

with C,CT and End  having the same meaning as the alternative 

statement. CF is set to (-1) 

Loops: A loop statement is modeled by (C,CT,End)  where :  

- C: is a Boolean expression representing the condition of the   

       statement. 

- CT: is the location of the first instruction in the loop. 

- End: is the location of the first instruction after the loop. 

 CF  is set to (-2). 

2.3 Example of Individual Modeling 
                                                              VT 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                

                                                            AT 

 

Figure 1.  C-Program Modeling Example. 

       

3. A NEW FRAMEWORK FOR GENETIC 

PROGRAMMING 
As usual, in genetic programming four steps are used to solve 

problems: 

(1) Generate an initial population of random compositions of    

      functions and terminals of the problem. 

(2)  Execute each program of the population, with all the fitness    

      cases, and assign it a fitness value according to how well it  

      solves the problem. 

(3) Select individuals for crossover and mutation 

(4) Create a new population of computer programs. 

      i)  Reproduce the best existing programs 

      ii) Create new computer programs by mutation. 

      iii) Create new computer programs by crossover. 

(5) The best program that appeared in any generation, the best- 

      so-far solution, is designated as the result of genetic    

      programming [3].  

In the subsequent, we will describe how each of these points is 

performed in our framework. 

3.1 Initial Population 
The initial population is constituted of a set of pairs (VTi,ATi) 

one pair for each individual. The tables are filled randomly. 

Problem functions and terminals are used in both variable table 

and architecture one. There are of course some syntactic rules to 

verify in the filling of  (VTi,ATi), (like End>CT…). 

3.2 Individual Evaluation 
To evaluate an individual, we must execute it with all fitness 

cases. To reduce individual execution time, we perform symbolic 

executions.  The idea is to compute a formula for each output of 

the genetic program: we call it Result Expression. So, for each 

output variable, the corresponding Result Expression summarizes 

all the expressions of the output variable with respect to input 

variables. Henceforth, for an individual the same obtained formula 

is used to evaluate all fitness cases by replacing input variables by 

their values and verify if the corresponding output value is 

correct. To perform symbolic executions, we use the concept of 

Weakest Precondition [4]. 

3.2.1 Weakest Precondition (WP) 
Let v=e be an assignment, where v is a variable and e is an 

expression of the appropriate type. Let P be a predicate. By 

definition, WP(v=e,P) is P with all occurrences of v replaced with 

e. For example: WP(y=x+2, y>8) = (x+2)>8.  We denote 

WP(l,P) the weakest precondition of the predicate P with respect 

to (w.r.t.) the statement having the location l  in the table VT. We 

extend the definition of WP to be applied on intervals of program 

locations, i.e.: a sequence of adjacent locations and on a whole 

element of AT: Let i and j be two locations:  

 

 

                                    P                       if  no variable occurs in P 

(1) WP([i,j[,P)=       WP(i,P)             if i=j 

                                    WP([i,j[,WP(j-1,P))    Otherwise  

 

Let e be an element of AT: e has the form (C,CT,CF,End): 

(2) WP(e,P)=           

 

       CWP([CT,CF[,P)CWP([CF,End[,P)   if  (CF>0) 

       CWP([CT,End[,P)CP                           if  (CF=-1) 

 

Loc Var Expression 

 1           Z x+1 

2 Y x-1 

3 Z x-1 

4 Y x+1 

5 Z z+2 

6 T Z 

7 T -z 

8 Y 0 

9 Y 1 

C CT CF End 

z=x 1 3 5 

z<3 6 7 10 

t=-1 8 9 10 

scanf(”%d%d”,&z,&x) 

     if (z==x) 

1:    { z=x+1; 

2:       y=x-1; } 

      else 

3:   { z=x-1; 

4:      y=x+1 ;} 

5:  z=z+2; 

     if (z<3) 

6:     { t=z ; } 

    else  

7:   { t=-z; 

         if (t==-1) 

8:         {y=0;}  

         else  

9:         { y=1;}  } 
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(3)   WP([Si,Sj[[Sk,Sl[,Cd)=WP([Si,Sj[,WP([Sk,Sl[,Cd)). 

 

(4) Loops:  Let l  be  an element  ( a line) in AT having the  form  

(C,CT,-2,End).  Weakest precondition computing of a predicate P 

w.r.t. l is performed as follow:  

 C0=C;  P0=P ; k=1;  

While(True) { Pk=WP([CT,End[,Pk-1); Ck=WP([CT,End[,Ck-1) 

                        (If (Ck’=False)(Pk=Pk-1)  { WP(l,P)=Pk’ ; exit } 

                        k=k+1; } 

Ck’ and Pk’ are obtained from Ck and Pk by replacing the variables  

modified in the loop, by their initial values(see example 2).  

 

3.2.2 Symbolic Executions of Programs 
Let Progi = (VTi,ATi) be an individual. Progi evaluation is 

performed as follows: 

1. For each variable ok, we add in VTi and ATi the lines 

corresponding to the following instruction if (Rik=ok)  then 

Rik=ok (which has no effect on individual execution). 

2. We compute backwards the successive Weakest 

Preconditions of the predicate(Rik=ok) w.r.t. all   the  lines of   

ATi from the end to the beginning.  

3. The resulting expression ExpRik represents, all the possible 

expressions of the output ok with their corresponding 

conditions. 

4.  For each fitness case, replace the input variables in ExpRik. 

by their value and deduce the value of Rik making ExpRik 

True.  

So, the same ExpRik is used to compute all fitness cases for the 

individual Progi: This constitutes the first advantage of symbolic 

executions. 

3.2.3 Individual Execution Examples 

3.2.3.1 Example 1 
Let’s consider the program Progi having as input x and y and as 

output b. Let’s call r the expression of the result. 

 

               VT     AT  

 

 

 

Figure 2.  Execution Example 1. 

 

WP(l2,r=b)=(a>0)WP([3,4[,r=b)(a<=0)WP([4,5[,r=b) 

                    =(a>0)WP(3,r=b)(a<=0)WP(4,r=b) 

                    =(a>0)(r=a+1)(a<=0)(r=a-1)=D 

WP(l1,D)=(x>y)WP([1,2[,D)(x<=y)WP([2,3[,D) 

                =(x>y)WP(1,D)(x<=y)WP(2,D) 

                =(x>y)[(x>0)(r=x+1)(x<=0)(r=x-1)] 

                  (x<=y)[(y>0)(r=y+1)(y<=0)(r=y-1]   (I) 
The expression (I) is the Result Expression. It represents exactly 

the result r expressed w.r.t all possible values of the input 

variables x and y. The evaluation of Progi on all the fitness cases 

consists to replace x, y and r by their values and to check if (I) is 

True. 

Let C1 and C2 be two fitness cases C1=(x=10,y=1,b=5) and 

C2=(x=-5,y=6,b=7).  Let execute Progi with these two cases:  

For C1:  we replace in (I) : x by 10 and y by 1. 

(I)= (10>1)[(10>0)(r=10+1)(10<=0)(r=10-1)]    

       (10<=1) [(1>0)(r=1+1)(1<=0)(r=1-1]. 

    = (T)[(T)(r=11)(F)(r=9)]    

        (F) [(T)(r=2)(F)(r=0]. 

     = (r=11). This expression is True if and only if r=11.  

So, the result found by the execution of the individual Progi is 11 

while the required output is b=5.       

For C2: 

(I) = (-5>6)[(-5>0)(r=-5+1)(-5<=0)(r=-5-1)]  

        (-5<=6) [(6>0)(r=6+1)(6<=0)(r=6-1].   

      =(F)[(F)(r=-4)(T)(r=-6)] (T) [(T)(r=7)(F)(r=5].   

      =(r=7)    Which represents the expected output (b=7). 

So for each individual the same formula is used to compute the 

results corresponding to all the fitness cases. 

3.2.3.2 Example 2 
Loop:  input n, output s; Fitness Case: (n=3,s=5) 

 

 

 

 

 

 

 
Figure 3.  Execution Example 2. 

 

WP(l1,r=s)=?   C0=(i<3);P0=(r=s); k=1; 

P1=WP([3,5[,r=s)= (r=s+i) 

C1=WP([3,5[,i<n)=(i+1<n)  so, C1’=(1+1<3)=(2<3)=True 

P2=WP([3,5[,r=s+i)=(r=s+i+i+1); 

C2=WP([3,5[,i+1<n)=i+1+1<n  so C2’=(3<3)=False.  

So, WP(l1,r=s)=P2’=(r=3). So the result computed by the 

individual is 3 while the expected result is 5. 

 

3.3 Individual Improvement 
Usually, in genetic programming population improvement is 

performed in some chosen programs. Programs are elected 

depending on their fitness value. However, programs’ 

combination and mutations are generally performed in an arbitrary 

way. Hence, there is no “semantic” explanation to the following 

questions: 

 Why is it appropriate to perform this form of mutation on 

this individual?  

 Why should we recombine these two individuals in this 

way? 

In this paper, we do not focus on the first point but on programs’ 

recombination. The aim of our work is to attempt to perform 

“semantically justified” recombination.  To attain this objective, 

we exploit information deduced from executions.  Firstly, let’s 

introduce the following hypothesis:  

Loc Var Exp 

 1           A x 

2 A y 

3 B a+1 

4 B a-1 

5 R b 

 C CT CF End 

l1 x>y 1 2 3 

l2 a>0 3 4 5 

l3 r=b 5 -1 6 

Loc Var Exp 
1 i 1 
2 s 0 
3 s s+i 
4 i i+1 
5 r S 

 Cd CT CF End

d l1 i<n 3 -2 5 

l2 r=s 5 -1 6 

1:  i=1; 

2: s=0; 

    while(i<n)  

3: { s=s+i; 

4:  i=i+1} 

   if( r==s)  

5: r=s 
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1- We situate ourselves in the multi-objective context: So, the 

problem has several output variables: o1…om  we call our 

recombination operator: Multi-crossover.  

2- We note Fitik the fitness value of the program Progi for the 

computing of the output ok. In fact, in our approach, the 

fitness is not quantified by a unique value. This is justified 

by the fact that a program can compute very well an output 

variable or and fails dramatically to compute another output 

os. So, programs are judged relating to each output variable 

separately from the others.  

3- For an individual Progi, we call Si the set of all  Result 

Expressions  ( one Result Expression for each output):  

 Si= {ExpResir,,  k=1..m} 

4- Let F be a first order logical formula,  we say that F is in the 

exclusive form if one of the two conditions holds: 

 F is an atomic formula (i.e. it does not contain  nor )     

 F is of the form CPCQ , where P and Q are two  

exclusive form formulas  

Let’s notice that weakest precondition computations give as result 

an exclusive form formula. Which implies that the expressions 

ExpReik  are all  in exclusive form. 

 

3.3.1 Multi-Crossover 
Our objective is to perform judicious recombination. So, we 

evaluate programs with respect to output variables. Consequently, 

programs’ recombination is performed relatively to some output 

variable. We must take advantage of each program Progi having a 

good fitness value Fir. This is why our crossover operator does not 

create two programs but preserves the first program (the fittest on) 

and modifies only the second program. The first program could in 

its turn take advantage of another program which is better than it 

in the computing of another output. Symbolic executions make 

possible the isolation of statements computing a considered 

output. So, the idea of our crossover operator is to replace in Sj, 

the Result Expression ExpResj by ExprResi where Progi is better 

than Progj in the computing of the output ok i.e. Fitik>Fitjk. The 

obtained set Sj’ is then translated into a new program Progj’ where 

all the outputs or such that rk are computed as in Progj and ok is 

computed in the same manner than performed by Progi. This 

constitutes the second advantage of using symbolic executions 

instead of true executions. So, let Progi and Progj be two 

programs, we note Progi ⋈r Progj the recombination of Progi and 

Progj w.r.t the output variable or. The algorithm of the figure 4 

describes the crossover operation.  

 

3. Algorithm: Crossover(Prog1,Prog2,or) 

1. Input: S1, S2, or 

2. Output: Prog2’=(VT2’,AT2’) 

3. S2=S2-{ExpRes2r}{ExpRes1r } 

4. For  each formula ExpRes2k  in S2 

5. Do         Translate (ExpRes2k);                     

6. End. 

Figure 4.  Algorithm computing the Crossover of two 

programs  

 

The translation of an exclusive form formula F in an individual 

Progi=(VTi,ATi) is performed as follows: 

 

 

Algorithm: Translate(F) 

1. Input: F: An EF Formula. 

2. Output: VT,AT 

3:  If  F is an atomic formula of the form v=exp  

4:  Then Let   o  be the output variable corresponding to v 

5:            Insert(o,exp) in the current line of  VT 

6:  Else   F of the form CPCQ 

7:           Let CT be the current line in VT. 

8:            insert(C,CT,CF,End) in AT  

9:           Translate (P); 

10:           Translate(Q)                   

End. 

Figure  5.  Algorithm constructing VT and AT from an 

exclusive formula  

             

 

In the line (8), CF and End values are unknown. They will be 

updated respectively in the lines (9) and (10). 

 

Example: Let’s translate the expression (I) of the example 1 

section 3.2.3.1 we have:   

(I)     =(x>y)[(x>0)(r=x+1)(x<=0)(r=x-1)] 

           (x<=y)[(y>0)(r=y+1)(y<=0)(r=y-1]     

 

 

 

The variable r corresponds to the output variable b. We remark 

that VT and AT are quite different from the initial tables, because 

in 3.2.3.1 we used an intermediary variable a which has 

disappeared in (I),  since in (I)  we have just outputs  and inputs 

variables. 

The translation of a set of formulas is performed by translating 

each formula independently of the others. The order in which we 

do translations is not important since in the Result Expressions 

each output is expressed only by using input variables. 

3.3.2 Multi-Crossover Example 
Let’s consider a population constituted of Prog1, Prog2, and 

Prog3. We suppose that our problem has four input variables a, b, 

c and d and three output variables o1, o2 and o3. 

o1=Max(a,b)*c*d ; o2=|a*c|-b-d ; o3=Min(a,c)+Max(b,d). Of 

course these functions are unknown in the problem. The three 

individuals are: 

 

 

 

 

 

 

 

 

 

 

C CT CF End 

x>y 1 3 5 

x>0 1 2 3 

y>0 3 4 5 

Loc Var Function 

 1           b x+1 

2 b x-1 

3 b y+1 

4 b y-1 
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If  (a>b)  

       o1=a*c*d 

else o1= b*c*d 

if (a*c>0)  

        o2=a*c-b-d 

else  o2= -a*c-b-d 

if (b>d)  

     if (a<c)  

            o3=a+b 

     else o3=c+b 

else if (a<c) 

              o3=a+d 

       else o3=c+d 

 

Prog1:  

 

 

 

 

 

 

 

 

 

 
ExpRes11=(a>b)(Res1=a*c*d)(a<=b) )(Res1=b*c*d) 

ExpRes12=(Res2=a*c-b-d) 

ExpRes13=(a>c)( a>b (Res3=c+a)(a<=b)(Res3=c+b)) 

                  (a<=c)( a>b (Res3=2*a)(a<=b)(Res3=a+b)) 

 

Prog2:  
 

 

 

 

 

 

 

 

 

 
 

ExpRes21= (Res1=a*c*d) 

ExpRes22=(a*c>0)(Res2=a*c-b-d)(a*c<=0)(Res2=-a*c-b-d) 

ExpRes23=(b>d)(Res3=b+a)(b<=d)(Res3=d+a) 

 

Prog3:  

 

 

 

 

 

 
 

 

 

 

 

 

ExpRes31=(Res31=b*c*d) ;    

ExpRes32=(Res2=c-b-d) 

ExpRes33=(b>d)((a<c) (Res3=a+b)(a>=c)(Res3=c+b)) 

                  (b<=d)((a<c) (Res3=a+d)(a>=c)(Res3=c+d)) 

 

In a real problem, we have not the expression of the expected 

functions, but instead we have fitness cases. So, let’s suppose that 

after executing all fitness cases, we find that each individual Progi 

is the best in computing the output oi computing. Hence, let’s 

compute Prog1⋈ 1Prog2=(Prog1,Prog2’)  

We will then have the following Result Expressions for Prog2’:  

ExpRes21’=ExpRes11; 

ExpRes22’=ExpRes22; 

ExpRes23’=ExpRes23 

Now let’s compute Prog3⋈ 3Prog2’=(Prog3,Prog2’’). We will 

then have the following expressions ExpRes for Prog2’’:  
ExpRes21”=ExpRes11;ExpRes22”=ExpRes22;ExpRes23”=ExpRes33. 

The translation of this set of Result Expressions gives: 

  

 

                                                                 

 

 

 

 

 

 

 

 

 

This corresponds to the following C-program:  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

We remark that this program, automatically generated from Prog1, 

Prog2 and Prog3, computes the three output o1, o2 and o3. 

 

4. CONCLUSION 
We have presented an original and efficient approach to program 

improvement in multi-objective genetic programming. The 

modeling we have used is as simple as effective. Our work 

presents several contributions: 

1. The computing of the fitness value with respect to each 

output is as realistic as advantageous: A same program could 

be fit in the computing of some output but unfit for another 

one. 

2. Result Expression translation to a program is the simplest 

way to guarantee that the constructed program computes as 

desired the corresponding output. Furthermore, the 

translation is effortless.  

3. Our crossover operator guarantees that the obtained program 

is effectively better than its predecessor.  

4. All Result Expressions must be computed to run fitness 

cases, consequently, the crossover operator does not need 

further computations.  

Loc Var Exp 

1 mx  a 

2 mx b 

3 o1 mx*c*d 

4 o2 a*c-b-d 

5 mn c 

6 mn a 

7 o3 mn+mx 

8 res1 o1 

9 res2 o2 

10 res3 o3 

CD CT CF END 

a>b 1 2 3 

a>c 5 6 7 

res1=o1 8 -1 9 

res2=o2 9 -1 10 

res3=o3 10 -1 11 

Loc Var Exp 

1 o1 a*c*d 

2 abs a*c 

3 abs -a*c 

4 o2 abs-b-d 

5 m b 

6 m d 

7 o3 m+a 

8 res1 o1 

9 res2 o2 

10 res3 o3 

CD CT CF END 

a*c>0 2 3 4 

b>d 5 6 7 

res1=o1 8 -1 9 

res2=o2 9 -1 10 

res3=o3 10 -1 11 

Loc Var Exp 

1 o1  b*c*d 

2 o2 c-b-d 

3 mi a 

4 mi c 

5 ma b 

6 ma d 

7 o3 mi+ma 

8 res1 o1 

9 res2 o2 

10 res3 o3 

CD CT CF END 

a<c 3 4 5 

b>d 5 6 7 

res1=o1 8 -1 9 

res2=o2 9 -1 10 

res3=o3 10 -1 11 

Loc Var Exp 

1 o1 a*c*d 

2 o1 b*c*d 

3 o2 a*c-b-d 

4 o2 -a*c-b-d 

5 o3 a+b 

6 o3 c+b 

7 o3 a+d 

8 o3 c+d 

CD CT CF END 

a>b 1 2 3 

a*c>0 3 4 5 

b>d 5 7 9 

a<c 5 6 7 

a<c 7 8 9 
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5. It is not an obvious task to decompose a program in such a 

way to obtain just the required treatments for the required 

output: which we performed in our work. 

6. Backwards computations could be seen as an abstraction 

technique since in a backward investigation we track just the 

desired variables. 

7. Every extra-treatment, i.e. statements which do not 

contribute in the computing of any output, will disappear in 

the final solution since they will not appear in the Result 

Expressions. 

 

However, several future directions could be envisaged for this 

work: The first is the experimentation of the method on real world 

problems. The second consists to explore the use of other 

program’s properties to create individuals verifying the desired 

behavior. 
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