
A New Framework for Scalable Genetic Programming

Nassima Aleb
USTHB-FEI Faculty

BP 32 AL ALLIA Bab Ezzouar
Algiers, Algeria

naleb@usthb.dz

Samir Kechid
USTHB-FEI Faculty

BP 32 AL ALLIA Bab Ezzouar
Algiers, Algeria

skechid@usthb.dz

ABSTRACT

This paper presents a novel framework for scalable multi-

objective genetic programming. We introduce a new program

modeling aiming at facilitating programs’ creation, execution and

improvement. The proposed modeling allows making symbolic

executions in such a way to reduce drastically the time of

programs’ executions and to allow well-founded programs

recombination.

Categories and Subject Descriptors

I.2.2:[Automatic Programming]; D.2.5:[Symbolic Execution];

F.3.1:[Pre and Post Condition].

General Terms

Algorithm; Languages; Design; Performance.

Keywords

Genetic Programming; Program Representation; Weakest

Precondition; Semantic Crossover.

1. INTRODUCTION
Genetic programming (GP) is an evolutionary-based methodology

inspired by biological evolution to find computer programs that

perform a user-defined task. GP is a method of automatically

generating computer programs to perform specified tasks [1]. It

uses a genetic algorithm to search through a space of possible

computer programs for one which is nearly optimal in its ability to

perform a particular task. GP develops programs, usually

represented in memory as trees. Trees are recursively evaluated.

Every tree node has an operator function, and every terminal node

has an operand. Accordingly traditionally GP favors

predominantly the use of programming languages that naturally

embody tree structures such as functional programming languages

[3]. Usually, genetic operators are designed so that the resulting

children are syntactically valid individuals. However there have

been several attempts in using semantics to enhance GP in solving

problems. The use of formal methods is one of these attempts

which have been raised just recently. Formal methods are a class

of mathematically based techniques for the specification,

development and verification of software and hardware systems.

[6, 7, 8, 9] are the first works which pioneered this area of

research for GP. Two kinds of formal techniques have been used

in GP, abstract interpretation [11] and model checking [5].

Abstract interpretation performs analysis on abstract domains

instead of concrete ones. Using abstract interpretation, we can

deduce information about some interesting program’s properties.

In [6, 7], this information is used as a measure of the fitness. A

placement problem is studied in [6]. With this kind of problem, it

is very difficult to use traditional fitness measures that are based

on a set of sample cases. Firstly, generating a set of sample cases

is not easy in this situation. Secondly, even if a set of sample

cases can be created, we cannot guarantee that the desired

constraints will always be satisfied as the list of sample cases

cannot cover all situations. In [14], abstract interpretation is used

to check if an individual can be undefined in the whole range of

input values. For example, if an individual contains the function

log(x) and one can infer that the variable x can take negative

values; this individual will be considered as an undefined

individual, so it must be deleted from the population. Model

checking is an algorithmic technique to verify a system

description against a specification represented as a temporal logic

formula. In [9], a system is modeled by a set of temporal logic

formulas. The fitness function is measured by counting the

number of satisfied formulas. Individual satisfies more

propositions, it has a greater fitness value. The drawback of this

approach is that a formula, which is nearly satisfied, will be

considered as an absolutely unsatisfied formula. This weakness is

considered by some later research in [12, 13], which used GP with

model checking to check if a path in the graph that represents the

behavior of the system, is satisfied by the formula. The fitness

function is based on scores depending on the number of satisfied

paths in the graph. The advantage of formal methods lies in their

rigorous mathematical foundations, potentially helping GP to

evolve computer programs. However, they are high in complexity

and difficult to implement, which explains why they have been

used mainly for fitness measures. In this paper, we present a new

program representation for GP. It allows:

1. An easy program manipulation.

2. A rapid population evaluation.

3. “Semantically justified” programs’ recombination.

The rest of the paper is organized as follows: Section 2 presents

program modeling. In the section 3 we introduce our framework,

we describe how is performed each of the well-known steps of

GP. We focus on individual evaluation and semantic crossover

operator. These points are illustrated by clarifying examples.

Section 4 concludes by highlighting contributions of this paper,

and exposing some possible future directions.

2. PROGRAM MODELING
Since individuals must be widely manipulated by: evaluation,

recombination and mutation it is essential to design a program

modeling which is as simple as efficient. We represent an

individual by two tables. The first table, called: Variable Table,

records the different expressions allowing computing program

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.

Copyright 2012 ACM 978-1-4503-1178-6/12/07...$10.00.

487

variables values. The second table: Architecture Table describes

the program structure.

2.1 Variable Table: VT
The variable table is composed of three columns the first one is an

integer representing the statement location in the program. The

second column represents the variable name; the last one is the

expression allowing to compute the corresponding variable value.

An expression could be: An input, a constant or a call to a

predefined function.

2.2 Architecture Table: AT
The Architecture Table describes the program’s structure. It

contains constraints that make possible the execution of each

statement of VT. AT models the conditionals loop statements.

Conditional statements: There are two sorts of conditional

statements: alternative statement (with the else branch) and the

simple conditional (without the else branch).

An alternative statement is modeled by (C,CT,CF,End) where:

- C: is a Boolean expression representing the condition of the

 statement.

- CT: is the location of the first instruction to perform if Cd is

 TRUE

- CF: is the location of the first instruction to perform if Cd is

 FALSE

- End: is the location of the first instruction after the conditional

 statement.

A simple conditional statement is represented by (C,CT,End)

with C,CT and End having the same meaning as the alternative

statement. CF is set to (-1)

Loops: A loop statement is modeled by (C,CT,End) where :

- C: is a Boolean expression representing the condition of the

 statement.

- CT: is the location of the first instruction in the loop.

- End: is the location of the first instruction after the loop.

 CF is set to (-2).

2.3 Example of Individual Modeling
 VT

 AT

Figure 1. C-Program Modeling Example.

3. A NEW FRAMEWORK FOR GENETIC

PROGRAMMING
As usual, in genetic programming four steps are used to solve

problems:

(1) Generate an initial population of random compositions of

 functions and terminals of the problem.

(2) Execute each program of the population, with all the fitness

 cases, and assign it a fitness value according to how well it

 solves the problem.

(3) Select individuals for crossover and mutation

(4) Create a new population of computer programs.

 i) Reproduce the best existing programs

 ii) Create new computer programs by mutation.

 iii) Create new computer programs by crossover.

(5) The best program that appeared in any generation, the best-

 so-far solution, is designated as the result of genetic

 programming [3].

In the subsequent, we will describe how each of these points is

performed in our framework.

3.1 Initial Population
The initial population is constituted of a set of pairs (VTi,ATi)

one pair for each individual. The tables are filled randomly.

Problem functions and terminals are used in both variable table

and architecture one. There are of course some syntactic rules to

verify in the filling of (VTi,ATi), (like End>CT…).

3.2 Individual Evaluation
To evaluate an individual, we must execute it with all fitness

cases. To reduce individual execution time, we perform symbolic

executions. The idea is to compute a formula for each output of

the genetic program: we call it Result Expression. So, for each

output variable, the corresponding Result Expression summarizes

all the expressions of the output variable with respect to input

variables. Henceforth, for an individual the same obtained formula

is used to evaluate all fitness cases by replacing input variables by

their values and verify if the corresponding output value is

correct. To perform symbolic executions, we use the concept of

Weakest Precondition [4].

3.2.1 Weakest Precondition (WP)
Let v=e be an assignment, where v is a variable and e is an

expression of the appropriate type. Let P be a predicate. By

definition, WP(v=e,P) is P with all occurrences of v replaced with

e. For example: WP(y=x+2, y>8) = (x+2)>8. We denote

WP(l,P) the weakest precondition of the predicate P with respect

to (w.r.t.) the statement having the location l in the table VT. We

extend the definition of WP to be applied on intervals of program

locations, i.e.: a sequence of adjacent locations and on a whole

element of AT: Let i and j be two locations:

 P if no variable occurs in P

(1) WP([i,j[,P)= WP(i,P) if i=j

 WP([i,j[,WP(j-1,P)) Otherwise

Let e be an element of AT: e has the form (C,CT,CF,End):

(2) WP(e,P)=

 CWP([CT,CF[,P)CWP([CF,End[,P) if (CF>0)

 CWP([CT,End[,P)CP if (CF=-1)

Loc Var Expression

 1 Z x+1

2 Y x-1

3 Z x-1

4 Y x+1

5 Z z+2

6 T Z

7 T -z

8 Y 0

9 Y 1

C CT CF End

z=x 1 3 5

z<3 6 7 10

t=-1 8 9 10

scanf(”%d%d”,&z,&x)

 if (z==x)

1: { z=x+1;

2: y=x-1; }

 else

3: { z=x-1;

4: y=x+1 ;}

5: z=z+2;

 if (z<3)

6: { t=z ; }

 else

7: { t=-z;

 if (t==-1)

8: {y=0;}

 else

9: { y=1;} }

488

(3) WP([Si,Sj[[Sk,Sl[,Cd)=WP([Si,Sj[,WP([Sk,Sl[,Cd)).

(4) Loops: Let l be an element (a line) in AT having the form

(C,CT,-2,End). Weakest precondition computing of a predicate P

w.r.t. l is performed as follow:

 C0=C; P0=P ; k=1;

While(True) { Pk=WP([CT,End[,Pk-1); Ck=WP([CT,End[,Ck-1)

 (If (Ck’=False)(Pk=Pk-1) { WP(l,P)=Pk’ ; exit }

 k=k+1; }

Ck’ and Pk’ are obtained from Ck and Pk by replacing the variables

modified in the loop, by their initial values(see example 2).

3.2.2 Symbolic Executions of Programs
Let Progi = (VTi,ATi) be an individual. Progi evaluation is

performed as follows:

1. For each variable ok, we add in VTi and ATi the lines

corresponding to the following instruction if (Rik=ok) then

Rik=ok (which has no effect on individual execution).

2. We compute backwards the successive Weakest

Preconditions of the predicate(Rik=ok) w.r.t. all the lines of

ATi from the end to the beginning.

3. The resulting expression ExpRik represents, all the possible

expressions of the output ok with their corresponding

conditions.

4. For each fitness case, replace the input variables in ExpRik.

by their value and deduce the value of Rik making ExpRik

True.

So, the same ExpRik is used to compute all fitness cases for the

individual Progi: This constitutes the first advantage of symbolic

executions.

3.2.3 Individual Execution Examples

3.2.3.1 Example 1
Let’s consider the program Progi having as input x and y and as

output b. Let’s call r the expression of the result.

 VT AT

Figure 2. Execution Example 1.

WP(l2,r=b)=(a>0)WP([3,4[,r=b)(a<=0)WP([4,5[,r=b)

 =(a>0)WP(3,r=b)(a<=0)WP(4,r=b)

 =(a>0)(r=a+1)(a<=0)(r=a-1)=D

WP(l1,D)=(x>y)WP([1,2[,D)(x<=y)WP([2,3[,D)

 =(x>y)WP(1,D)(x<=y)WP(2,D)

 =(x>y)[(x>0)(r=x+1)(x<=0)(r=x-1)]

 (x<=y)[(y>0)(r=y+1)(y<=0)(r=y-1] (I)
The expression (I) is the Result Expression. It represents exactly

the result r expressed w.r.t all possible values of the input

variables x and y. The evaluation of Progi on all the fitness cases

consists to replace x, y and r by their values and to check if (I) is

True.

Let C1 and C2 be two fitness cases C1=(x=10,y=1,b=5) and

C2=(x=-5,y=6,b=7). Let execute Progi with these two cases:

For C1: we replace in (I) : x by 10 and y by 1.

(I)= (10>1)[(10>0)(r=10+1)(10<=0)(r=10-1)] 

 (10<=1) [(1>0)(r=1+1)(1<=0)(r=1-1].

 = (T)[(T)(r=11)(F)(r=9)] 

 (F) [(T)(r=2)(F)(r=0].

 = (r=11). This expression is True if and only if r=11.

So, the result found by the execution of the individual Progi is 11

while the required output is b=5.

For C2:

(I) = (-5>6)[(-5>0)(r=-5+1)(-5<=0)(r=-5-1)] 

 (-5<=6) [(6>0)(r=6+1)(6<=0)(r=6-1].

 =(F)[(F)(r=-4)(T)(r=-6)] (T) [(T)(r=7)(F)(r=5].

 =(r=7) Which represents the expected output (b=7).

So for each individual the same formula is used to compute the

results corresponding to all the fitness cases.

3.2.3.2 Example 2
Loop: input n, output s; Fitness Case: (n=3,s=5)

Figure 3. Execution Example 2.

WP(l1,r=s)=? C0=(i<3);P0=(r=s); k=1;

P1=WP([3,5[,r=s)= (r=s+i)

C1=WP([3,5[,i<n)=(i+1<n) so, C1’=(1+1<3)=(2<3)=True

P2=WP([3,5[,r=s+i)=(r=s+i+i+1);

C2=WP([3,5[,i+1<n)=i+1+1<n so C2’=(3<3)=False.

So, WP(l1,r=s)=P2’=(r=3). So the result computed by the

individual is 3 while the expected result is 5.

3.3 Individual Improvement
Usually, in genetic programming population improvement is

performed in some chosen programs. Programs are elected

depending on their fitness value. However, programs’

combination and mutations are generally performed in an arbitrary

way. Hence, there is no “semantic” explanation to the following

questions:

 Why is it appropriate to perform this form of mutation on

this individual?

 Why should we recombine these two individuals in this

way?

In this paper, we do not focus on the first point but on programs’

recombination. The aim of our work is to attempt to perform

“semantically justified” recombination. To attain this objective,

we exploit information deduced from executions. Firstly, let’s

introduce the following hypothesis:

Loc Var Exp

 1 A x

2 A y

3 B a+1

4 B a-1

5 R b

 C CT CF End

l1 x>y 1 2 3

l2 a>0 3 4 5

l3 r=b 5 -1 6

Loc Var Exp
1 i 1
2 s 0
3 s s+i
4 i i+1
5 r S

 Cd CT CF End

d l1 i<n 3 -2 5

l2 r=s 5 -1 6

1: i=1;

2: s=0;

 while(i<n)

3: { s=s+i;

4: i=i+1}

 if(r==s)

5: r=s

489

1- We situate ourselves in the multi-objective context: So, the

problem has several output variables: o1…om we call our

recombination operator: Multi-crossover.

2- We note Fitik the fitness value of the program Progi for the

computing of the output ok. In fact, in our approach, the

fitness is not quantified by a unique value. This is justified

by the fact that a program can compute very well an output

variable or and fails dramatically to compute another output

os. So, programs are judged relating to each output variable

separately from the others.

3- For an individual Progi, we call Si the set of all Result

Expressions (one Result Expression for each output):

 Si= {ExpResir,, k=1..m}

4- Let F be a first order logical formula, we say that F is in the

exclusive form if one of the two conditions holds:

 F is an atomic formula (i.e. it does not contain  nor )

 F is of the form CPCQ , where P and Q are two

exclusive form formulas

Let’s notice that weakest precondition computations give as result

an exclusive form formula. Which implies that the expressions

ExpReik are all in exclusive form.

3.3.1 Multi-Crossover
Our objective is to perform judicious recombination. So, we

evaluate programs with respect to output variables. Consequently,

programs’ recombination is performed relatively to some output

variable. We must take advantage of each program Progi having a

good fitness value Fir. This is why our crossover operator does not

create two programs but preserves the first program (the fittest on)

and modifies only the second program. The first program could in

its turn take advantage of another program which is better than it

in the computing of another output. Symbolic executions make

possible the isolation of statements computing a considered

output. So, the idea of our crossover operator is to replace in Sj,

the Result Expression ExpResj by ExprResi where Progi is better

than Progj in the computing of the output ok i.e. Fitik>Fitjk. The

obtained set Sj’ is then translated into a new program Progj’ where

all the outputs or such that rk are computed as in Progj and ok is

computed in the same manner than performed by Progi. This

constitutes the second advantage of using symbolic executions

instead of true executions. So, let Progi and Progj be two

programs, we note Progi ⋈r Progj the recombination of Progi and

Progj w.r.t the output variable or. The algorithm of the figure 4

describes the crossover operation.

3. Algorithm: Crossover(Prog1,Prog2,or)

1. Input: S1, S2, or

2. Output: Prog2’=(VT2’,AT2’)

3. S2=S2-{ExpRes2r}{ExpRes1r }

4. For each formula ExpRes2k in S2

5. Do Translate (ExpRes2k);

6. End.

Figure 4. Algorithm computing the Crossover of two

programs

The translation of an exclusive form formula F in an individual

Progi=(VTi,ATi) is performed as follows:

Algorithm: Translate(F)

1. Input: F: An EF Formula.

2. Output: VT,AT

3: If F is an atomic formula of the form v=exp

4: Then Let o be the output variable corresponding to v

5: Insert(o,exp) in the current line of VT

6: Else F of the form CPCQ

7: Let CT be the current line in VT.

8: insert(C,CT,CF,End) in AT

9: Translate (P);

10: Translate(Q)

End.

Figure 5. Algorithm constructing VT and AT from an

exclusive formula

In the line (8), CF and End values are unknown. They will be

updated respectively in the lines (9) and (10).

Example: Let’s translate the expression (I) of the example 1

section 3.2.3.1 we have:

(I) =(x>y)[(x>0)(r=x+1)(x<=0)(r=x-1)]

 (x<=y)[(y>0)(r=y+1)(y<=0)(r=y-1]

The variable r corresponds to the output variable b. We remark

that VT and AT are quite different from the initial tables, because

in 3.2.3.1 we used an intermediary variable a which has

disappeared in (I), since in (I) we have just outputs and inputs

variables.

The translation of a set of formulas is performed by translating

each formula independently of the others. The order in which we

do translations is not important since in the Result Expressions

each output is expressed only by using input variables.

3.3.2 Multi-Crossover Example
Let’s consider a population constituted of Prog1, Prog2, and

Prog3. We suppose that our problem has four input variables a, b,

c and d and three output variables o1, o2 and o3.

o1=Max(a,b)*c*d ; o2=|a*c|-b-d ; o3=Min(a,c)+Max(b,d). Of

course these functions are unknown in the problem. The three

individuals are:

C CT CF End

x>y 1 3 5

x>0 1 2 3

y>0 3 4 5

Loc Var Function

 1 b x+1

2 b x-1

3 b y+1

4 b y-1

490

If (a>b)

 o1=a*c*d

else o1= b*c*d

if (a*c>0)

 o2=a*c-b-d

else o2= -a*c-b-d

if (b>d)

 if (a<c)

 o3=a+b

 else o3=c+b

else if (a<c)

 o3=a+d

 else o3=c+d

Prog1:

ExpRes11=(a>b)(Res1=a*c*d)(a<=b))(Res1=b*c*d)

ExpRes12=(Res2=a*c-b-d)

ExpRes13=(a>c)(a>b (Res3=c+a)(a<=b)(Res3=c+b))

 (a<=c)(a>b (Res3=2*a)(a<=b)(Res3=a+b))

Prog2:

ExpRes21= (Res1=a*c*d)

ExpRes22=(a*c>0)(Res2=a*c-b-d)(a*c<=0)(Res2=-a*c-b-d)

ExpRes23=(b>d)(Res3=b+a)(b<=d)(Res3=d+a)

Prog3:

ExpRes31=(Res31=b*c*d) ;

ExpRes32=(Res2=c-b-d)

ExpRes33=(b>d)((a<c) (Res3=a+b)(a>=c)(Res3=c+b))

 (b<=d)((a<c) (Res3=a+d)(a>=c)(Res3=c+d))

In a real problem, we have not the expression of the expected

functions, but instead we have fitness cases. So, let’s suppose that

after executing all fitness cases, we find that each individual Progi

is the best in computing the output oi computing. Hence, let’s

compute Prog1⋈ 1Prog2=(Prog1,Prog2’)

We will then have the following Result Expressions for Prog2’:

ExpRes21’=ExpRes11;

ExpRes22’=ExpRes22;

ExpRes23’=ExpRes23

Now let’s compute Prog3⋈ 3Prog2’=(Prog3,Prog2’’). We will

then have the following expressions ExpRes for Prog2’’:
ExpRes21”=ExpRes11;ExpRes22”=ExpRes22;ExpRes23”=ExpRes33.

The translation of this set of Result Expressions gives:

This corresponds to the following C-program:

We remark that this program, automatically generated from Prog1,

Prog2 and Prog3, computes the three output o1, o2 and o3.

4. CONCLUSION
We have presented an original and efficient approach to program

improvement in multi-objective genetic programming. The

modeling we have used is as simple as effective. Our work

presents several contributions:

1. The computing of the fitness value with respect to each

output is as realistic as advantageous: A same program could

be fit in the computing of some output but unfit for another

one.

2. Result Expression translation to a program is the simplest

way to guarantee that the constructed program computes as

desired the corresponding output. Furthermore, the

translation is effortless.

3. Our crossover operator guarantees that the obtained program

is effectively better than its predecessor.

4. All Result Expressions must be computed to run fitness

cases, consequently, the crossover operator does not need

further computations.

Loc Var Exp

1 mx a

2 mx b

3 o1 mx*c*d

4 o2 a*c-b-d

5 mn c

6 mn a

7 o3 mn+mx

8 res1 o1

9 res2 o2

10 res3 o3

CD CT CF END

a>b 1 2 3

a>c 5 6 7

res1=o1 8 -1 9

res2=o2 9 -1 10

res3=o3 10 -1 11

Loc Var Exp

1 o1 a*c*d

2 abs a*c

3 abs -a*c

4 o2 abs-b-d

5 m b

6 m d

7 o3 m+a

8 res1 o1

9 res2 o2

10 res3 o3

CD CT CF END

a*c>0 2 3 4

b>d 5 6 7

res1=o1 8 -1 9

res2=o2 9 -1 10

res3=o3 10 -1 11

Loc Var Exp

1 o1 b*c*d

2 o2 c-b-d

3 mi a

4 mi c

5 ma b

6 ma d

7 o3 mi+ma

8 res1 o1

9 res2 o2

10 res3 o3

CD CT CF END

a<c 3 4 5

b>d 5 6 7

res1=o1 8 -1 9

res2=o2 9 -1 10

res3=o3 10 -1 11

Loc Var Exp

1 o1 a*c*d

2 o1 b*c*d

3 o2 a*c-b-d

4 o2 -a*c-b-d

5 o3 a+b

6 o3 c+b

7 o3 a+d

8 o3 c+d

CD CT CF END

a>b 1 2 3

a*c>0 3 4 5

b>d 5 7 9

a<c 5 6 7

a<c 7 8 9

491

5. It is not an obvious task to decompose a program in such a

way to obtain just the required treatments for the required

output: which we performed in our work.

6. Backwards computations could be seen as an abstraction

technique since in a backward investigation we track just the

desired variables.

7. Every extra-treatment, i.e. statements which do not

contribute in the computing of any output, will disappear in

the final solution since they will not appear in the Result

Expressions.

However, several future directions could be envisaged for this

work: The first is the experimentation of the method on real world

problems. The second consists to explore the use of other

program’s properties to create individuals verifying the desired

behavior.

5. REFERENCES
[1] Banzhaf W., Beslon G.,Christensen S.,Foster J.,Kepe F.,

Lefort F.,Miller J.,Radman M., and Ramsden J. 2006. From

artificial evolution to computational evolution: a research

agenda. Nat. Rev. Genet.7(9), 729–735 (2006).

[2] Beadle L. and Johnson C.G. 2008. Semantically driven

crossover in genetic programming. In Proceedings of the

IEEE World Congress on Computational Intelligence, pages

111–116. IEEE Press, 2008.

[3] Brameier M.,and Banzhaf W. 2007. Linear Genetic

Programming. No. XVI in Genetic and Evolutionary

Computation (Springer, Berlin, 2007)

[4] Dijkstra E. 1976. A discipline of programming Prentice-

Hall, 1976.

[5] Grumberg O., Clarke E.M.,and Peled D. 1999. Model

Checking. MIT Press, 1999.

[6] Johnson C.G. 2002. Deriving genetic programming fitness

properties by static analysis. In Proceedings of the 4th

European Conference on Genetic Programming

(EuroGP2002), pages 299–308. Springer,2002.

[7] Johnson C.G. 2002. Genetic programming with guaranteed

constraints. In Recent Advances in Soft Computing, pages

134–140. The Nottingham Trent University, 2002.

[8] Johnson C.G. 2002. What can automatic programming learn

from theoretical computer science. In Proceedings of the

UK Workshop on Computational Intelligence. University of

Birmingham, 2002.

[9] Johnson C.G. 2007. Genetic programming with fitness based

on model checking. In Proceedings of the 10th European

Conference on Genetic Programming (EuroGP2007), pages

114–124. Springer, 2007.

[10] Johnson C.G. Genetic programming crossover: Does it cross

over? In Proceedings of the 12th European Conference on

Genetic Programming (EuroGP2009), pages 97–108.

Springer, 2009.

[11] Jones N.D., and Nielson F. 1995. Abstract interpretation: a

semantics based tool for program analysis. Handbook of

Logic in Computer Science, 1995.

[12] Katz G., and Peled D. 2008. Model checking-based genetic

programming with an application to mutual exclusion. Tools

and Algorithms for the Construction and Analysis of

Systems, 4963:141–156, 2008

[13] Katz G., and Peled D. 2008. Genetic programming and

model checking: Synthesizing new mutual exclusion

algorithms. Automated Technology for Verification and

Analysis, Lecture Notes in Computer Science, 5311:33–47,

2008.

[14] Keijzer M. 2003. Improving symbolic regression with

interval arithmetic and linear scaling. In Proceedings of

EuroGP’2003, pages 70–82. Springer-Verlag, April 2003.

492

