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ABSTRACT
“Medical Imaging using Bio-Inspired and Soft Computing”
(MIBISOC) is a Marie Curie Initial Training Network (ITN)
within the EU Seventh Framework Programme.

MIBISOC is a training programme in which sixteen Early-
Stage Researchers (ESRs) are exposed to a wide variety
of Soft Computing (SC) and Bio-Inspired Computing (BC)
techniques, and face the challenge of applying them to the
different situations and problems which characterize medical
image processing tasks. Hence, the main goal of the project
is to generate new methods and solutions from the combina-
tion of the ideas of experts from the area of Medical Imaging
(MI) with those working on BC and SC applications.

The Intelligent Bio-Inpired Systems laboratory (IBISlab)
in the University of Parma is one of the partners of this ITN.
In this paper, we describe the work which is being developed
in the IBISlab, as well as its future developments and main
objectives, within the framework of this ITN.

Categories and Subject Descriptors
A.1 [Introductory and Survey]; J.3 [Life and Medical
Sciences]

General Terms
Algorithms, Documentation, Experimentation

Keywords
MIBISOC, Intelligent Bio-Inspired Systems, Medical Imag-
ing, Metaheuristics, General-purpose GPU computing, Ob-

ject Detection, Object Tracking, Image Segmentation, Im-
age Registration

1. INTRODUCTION
“MIBISOC: Medical Imaging Using Bio-inspired and Soft

Computing” [15] is a Marie Curie Initial Training Network
(ITN) funded by the European Commission within the Sev-
enth Framework Program (FP7 PEOPLE-ITN-2008). The
main goal of the network is to incorporate sixteen Early
Stage Researchers (ESRs), enrolled in the programme after
a selection among about 100 candidates, into eight leading
research groups for thirty-six months under the umbrella of
a formation program in Medical Imaging (MI) using Bio-
Inspired Computing (BC) and Soft Computing (SC) which
will allow them to obtain their PhD degree. The ESRs learn
about a number of important MI-related problems, as well as
about tested and emerging BC and SC techniques, and how
to develop methods to solve the former problems by means
of the latter techniques. In addition, they are exposed to
other complementary topics such as project management,
industrial property, ethical issues in research, negotiation
techniques, etc., by means of the participation in a strictly
coordinated international team activity.

As anticipated, the general area of this project deals with
the application of intelligent systems, constituted by BC and
SC techniques, to real-world MI applications. MI is at the
heart of many of today’s improved diagnostic and thera-
peutic technologies, in which computer-based solutions offer
the opportunity to obtain quantitative measurement of the
medical condition, as well as the pre-processing techniques
of filtering, sharpening, and focusing image details, to im-
prove their interpretation by physicians. BC and SC have
been successfully applied to each of the fundamental steps
of medical image processing and analysis (e.g. restoration,
segmentation, registration or tracking, see Figure 1). The
natural partnership of humans and intelligent systems and
machines in MI is expected to provide clinicians with tools
which help them to take better decisions regarding diagnosis
and treatment. MIBISOC aims to surpass the state-of-the-
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Figure 1: MIBISOC partnership [15].

art approaches by applying intelligent systems constituted
by SC-BC techniques to real-world MI applications.

The consortium is composed of world-wide recognized re-
searchers from eight scientific institutions (six Universities,
a R&D centre and an enterprise) that are involved as full
partners, and four technical partners (a hospital, an enter-
prise, a Medical Company and a R&D centre) that provide
relevant industrial and medical experience to the ESRs (see
Figure 1). The collaboration of experts from the area of
MI with those working on BC and SC applications to com-
puter vision aims at generating new and viable methods and
solutions from the combined ideas of the two communities.

The methodology that is followed has both a theoretical
and a practical nature. Even though in most cases doctoral
studies involve training for research, in MIBISOC we would
like to focus on training by research. In this way, the out-
standing research expertise of the partners in their respective
areas, the practical know-how and the “hands on” scenarios
provided by the industrial partners (companies and hospi-
tals), supported by the experience of all the network partic-
ipants and associated partners in organizational activities
allow the network to implement a high-quality training pro-
gram which favors the exchange of knowledge between the
ESRs.

With this aim, a personalized, exhaustive and complemen-
tary career development plan (PCDP) has been designed
for each of the ESRs, consisting of: i) a personalized re-
search plan based on individual research projects; ii) local
and network-wide specific training courses, both in face-to-
face and virtual modalities; iii) the network’s complemen-
tary skills courses, workshops and final conference; and iv)
research visits to the different international partners.

The Intelligent Bio-Inspired Systems laboratory (IBISlab)
of the University of Parma (UParma in Figure 1) is one of
MIBISOC’s nodes, and is mainly investigating evolutionary

and swarm intelligence-based approaches to image analysis
such as:

• novel approaches to medical image analysis fully based
on bio-inspired algorithms, or in which bio-inspired al-
gorithms are an essential part [5];

• techniques for detecting anatomical districts of inter-
est or recognizing body postures, to be used in tasks
like: matching of real images with anatomical atlases,
extraction of features of clinical/physiological interest,
3D reconstruction and visualization, detection of mor-
phological or structural anomalies, and human body
pose estimation and tracking.

For further information about the MIBISOC project, the
interested reader is kindly asked to refer to Section 4.2 in [9]
or to visit [15].

2. BACKGROUND
This section briefly introduces some of the fundamental

computer vision and soft computing techniques applied to
medical image processing in the IBISlab, within a wider re-
search framework in which model-based detection and recog-
nition techniques are studied and developed.

2.1 Model-based object detection
and recognition

Many object detection tasks, like the localization and seg-
mentation of anatomical structures, can be reformulated as
global optimization problems. In this optimization process,
a metaheuristic is used to find the best parameters of an
object model or deformable template, which directly encode
both the object’s position and appearance within an image
by means of a specific transformation which maps model
coordinates to coordinates of the image plane. Most ap-
plications currently under development in the IBISlab can
be framed within a common general approach. In this ap-
proach, a function, which represents the similarity between
object models and an image region, is to be maximized.

Different metaheuristics are being used and compared to
tackle problems of medical and industrial interest. In the
last two decades, research on global optimization has been
very active, and many different deterministic and stochastic
algorithms for continuous optimization have been developed.
Among the stochastic approaches, Swarm Intelligence (SI),
based on animal social group behavior, and Evolutionary
Computation (EC) [14], inspired by the natural process of
Darwinian evolution, have a number of features that make
them attractive: implicit parallelism, robust and reliable
performance, global search capability, no need of specific in-
formation about the problem to solve, easy implementation,
good insensitivity to noise, and no requirement for a differen-
tiable or continuous objective function. Among these tech-
niques, Differential Evolution (DE) [40] and Particle Swarm
Optimization (PSO) [27] are among those who have recently
been most succesful [10, 37].

Giving for granted that most readers are well acquainted
with EC and SI techniques, before describing the most rel-
evant medical applications we are developing, in the follow-
ing of this section we describe only very shortly the three
population-based optimization techniques on which most of
our research is based, while we give some more detailed, al-
beit basic, information about deformable models and GPU
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computing, which are two of the most characterizing ”ingre-
dients” of our work.

2.2 Particle Swarm Optimization
PSO is a bio-inspired optimization algorithm based on the

simulation of the social behavior of bird flocks. In the last
fifteen years PSO has been applied to a very large variety of
problems and numerous variants of the algorithm have been
presented.

During the execution of PSO a set of particles moves
within a (fitness) function domain searching for its optimum
(best fitness value). The motion of each particle is driven by
the best positions visited so far by the particle itself and by
the entire swarm (gbest PSO) or by some pre-defined neigh-
borhood of the particle (lbest PSO). Consequently, each par-
ticle relies both on “individual” and on “swarm” intelligence,
and its motion can be described by the following two simple
equations which update the particles’ position and velocity:

Pn(t) = Pn(t− 1) + vn(t)

vn(t) = w · vn(t− 1)

+ c1 · rand() · (BPn − Pn(t− 1))

+ c2 · rand() · (BLPn − Pn(t− 1))

where Pn(t) and vn(t) are the position and velocity of the
nth particle in iteration t; c1, c2 and w (inertia factor) are
positive constants, rand() returns random values uniformly
distributed in [0, 1], BPn is the best-fitness position visited
so far by the particle and BLPn is the best-fitness position
visited so far by any particle of a neighborhood which may
be as large as the current swarm: in this case, this position
corresponds to the global best.

In particular, in our implementations of PSO, several al-
ternatives have been tested, from a linearly decreasing iner-
tia factor, to an inertia factor whose value is adapted to the
fitness function of each particle, and different kind of swarm
topologies in lbest PSO.

2.3 Differential Evolution
DE, first introduced by Storn and Price [40], has recently

been shown to be one of the most succesful Evolutionary
Algorithms (EAs) applied to global continuous optimiza-
tion [10]. Unlike traditional EAs, DE perturbs the current
population members with the scaled differences of randomly
selected and distinct individuals. In the first iterations, the
elements are widely scattered in the search space and have
great exploration ability while, as optimization proceeds, the
individuals tend to concentrate in the regions of the search
space with better values, so the search automatically focuses
on the most promising areas. In DE, every element acts as
a parent vector and, for each of them, a donor vector is cre-
ated. In the original version of DE, the donor vector for the
ith parent (Xi) is generated by combining three random and
distinct elements Xr1, Xr2 and Xr3. The donor vector Vi is
calculated as follows:

Vi = Xr1 + F · (Xr2 −Xr3)

where F (scale factor) is a parameter that strongly influ-
ences DE’s performances and typically lies in the interval
[0.4, 1]. After mutation, every parent-donor couple gener-
ates an offspring (the so-called trial vector) by means of a
crossover operation. Two kinds of crossover are typically
used: binomial (also called uniform) and exponential. Be-

sides F , the crossover rate Cr is another parameter which
regulates the searching behavior of DE.

2.4 Scatter Search
Scatter Search (SS), originally proposed by Glover [19],

is based on a systematic combination between solutions,
instead of a randomized one, as usually happens in EAs,
taken from a considerably reduced evolved subset of solu-
tions named the reference set (usually between five and ten
times smaller than typical EA population sizes). SS is com-
posed of 5 structural “blocks” or methods:

1. Diversification Generation: a population of solutions
P is generated with a certain degree of quality and di-
versity. The reference set R is then drawn from P , and
it is composed of the |R1| solutions with best fitness,
and the |R2| solutions from |P | with the maximum eu-
clidean distance to the reference set (hence, |R| = |R1|
+|R2|). The evolution process will work only over R;

2. Solution Recombination: in most problems a specific
solution recombination method is needed, which can
be selectively applied (for example, only to the best
solutions) and/or choosing random elements. In many
cases an existing genetic algorithm crossover operator
can be employed (like in many of our implementations
where the BLX-α is used);

3. Subset Generation: the procedure generates, in a de-
terministic way, subsets of R to which the recombina-
tion method is applied.

4. Improvement: to obtain high-quality solutions, an im-
provement method is applied to original solutions and/or
combined solutions (usually a “local search”, like So-
lis&Wets, Luus-Jaakola, Random Search or Simulated
Annealing that, among others, were tested in our ex-
periments);

5. Reference Set Update: once a new solution is obtained
(applying the combination method) it replaces the worst
solution in R only if this improves the quality of the
reference set in terms of fitness and/or diversity.

2.5 Deformable Models
The term “deformable models” was first used in the late

eighties [41] with reference to curves or surfaces, defined
within the image domain, that are deformed under the influ-
ence of “internal” forces, related with the curve features, and
“external” forces, related with the image regions surrounding
the curve. Internal forces enforce regularity constraints and
keep the model smooth during deformation, while external
forces are defined such that the model is attracted toward an
object or other features of interest within the image. One of
the first examples, called“snakes”or Active Contour Models,
was presented by Kass [26].

Active Shape Models (ASMs) [8] add more prior knowl-
edge to deformable models. These shape models derive a
“point distribution model” from sets of labelled points (land-
marks) selected by an expert in a training set of images; in
each image, a point, or set of points, is placed on the object
corresponding to its label. The model considers average po-
sitions of such points and the main modes of variation found
in the training set. While this kind of model has problems
with unexpected shapes, since an instance of the model can
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only take into account deformations which appear in the
training set, it is robust with respect to noise and image
artefacts, like missing or damaged parts. Active Appear-
ance Models [7] extend ASMs by considering not only the
shape of the model, but also other image properties, like
intensity or color.

Deformable templates are a kind of deformable models
that represent shapes as deformations of a given prototype
or template. They have been successfully applied to ob-
ject tracking [45] and object matching [24]. To define a de-
formable template, one needs, firstly, to mathematically de-
fine a prototype which describes the prior knowledge about
the object shape as the most likely appearance of the ob-
ject being sought. Secondly, one needs to provide a math-
ematical description of the possible relationships between
the template and all object shapes which can be obtained
by applying admissible transformations which can deform
the basic template and turn it into the target object, as ap-
pears in the image. These templates are specified by a set of
parameters that defines the possible variations of the target
class of objects. By modifying these parameters, it is possi-
ble to deform the template until it becomes most similar to
the target.

Although originally developed for computer vision appli-
cations to natural scenes and computer graphics problems,
the potential of deformable models in medical image analysis
has already been proven [22, 23].

2.6 General-purpose GPU computing
Modern graphics hardware has gained an important role

in the area of parallel computing. Graphic cards have been
used in 3D graphics applications and gaming but, recently,
they have also been used to accelerate general-purpose com-
putation. This is usually referred to as “General-Purpose
Graphics Processing Unit (GPGPU) programming ”.

CUDATM (Compute Unified Distributed Architecture) is
a parallel computing environment by nVIDIATM which ex-
ploits the massively parallel computation capabilities of its
most recent GPUs (containing up to several hundreds of ex-
ecution cores that can perform the same operations on dif-
ferent data). The programming model of CUDATM requires
that the problem under consideration be partitioned into
many independent sub-tasks (thread blocks), performed in
parallel by a number of cooperating threads. In particular,
the nVIDIA CUDA-C is an extension of C language that
allows development of GPUs routines (kernels), that may
be executed in parallel by N different CUDATM threads,
following the Single Instruction Multiple Thread (SIMT)
model [34]. Therefore, CUDATM is a programming model
and instruction set architecture that leverages the parallel
computing capabilities of nVIDIATM GPUs to solve com-
plex problems more efficiently than a CPU.

EC and SI algorithms, like most population-based opti-
mization methods, are inherently parallel, so implementing
them in parallel seems to be the way to make practical use of
these powerful search and optimization tools. In the IBIS-
lab our attention has been mainly focused on the parallel
implementation of PSO, DE and SS.

The first parallel versions of PSO, less than one decade
ago, relied on multiprocessor parallel machines or cluster
computing systems. With the introduction of GPUs, re-
search shifted towards parallel PSO on the GPU to alleviate
multi-processor and cluster systems inefficiencies, such as

Figure 2: Multimodality of the fitness function for
hippocampus detection. Even varying only two of
the parameters that control the model localization
in the image, while fixing all the others, one can see
that the fitness landscape has many local optima in
which a local search method could fall.

network overhead, shared memory access, etc. In 2009 and
2010, respectively, the first implementations of PSO and DE
based on nVIDIA CUDATM were developed [11, 12], show-
ing clear advantages of the GPU-based implementation, in
terms of computation efficiency, with respect to the corre-
sponding sequential code. Also in 2009, a hybrid between
GPU-based PSO and pattern search was developed to en-
hance the convergence of PSO [46]. More recently, other
implementations of DE have been developed [29], and fast
versions of PSO have been implemented by relaxing the syn-
chronicity constraints between particles [32].

3. ONGOING PROJECTS

3.1 Segmentation of Anatomical Brain
Structures in Biomedical Images

Among the large number of applications of automatic lo-
calization and segmentation methods in clinical and experi-
mental medicine, there is great interest in automated meth-
ods to accurately, robustly, and reproducibly localize the
hippocampus in brain images, after discoveries which estab-
lished its role as an early biomarker for Alzheimer’s disease
and epilepsy [3].

We consider the problem of extracting the region where
the hippocampus is located from the mouse brain images
included in the Allen Brain Atlas (ABA), a huge, publicly
available image database, which has recently provided scien-
tists with a gene-expression map for future study and inves-
tigation. The ABA contains a genome-scale collection of his-
tological images (cellular resolution gene-expression profiles)
obtained by In Situ Hibridization (ISH) of serial sections [1]
of mouse brains.

The fully automatic 2D localization method we propose [42]
relies on atlas-based registration (the selection of the refer-
ence slice in the atlas corresponding to the image under con-
sideration, using a two-step affine transformation) and the
optimization of the parameters of a parametric deformable
model inspired by ASMs. We search the hippocampus region
as the region which minimizes a fitness function measuring
the distance between the hypothesized position of the model
and the image; to do so we use a stochastic global search to
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deal with the multi-modality of the function we want to
minimize (see Figure 2).

We first approached the problem using PSO, comparing
later the results obtained by other optimization techniques,
like Simulated Annealing (SA) [28], Genetic Algorithms (GA)
[20], SS and DE, finding that this last method outperformed
the other four in this task.

It is important to notice that the use of DE in association
with deformable models for medical image analysis is quite
new. In fact, we are only aware of another paper [33] which
deals with such a topic.

The points located in this stage are then used as seeds for
the segmentation phase. We compared two segmentation
methods. The first combines an iterative thresholding tech-
nique based on Otsu’s method [36] and a region-growing
technique that relies on Random Forests [4]. The second
technique is based on the Level Set [35] method. This results
in a novel hybrid combination of parametric and geometric
deformable models, where the former are used to initialize
the latter.

To test the performance of the method, a ground truth
was created by manually segmenting the hippocampus in
30 real images. In order to avoid erroneous or incomplete
manual segmentations, these were supervised by an expert
in molecular biology. Every image was manually segmented
five times and, for each group of five manual segmentations,
the intersection and union images were calculated. Also 30
synthetic images were drawn including small and big ellipses,
which simulate cells, and adding gaussian and salt and pep-
per noise. The performance was evaluated in terms of True
Positives, False Positives, Dice Similarity Coefficient and
Hausdorff Distance. Both methods achieved an accuracy
close to 91% on the test set of 30 synthetic images, whilst,
on real images, the first method achieved better results with
an average accuracy of 89.65% using the consensus image
(which contains the pixels segmented in at least three out of
five manual segmentations) as ground truth.

The main characteristics of the method we developed can
therefore be summarized as follows:

• General approach. We have divided our method in: i.
initialization of the deformable model; ii. robust local-
ization of the structure of interest (Figure 3); and iii.
segmentation. A different technique can be applied for
every image modality or subcortical structure in these
three phases; in fact, we have divided the processing
pipeline into these three stages to keep them indepen-
dent from one another. The generality of the system is
also associated to the simplicity of the models we use,
which include the minimum possible problem-specific
information.

• Use of basic prior knowledge: the most invariant fea-
ture of the hippocampus is its shape. This can be
deformed according to statistical patterns dependent
on the brain section represented in the target image,
which can be determined by comparing the original im-
age with the atlas. Besides this, the hippocampus sub-
structures we want to locate are usually darker than
the immediately surrounding regions.

• General applicability: the method is applicable to vir-
tually all cases in which one can rely on a reference

Figure 3: Noise tolerance of our method. Odd rows,
original images; even rows, corresponding localiza-
tion results. The system shows to be robust in pres-
ence of artefacts, and missing or damaged regions.

atlas. A parametric model can be associated to each
reference image in the atlas, and the localization of the
anatomical structure under investigation can be turned
into an optimization problem. In order to refine the
segmentation, a classifier trained with patterns from
the structure of interest can also be useful. In this
stage, we tried several Ensemble Classifiers, like Ran-
dom Forests, to improve segmentation accuracy.

3.2 Human Body Pose Estimation
in Video Sequences

Three-dimensional human body pose estimation from video
is the problem of extracting an accurate estimation of the
posture of a human body, along with its location in space,
from an image or a frame within a video stream. The tech-
niques that deal with this problem have many potential ap-
plications in animation, interactive games, motion analysis
(sports, medical) and surveillance. In particular, using ges-
tures for interaction with computer-assisted systems can be
of great benefit, particularly in scenarios where traditional
input devices are impractical, such as the medical operating
room [39]. Another interesting application can be found in
elderly people healthcare. For instance, for an elderly person
a fall can result in quite serious injuries because of his/her
fragile bone structure. Therefore, fall detection (which usu-
ally implies object tracking and movement classification)
would be a possible utilization of this kind of techniques [38,
47]. Furthermore, robust and accurate object tracking algo-
rithms could be also applied in other contexts, like tracking
and detection of anatomical structures and abnormalities.

Human body pose estimation is a complex task that has
been invariably formulated as a high-dimensional search prob-
lem, due to the complexity of the human body pose parame-
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Figure 4: Results for the Human Body Pose Esti-
mation problem (from [31]).

terization. It has been tackled by trying to reduce the com-
plexity of the search while also relying on effective search
schemes. The search complexity can be reduced based on
local predictions, e.g., using particle filters [2, 13], or by
partitioning the search space into smaller, more manageable
subspaces [2]. The use of machine learning techniques to de-
fine specific motion models for particular actions from train-
ing data collected in advance has also been considered [6,
43]. These approaches suffer from various setbacks. The
particle-filtering solutions critically rely on a high number
of particles to adequately represent the posterior distribu-
tion, which in turn increases their computational complexity
beyond practical use when considering a wide variety of mo-
tion. As well, relying on pre-trained motion models causes
the human body tracking approaches to lose their gener-
alisation abilities, which points to methods which can reli-
ably provide motion estimates without a pre-trained motion
model [18].

In [25], an effective search algorithm was proposed, which
is capable of recovering the pose without any prior knowl-
edge of the nature of motion. The main drawback of the
method is its huge computational complexity, which makes
the time required for execution of a standard sequential im-
plementation hardly acceptable. However, relying on the
parallel nature of both the search algorithm and the

multi-view pose estimation problem by implementing the
approach on a GPU, we showed that we could reach execu-
tion times acceptable for practical purposes [31] (see some
results in Figure 4).

Again, to solve this task, a model-based approach is used.
In this case the body model consists of two layers, the skele-
ton and the skin. The skeleton layer is defined as a set of
homogeneous transformation matrices which encode the in-
formation about the position and orientation of every joint
with respect to its parent joint in the kinematic tree hi-
erarchy. The matching function compares the silhouettes
generated by the model in its candidate pose, with the sil-
houettes extracted from the original images. In Figure 5,
one can see how this process iteratively tries to improve a
candidate solution, a model deformed in some way, with re-
gard to a given measure of quality (the overlapping of the
model with the original image). So, the search for the best
model transformation is driven by the similarity function
and the metaheuristic used to optimize it. In each iteration,
the model is deformed and superimposed to the original im-
age, in order to compute the degree of overlapping with the
target image, which determines the fitness value. The search
is over when a stopping criterion is met.

Figure 5: Optimization schema for the Body Pose
Estimation problem.

DE and PSO were used for the optimization process, but
other techniques, which take time into consideration, can be
even more useful and be applied in future implementations:
Hierarchical Temporal Memory (HTM) [21], temporal Self
Organizing Map [44], or bio-inspired hierarchical classifiers,
like the Neocognitron [17].

3.3 International and multidisciplinary
collaboration

The EU Framework Programmes for Research and Tech-
nological Development promote funding programmes cre-
ated to support and encourage research in the European
Research Area. One of the main objectives is to stimulate
collaboration among European research institutions. The
PCDP defined for each ESR in MIBISOC (see Section 1) in-
cludes several collaborations between partners, and at least
two research stays/secondments at other network partners.
The network promotes the co-supervision of the ESRs’ re-
search training projects and PhD studies. The additional
co-supervision from another participant or associated part-
ner would enrich the multidisciplinary and intersectorial as-
pects of the research carried our by the ESRs and would
enhance the collaboration between the network partners.

MIBISOC has given the IBIS laboratory the opportunity
to establish collaborations with various partners of this Eu-
ropean network. In particular, we have relied on the sup-
port of members of the School of Computer Science of the
University of Nottingham (United Kingdom), experts in the
application of geometric deformable models to MRI brain
image segmentation [16], in implementing and the Level Set
method and applying it to the segmentation of the hip-
pocampus in histological images. As well, we are collabo-
rating with the IRIDIA in the Université Libre de Bruxelles
(Belgium) on the automatic parameter configuration [30]
of the different GPU implementions of metaheuristics, that
were compared in terms of efficiency, parallelism and execu-
tion time.

Other possible collaborations which we are presently con-
sidering involve the Universitätsklinikum Freiburg (Germany),
the European Center for Soft Computing in Mieres (Spain)
and the Signal and Image Processing for Neuroscience group
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of the Centre National de la Recherche Scientifique in Paris
(France).

4. CONCLUSIONS AND
FUTURE DEVELOPMENTS

One of the main motivations for this network is the de-
cisive bet of EU on research and on the consolidation of
a knowledge-based society. A network with these features
favors professional interaction and mutual enrichment, at
the scientific and intellectual level, thanks to its multidisci-
plinary nature. This network shows the need for collabora-
tion in various fields (from medicine and biology to artificial
intelligence, statistics and image processing) to achieve the
excellence in a vital field for the citizenship welfare, like
health-care.

Among the future developments for our lab, as well as for
MIBISOC, the following items could be mentioned:

• Publications of high impact factor that materialize the
investigations made to date, where new and better so-
lutions in the medical image processing field are pro-
vided (in terms of computational resources, simplicity
and understandability of the solutions, or execution
speed).

• Software tools designed for the mentioned areas (pro-
cessing,analysis and computer vision techniques ap-
plied to medical imaging using bio-inpired and soft
computing).

• Strengthening of this collaborative, multidisciplinary,
and international network by further research stays
and collaborations, as has been done so far.

With regard to the IBIS lab activities, as regards the
project related to the automatic localization of subcortical
structures in the brain, we aim to study and compare the re-
sults of the application of other approaches, ranging from the
use of probabilistic maps to fuzzy logic, and of other kinds
of deformable models and representations. Also, we would
like to test the system with other kinds of image modalities
like MRI.

As regards the human body pose estimation project, ad-
vanced techniques that take time into consideration will be
used, like HTM or temporal SOM, to be able to recognize,
and possibly assess, human actions. A very useful and in-
teresting approach would be the comparison between these
techniques and their combination with hardware economi-
cally accessible to users, like Microsoft KinectTM.
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