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ABSTRACT
Starting from non invasive experimental measurements by
Doppler echotracking, the human arterial tree of a given
patient is numerically reconstructed.The chosen approach
consists in building a simplified fluid/structure interaction
model for each artery and to find the parameters of the
network by solving an inverse problem.

The first reconstruction results of the lower arterial tree
of a healthy patient are given and show a very good agree-
ment with the echotracking measurements. Such numerical
reconstruction, that includes in particular the estimation of
the stiffness of each artery, will help for an early diagnosis
of cardiovascular diseases.

Categories and Subject Descriptors
J.3 [Computer Applications ]: Life and medical sciences

General Terms
Algorithms

Keywords
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1. INTRODUCTION
The 3D numerical simulations of blood flows in the human

arterial tree (see Figure 1) have achieved a very high level
of accuracy in the last few years. However, the computa-
tional cost of such simulations is very important. Moreover
they need the evaluation of many parameters that are very
difficult to estimate.

With some hypotheses on the geometry of the arteries
(cylindrical symmetry) and on the flow (parabolic profile),
it is possible to use a simplified 1D fluid and structure model,
far less costly and that uses a reduced number of parameters.
The latter, either numerical or physical, are optimally esti-
mated for each patient by solving an inverse problem based
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on experimental measurements of the mean velocity and dis-
tortion of the arteries at few points of the arterial tree. As
the cost function is obtained through the resolution of a
complex system of coupled partial differential equations, an
evolutionary approach is used to solve the associated inverse
problem.

In view of a medical diagnosis of cardiovascular diseases,
it is worth mentioning that the blood flow pressure and the
stiffness of each artery, two important figures that are dif-
ficult to measure, are also outputs of the numerical recon-
struction.

Figure 1: The human arterial tree

Section 2 presents the current cardiovascular risk estima-
tion with the experimental device called echotracking. Sec-
tion 3 is devoted to the description of the arterial tree model
used here. Some examples of numerical simulations with this
model are given in section 4. Finally, an inverse problem res-
olution with evolutionary algorithms is presented in section
5, leading to a more accurate estimation of the cardiovascu-
lar risk of a given patient.
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2. THE CARDIOVASCULAR RISK

2.1 Echotracking measurements
The echotracking device is a non invasive tool that can

track the heart pulse wave with echo-doppler measurements
at various points of the arterial tree (see [3]). It gives in par-
ticular the inter-adventicia diameter profile and the velocity
profile at the artery center.

Figure 2: Example of echotracking measurements

The echotracking measurements used here have been done
at the PARCC center of Hôpital Européen Georges Pompi-
dou in Paris. An example of such data for the femoral artery
is given on Figure 2.

2.2 Estimation of the arterial stiffness
The arterial stifness is a well-known index for predict-

ing cardiovascular risks (see [4] for more details). It can
be roughly estimated with echotracking measurements after
computing the pulse wave velocity, also called PWV (see
Figure 3).

Figure 3: Pulse Wave Velocity estimation
PWV=L/∆T

The coefficient PWV is directly linked to the arterial stiff-
ness with the Moens-Korteweg equation:

PWV =

√
Eh

2rρ

where E, h, r and ρ are respectively equal to the vessel wall
Young modulus, the wall thickness, the vessel radius and the
blood density.

3. THE ARTERIAL TREE MODEL
We present here a new numerical method to estimate more

accurately the arterial stiffness and other important param-
eters for a better cardiovascular risk prediction.

In the arterial tree, the blood flow velocity u(t, x) and
pressure p(t, x) at time t ∈ R and position x ∈ Ω ⊂ R3

satisfy the following 3D Navier Stokes equations:

 ∂u

∂t
+ (u · ∇)u+

1

ρ
∇p+ div

(
ν
∇u+ (∇u)T

2

)
= 0

div(u) = 0
(1)

where ρ and ν respectively denote the density and the kine-
matic viscosity of the blood. Because of the compliance
of the arterial wall, theses equations must be coupled with
an appropriate model of the vessel wall dynamics. More-
over, this compliance varies along the arterial tree and even
along a single artery for instance because of the formation
of atherosclerotic plaques or the presence of a stent.

In order to reduce both the computational time needed
to solve these equations and the number of unknown pa-
rameters, a simplified 1D model has been developped by
assuming that the artery has a cylindrical geometry with a
circular cross section (see Figure 4).

y

x

z
O

Section circulaire

t

CIRCULAR  SECTION

Figure 4: A simplified artery

After averaging the 3D Navier Stokes equations over each
cross section, a system with two unknowns for each artery,
the cross section area Ai and the volumic flux Qi, is derived
(see [1] for more details):


∂Ai
∂t

+
∂Qi
∂z

= 0

∂Qi
∂t

+
∂

∂z

(
Q2
i

Ai

)
+
Ai
ρ

∂p

∂z
+Kr

Qi
Ai

= 0
(2)

where Ai(t, z) is the cross section area at time t and po-
sition z ∈ [0, Li] for the i−th artery, and Qi(t, z) the corre-
sponding volumic flux. Note that in the more general case
the total number of arteries in the human body is equal to
55 (see [2]).

In this system, pi(t, x) denotes the pressure in the i-th
artery and is obtained through the following closure law:

pi(t, z) = βi(
√
Ai(t, z)−

√
A0,i(z)) (3)

where A0,i represents the section area of the i-th artery at
rest .

The coefficients Kr and (βi)1≤i≤55 appearing in the model
are respectively linked to the blood viscosity and the arterial
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stiffness. A formal derivation from the 3D to the 1D model
leads to the following expression for the parameter βi, also
called the rigidity coefficient of the i-th artery:

βi =
4
√
πh0,iEi
3A0,i

(4)

where h0,i and Ei respectively denote the thickness and the
Young modulus of the i-th vessel wall.

The 1D model (2) can be rewritten in a conservative form,
after omitting the index i:

∂U

∂t
+
∂F (U)

∂z
= B (U) (5)

where U = [A,Q]T are called conservative variables, F (U)
and B(U) are respectively the corresponding flux and source
terms:

F (U) =

[
Q

Q2

A
+ β

3ρ
A

3
2

]
, B (U) =

[
0

−Kr
Q
A

]
It can be observed that this system is hyperbolic, as the

Jacobian

H =
∂F

∂U
=

[
0 1

−αQ
2

A2 + β
2ρ
A

1
2 2Q

A

]
has always two real eigenvalues, of opposite sign, for all the
allowable values of U , β and ρ:

λ+ =
Q

A
+

√
β

2ρ
A

1
4 > 0

λ− =
Q

A
−

√
β

2ρ
A

1
4 < 0

The associated characteristic variables have the following
expressions: 

W+ =
Q

A
+ 2

√
2β

ρ
A

1
4

W− =
Q

A
− 2

√
2β

ρ
A

1
4

(6)

At each bifurcation, a system of six equations with six
unknowns, namely the cross section and the flux for the cor-
responding three arteries, (A1, Q1, A2, Q2, A3, Q3) on Figure
5, is solved. It is made of:
(i) A continuity equation for the flux: Q1 = Q2 +Q3.
(ii) Two total pressure conservation equations: PT,1 = PT,2

and PT,1 = PT,3 where PT,i = pi +
1

2
ρ(
Qi
Ai

)2.

(iii) Three compatibility conditions for the characteristic
variables of the hyperbolic system, (W+)1, (W−)2 and (W−)3.

The system is completed by the following initial condi-
tions: {

Ai(0, z) = A0,i(z)
Qi(0, z) = 0

and by two types of boundary conditions:
(i) At the entrance of the network: the value of the forward
characteristic variable W+(t, 0) is imposed. It can be shown
with relations (6) that it is equivalent to fix an entrance pro-
file of the cross section area A(t, 0).

(ii) At each exit of the network: an equivalent resistance con-
dition is imposed in order to simulate the downstream net-
work (see Figure 5). The resistance rate is applied through
a coefficient Ri ∈ [0, 1] at each exit of the network (see [2]
for more details).

(A2,Q2)

(A3,Q3)

(A1,Q1)

(R2)

(R3)

Figure 5: A simple network

Some preliminary works, made in particular by one of the
present authors, have validated the accuracy of the 1D model
compared to a full 3D fluid/structure model in the case of a
straight artery (see [5, 6]). In particular, it has been shown
that the velocities and diameters of an artery computed with
the 1D model were similar to the corresponding 3D values
for a well chosen value of the rigidity coefficient β. Note
that the optimal value of β was not given by expression (4)
but had to be fixed through an optimization process.

4. THE DIRECT PROBLEM
The equations of the 1D model are discretized in their con-

servative form (5) by using a second order Taylor Galerkin
scheme.

6 7

1 : common iliac (CI)

2 : external iliac (EI)

3 : internal iliac (II)

4 : femoral (F)

5 : deep femoral (DF)

6 : anterior tibial (AT)

7 : posterior tibial (PT)

1

2 3

4 5

Figure 6: The lower arterial tree

Denote ∆t the chosen time step, then the vector of un-
knowns Un at time tn = n∆t satisfies the following time-
marching scheme:
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Un+1 − Un =−∆t
∂

∂z
(Fn +

∆t

2

∂F

∂U

n

Bn)

− ∆t2

2
(
∂B

∂U

n ∂Fn

∂z
− ∂

∂z
(
∂F

∂U

n ∂Fn

∂z
))

+ ∆t(Bn +
∆t

2

∂B

∂U

n

Bn)

The spatial discretization is then done by using linear fi-
nite elements on the subdivision (zi)i∈{0,...,N} of [0, L].

The human lower arterial tree is studied here as a first
example of a numerical reconstruction (see Figure 6). It
consists in a network made of seven arteries starting from
the common iliac and ending at four arteries (internal iliac,
deep femoral, anterior and posterior tibial).

The entrance profile, namely a cross section profile de-
picted on Figure 7), is issued from an echotracking measure-
ment at the entrance of the common iliac artery of a healthy
patient.
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Figure 7: An entrance cross section profile

Three computations are presented here to show the in-
fluence of the physical parameters (the rigidity coefficients)
and the numerical parameters (the exit resistances). The
first computation uses the reference values that can be found
in the literature (see [2] for instance) whereas in the second
and third computations, these parameters have been slighty
modified (see table 1).

Case 1 Case 2 Case 3

β1 (CI) in kg/cm2/s2 649 649 649
β2 (EI) 1493 1900 1493
β3 (II) 3134 3134 3134
β4 (F) 2559 3100 2559
β5 (DP) 2652 2652 2652
β6 (AT) 5808 8000 5808
β7 (PT) 9243 9243 9243
R3 (II) adim. 0.925 0.925 0.5
R5 (DP) 0.885 0.885 0.5
R6 (AT) 0.724 0.724 0.5
R7 (PT) 0.716 0.716 0.5

Table 1: Three parameter sets

The results of the three computations are displayed on
Figure 8, here for the anterior tibial artery.

Figure 8: Cross section (top) and flux profiles (bot-
tom) in the AT artery for three parameter sets.

They show that the numerical simulations are very sensi-
tive to a minor change in few parameters of the simulation,
respectively three rigidity coefficients βi and four exit resis-
tances Ri. Knowing that the artery rigidity between two
individuals can vary in a very large amplitude, it shows the
importance to adapt the simulation to each patient.

The next section presents the method for building a patient-
specific network that fits to its associated echotracking mea-
surements.

5. THE INVERSE PROBLEM

5.1 The cost function
The resolution of the inverse problem is based on the min-

imization of an error type cost function between the numeri-
cal values and the corresponding experimental values. In the
current case, only the experimental data on velocity profiles
of four arteries have been used : the common iliac (index
number i = 1), the external iliac (i = 2), the femoral (i = 4)
and the anterior tibial artery (i = 6). All the velocities have
been measured at the median position of each artery. Thus,
the cost function writes as:

J(ψ) =
∑

k∈{1,2,4,6}

‖(Qk
Ak

)(t, Li
2

)− (Vecho)k(t)‖L2([0,T ])

‖(Vecho)k(t)‖L2([0,T ])

The eleven parameters ψ = (β1, ..., β7, R3, R5, R6, R7) on
which the optimization process is performed are:

(i) Seven rigidity coefficients for the seven arteries : (βi)i∈{1,...,7}.
(ii) Four exit resistances: (Ri)i∈{3,5,6,7}.

Note that other parameters are also included in the model,
either geometrical (Li, A0,i) or physical (Kr). As their in-
fluence is of lower order than the rigidity coefficients and the
equivalent resistances, they have been kept fixed here. How-
ever, they can easily be included in the optimization process
in the future.
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5.2 The optimization method
As seen before, the cost function J is computed through

a set of coupled fourteen PDE’s and thus a gradient type
method is difficult to implement here. For the optimization
process, a genetic algorithm has been chosen as it is now
classical for medical applications (see [7, 8, 9]).

Artère iliaque interne

Artère poplité

Artère femorale superficielle

Artère tibiale antérieure
s s

ss

cm/s cm/s

cm/s cm/s

Vitesse moyenne mesurée par écho-tracking Vitesse moyenne simulée

J 2
QPatient 1 :  résultats obtenus avec la fonction
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Figure 9: Numerical vs. experimental velocity pro-
files for the optimal network

In order to reduce the total computational time, an ap-
proximation J̃ of the exact cost function J is constructed
leading to the following metamodel-assisted GA:

- Generate initial population P = {ψi ∈ O, 1 ≤ i ≤ Npop}
- Until convergence do:
- Make approximate evaluations {J̃(ψi), 1 ≤ i ≤ Npop}
- For the best Nbest ≤ Npop elements in terms of J̃ , make

exact evaluations of them.
- Make Darwinian operations (selection, crossover, muta-

tion) on the population P with respect to J̃ .
- Generate the new population.

The number τ = Nbest
Npop

representing the rate of exact eval-

uations at a given generation is equal to 1 for the first gen-
erations and is then linearly decreasing.

The metamodel method chosen here comes from the field
of neural networks and is called RBF (Radial Basis Func-
tion) interpolation (see [10]). Suppose that the function J is
known on N points {ψi, 1 ≤ i ≤ N}, the idea is to approxi-
mate J at a new point ψ by making a linear combination of
radial functions of the type:

J̃(ψ) =

nc∑
i=1

ωiΦ(||ψ − ψi||) (2)

where {ψi, 1 ≤ i ≤ nc} ⊂ {ψi, 1 ≤ i ≤ N} is the set of the
nc ≤ N nearest points to ψ for the euclidian norm ||.||, on
which an exact evaluation of J is known. The function Φ is

a radial basis function chosen here equal to

Φ(u) =
√
u2 + r2

(multiquadric RBF) for which the parameter r > 0 is called
the attenuation parameter.

The scalar coefficients ω = (ωi)1≤i≤nc are then obtained
by solving the linear least square problem of size N × nc:

minimize err(ω) =

N∑
i=1

(J(ψi)− J̃(ψi))
2

5.3 Results
The results are depicted on Figures 9 and 10. With the

chosen approach, less than 200 exact evaluations of the cost
function J have been necessary to converge to the global
minima of J .

On Figure 9, a comparison is done between the numerical
and the experimental velocity profiles at the median position
of the four artery CI, EI, F and AT for the optimal param-
eter set that has been obtained. It can be seen that the
agreement between both profiles is excellent for every artery
on a qualitative and also a quantitative viewpoint. Figure
10 compares the cross section area profiles for the same ar-
teries. Even though these additional measurements have not
been included in the computation of the cost function, here
again, the agreement is also very good.

Figure 10: Numerical vs. experimental cross section
profiles for the optimal network.

The same reconstruction process has been tested for other
patients and has lead to the same quality of results, but with
a different set of optimal parameters. It thus validates the
whole reconstruction approach and also shows the impor-
tance of a patient specific method.

Finally, note also the computational time of a full recon-
struction process, less than 24 hours, is compatible with a
quick diagnosis of cardiovascular risks of a given patient and
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is far more precise than the one based on the PWV estima-
tion presented in section 2.

6. CONCLUSION
A new method for the reconstruction of the arterial tree

and thus the prediction of cardiovascular risks of a given pa-
tient is presented here. It is based on non invasive Doppler
echotracking measurements of blood flow velocity and arte-
rial diameter profiles at few points of the arterial tree. The
first results have shown that a perfect agreement between
computation and experiment can be reached after an opti-
mization process of the parameters of the numerical model.
This kind of reconstruction process will help for a quick and
early diagnosis of cardiovascular risks of a patient by giving
accurate informations on the arterial stiffness and on the
blood flow pressure through its whole arterial tree.
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