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ABSTRACT 
In many disease models, the dynamics are described by a system 
of differential equations. When the spread of the disease is 
controlled by a treatment strategy, an obvious challenge is to find 
the best treatment possible. Mathematically, this problem is 
known as optimal control, or dynamic optimization. To solve 
these problems, researchers are increasingly turning to 
evolutionary optimization methods. Evolutionary computation, 
however, operates on discrete, n-dimensional vectors, not on 
continuous functions, and becomes computationally 
unmanageable for large n. Thus a parameterization technique is 
required, that can represent arbitrary functions with a small 
number of parameters. The typical approach to parameterization 
in epidemiological and biomedical models is to approximate the 
control functions as piecewise constant. We show the limitations 
of this approach, and demonstrate a recently developed method, 
Bézier Control Parameterization (BCP). With relatively few 
parameters, BCP can represent continuous control functions, and 
provides an efficient and effective parameterization method for 
evolutionary control of disease models.     

Categories and Subject Descriptors 
J.3 [Computer Applications]: Life and Medical Sciences – 
biology and genetics, health.  

General Terms 
Algorithms. 

Keywords 
Control vector parameterization, Differential equations, 
Evolutionary algorithms, Mathematical biology, Optimal control. 

1. INTRODUCTION 
The spread of a disease can often be modeled by a dynamical 
system of ordinary differential equations for a set of dependent 

functions, x(t). Treatment strategies can then be modeled as 
independent control functions, u(t),  that control the spread of the 
disease. These might be public health strategies in an 
epidemiological model, or drug intervention rates in a biomedical 
model. With each control comes an associated cost, which might 
be financial, but might also be a side effect of the treatment. 
Practitioners are thus highly interested in optimal treatment 
strategies – ones that maximize healing, while minimizing cost.  

This type of problem is known as optimal control, or sometimes, 
dynamic optimization. Mathematically, the problem can be stated 
as follows: 
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where ( )F u  is the objective function, 0t  and ft  are the initial 

and final times, and f and g depend on the particular model. The 
dependent functions x(t) are known as state functions, and the 
independent u(t) as control functions. 

In a classic SIR model of an epidemic, for example the state 
functions are the populations, at time t, of those who are 
susceptible to the disease, those who are immune from the 
disease, and those who are recovered from the disease. Control 
functions might include a vaccination rate and a quarantine rate, 
both functions of time. An optimal control objective would then 
be to find a public health policy, in terms of vaccination and 
quarantine rates, that minimizes both the number of infectious 
persons, and the cost of implementing the policy.  

In this paper, we use an evolutionary direct method to solve 
optimal control problems arising from disease models. Section 2 
of the paper introduces evolutionary direct methods, and describes 
a recently developed approach, Bézier Control Parameterization 
(BCP) [1]. Some related work is described and compared to the 
BCP approach. Part 3 demonstrates the effectiveness of the 
method for various disease models, including optimal control of a 
cancerous tumour by chemotherapy, optimal control of an 
epidemic through vaccination, and optimal control of HIV 
through reverse transcription inhibitor therapy. In part 4 we draw 
conclusions and look ahead to future implementations and 
applications.  
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2. EVOLUTIONARY DIRECT METHODS 
2.1 Direct methods for optimal control 
There are two general approaches to optimal control. These are 
often labeled as direct and indirect methods. An indirect method, 
using calculus of variations techniques, transforms a given 
optimal control problem into a boundary value problem, which 
can then be solved analytically or numerically using well-known 
techniques for differential equations. An excellent introduction to 
this method, for biological models, can be found in a text by 
Suzanne Lenhart and John Workman [2].  

While the indirect method is a powerful tool mathematically, with 
existence and uniqueness results, exact solutions, or error 
estimates, it is also limited to solving only a certain class of 
problems. Increasingly, then, researchers are turning to direct 
methods, which is a more universal approach.  

In a direct method, optimal control is seen as a standard 
optimization problem: perform a search for the control function 
u(t) that optimizes the objective functional. A solution requires 
several subroutines: a global optimizer, a parameterization 
strategy to represent control functions, and a numerical technique 
for solving the dynamical system.  

2.2 Evolutionary optimization 
Evolutionary Algorithms (EAs) are powerful, global optimizers 
that treat optimization from the perspective of natural evolution: 
an initial population of feasible solutions evolves into a 
population of globally near-optimal solutions. There are typically 
two mechanisms by which new feasible solutions are formed: 
mutation (small perturbations in a binary- or real-valued 
individual) and recombination (combining the characteristics of 
two different individuals). Some form of natural selection is used 
to decide which population members “survive” to the next 
generation, and after many generations the population converges, 
to one or several near-optimal solutions.  

There are two types of EA, distinguished by the way in which 
they represent individual feasible solutions. Genetic Algorithms 
(GAs) [3] use binary representation, and are thus suitable for 
discrete or integer optimization problems. Evolutionary Strategies 
(ESs) [4] use real-valued vectors, and are better suited for the 
kind of continuous parameter optimization required for optimal 
control. 

Differential Evolution (DE) [5] is the evolutionary optimizer used 
in this paper. DE emerged in the 1990s as one of the most 
impressive ESs, converging faster and with more certainty than 
many other acclaimed global optimization methods [6]. In the 
years since, it has successfully been used in many different 
applied fields [5]. DE has been shown to be a robust and efficient 
global optimizer for direct methods in optimal control, [7]-[11].  

The crucial difference between DE and other ESs lies in mutation. 
ESs normally use predetermined probability distribution functions 
to perturb vectors, leaving them unable to adapt the perturbation 
magnitude to the topology of the objective function. DE uses the 
“differential” of two randomly chosen population vectors, ua and 
ub, to perturb a base vector uc, ( )

new c a b
F= + −u u u u , where F 

is the differential weight. The perturbation magnitude is thus 
automatically appropriate to the given landscape, and the search is 
less random, being dictated by the shape of the objective function 
itself. This property of DE is known as self-organization. 

Ultimately, it results in better convergence properties as the 
algorithm nears the global minimum.  

The specific DE strategy used here is known as DE/local-to-
best/1. In this strategy, the base vector uc is a combination of one 
“local” vector chosen at random from the population, and the 
“best” vector so far – the one with the lowest objective function 
value. F = 0.85 is the recommended differential weight. This 
strategy tends to balance robustness with fast convergence, and 
has been demonstrated as one of the more effective DE strategies 
[12]. Usually a population size of NP = 10D is effective, where   
D is the dimension of the vector u. Occasionally, when 
misconvergence occurs, NP needs to be increased. 

2.3 Control Vector Parameterization 
In a direct approach to optimal control, the optimization algorithm 
searches for real-valued functions, u(t) that best meet the 
objective. These search algorithms, however, typically operate on 
n-dimensional vectors, not on infinite dimensional function 
spaces. Thus, a parameterization strategy is required, by which 
control functions can be represented as Rn vectors. This is known 
as Control Vector Parameterization (CVP). A wide variety of 
CVPs have been used with non-evolutionary optimizers, including 
piecewise constant [13], Chebyshev polynomials [14], Lagrange 
polynomials [15], and piecewise Lagrange polynomials [16]. 

Evolutionary direct methods have been less creative. Most simply 
discretize the control function space, so that control functions are 
in fact piecewise constant. The reason for this implementation 
may be that it is the easiest parameterization to encode, or it may 
be that current researchers are simply following the path trod by 
those who first applied EAs to optimal control [17], [18]. In any 
case, there is room for improvement.  

For situations in which control functions are actually continuous, 
a piecewise constant parameterization is highly inadequate. On 
the one hand, a very high number of parameters is needed for an 
accurate approximation of the continuous functions. On the other, 
EAs are computationally expensive, and require a small number 
of parameters to converge to a near-optimal solution within a 
reasonable amount of time. In other words, using a large number 
of parameters will result in slow convergence to an accurate 
approximation of the true solution, while a small number will 
result in quick convergence to a poor approximation. A more 
creative CVP is desirable for evolutionary direct methods.  

2.4 Bézier Control Parameterization 
To be effective, the CVP should be able closely to approximate 
arbitrary, continuous, control functions. To be efficient, it must do 
so with a relatively small number of parameters. Also, CVPs that 
increase the nonlinearity of the objective function can lead to 
epistasis [19] – the nonlinear and interdependent manner in which 
the objective function relates to the design parameters. Small 
changes in several variables can result in large changes in the 
objective function. Epistatic functions can lead to premature 
convergence, because they provide so few clues as to the location 
of the global minimum. In general, a reduction of this nonlinear 
interaction, by having parameters more directly linked to the 
objective function, will enable the optimizer to converge more 
quickly. 

Bézier Control Parameterization (BCP) [1] is a CVP designed to 
parameterize continuous functions with minimal parameters and 
minimal epistasis. Bézier curves are common in engineering 
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applications, and have been used effectively with DE to optimize 
turbomachinery airfoils [20].  

An nth order Bézier curve, P(z), is defined parametrically using 
n+1 two-dimensional control points ( , )

i i i
t uP , as follows: 
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where z is the parameter. Several Bézier curve properties make 
this parameterization fit naturally within an optimal control 
strategy. Curves begin at control point P0, end at control point Pn, 
have initial slope equal to that of the line segment P0P1, ending 
slope equal to that of  Pn-1Pn, and always lie within the convex 
hull formed by the control points. The curve is nth order 
continuous throughout and never oscillates wildly away from its 
defining control points. Thus Bézier curves can parameterize 
smooth, non-oscillatory functions, with minimal epistasis, using 
only a few parameters. 

The Bézier Control Parameterization (BCP) introduced in [1] is 
designed for a single control function. A fixed, regular mesh is 
used on the t-axis. This forces the curve to be single-valued, and 
also reduces the dimension of the optimization vectors to n + 1. 

That is, the BCP [ ]
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function u(t) as the nth order parametric Bézier curve 
( ) ( ), ( )u t t z u z= , as follows: 

( )0

0

0

!
( ) (1 )

!( )!
, 0 1,

!
( ) (1 )

!( ) !

n
i n i

i

n
i n i

i

i

n
t z t i t z z

i n i
z

n
u z u z z

i n i

−

=

−

=

= + Δ −
−

≤ ≤

= −
−

⎧ ⎫
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑

∑
  (3) 

where 
0

( ) /
f

t t t nΔ = − , t0 is the initial time, and tf is the final 
time.  

The objective function, F(u), is computed as follows. The control 
function u(t), is found using the Bézier curve parameterization. It 
is stored as a set of data points, at parameters z = 0, h, 2h, …, 1. A 
step-size of h = 0.01 is used here, and can be refined when more 
accuracy is required. The IVP is then solved numerically for x(t), 
interpolating the data points to approximate u(t) as necessary. The 
differential equation solver used is MATLAB’s ode45 function, 
an explicit Runge-Kutta (4,5) formula, with the Dormand-Prince 
pair. Finally, the objective integral is evaluated, again 
interpolating to approximate x(t) and u(t), as necessary. The 
numerical integration routine is MATLAB’s quad function, a 
recursive adaptive Simpson quadrature. The value of the integral 
is the “cost” F of the vector u. The cost is then minimized by DE. 

2.5 Related Work 
The BCP method is designed to have advantages over other work 
in the field. Using only a few parameters, it can approximate 
arbitrary continuous control functions with excellent precision, 
while keeping epistatic interactions to a minimum. Contrast this 
with the following evolutionary approaches to optimal control 
models.  

Chiou and Wang [8] use a hybrid DE algorithm for optimal 
control of a fed-batch fermentation process for ethanol 
production. The goal is to find the optimal glucose feed flow rate, 
as a function of time, such that the ethanol production rate is 

maximized. The optimal feed flow rate is found by discretizing a 
24 hour period into 20 equal time segments of 1.2 h each. In other 
words, a separate constant flow rate is found for each 1.2 h 
segment of time. Optimization is then performed on these 20 
parameters. Their work is extended by Kapadi and Gudi [11], who 
use a “non-uniform control vector parameterization.” This is still 
piecewise constant, but permits variable time intervals. This more 
flexible CVP does in fact result in an improved solution, with a 
higher ethanol concentration produced in less time. However, to 
accomplish this they have had to double the number of 
parameters, to 40. Compare this to the BCP results below, section 
3, in which optimal, continuous functions are found using under 
10 parameters. 

Similarly, Lopez-Cruz et al [10] investigate optimal control of 
nitrate in lettuce growth using DE as the optimizer. The objective 
is to minimize the potentially harmful nitrate concentration in 
lettuce, and also minimize the amount of artificial greenhouse 
light required, while maintaining a certain lettuce head size over a 
fixed growing period. The controls are light intensity, carbon 
dioxide concentration, and temperature. These three potentially 
continuous functions of time were approximated as piecewise 
constant, with 20 equally-spaced time intervals, resulting in an 
optimization problem with 60 parameters. Note that the BCP 
method developed currently can parameterize only one 
continuous control function. In future work, BCP will be extended 
to permit the use of multiple controls. 

In medical applications, evolutionary direct methods have been 
used to control SARS, cancer, and HIV. Yan and Zou use a GA 
for optimal control of a SARS epidemic [21]. Two control 
functions are used, a quarantine rate for those exposed to SARS 
but asymptomatic, and an isolation rate for people displaying 
symptoms of the disease. The CVP for each control is piecewise 
constant, in three pieces: One rate for the first 60 days of the 
disease, one for the next 240 days, and a third for the last 60 days. 
Yan and Zou also solve the optimal control problem indirectly, 
permitting them to compare their piecewise constant approach 
with a much more precise solution. They find that their direct 
method controls the disease nearly as well as the indirect method, 
but at the higher cost of quarantining and isolating more people. 
This higher public health cost can potentially be eliminated by use 
of BCP, and this will be investigated in future work. 

In collaborative work with an oncologist, Liang et al [22] use a 
GA to find optimal chemotherapy schedules for treating cancer. 
The control function is piecewise constant, with a fixed drug 
dosage per day. An 84-day treatment is considered, representing 
84 parameters to be optimized. For practical reasons, oncologists 
may not in fact schedule chemotherapy on a continuous basis over 
an 84-day period. However, in this case a continuous BCP 
solution could be used to select daily dosages, with the advantage 
of improved algorithm efficiency.  

It should be noted that not all medical applications have 
continuous control functions. For example, Neri et al [23] use an 
EA to design optimal multidrug Structured Treatment Interruption 
(STI) therapies for HIV. STI therapies are on-off – the patient 
receives either the maximum dosage or none at all – and can 
potentially lower the risk of HIV mutating to drug-resistant 
strains. This type of control function is known as a bang-bang 
control. Clearly, when the control is bang-bang, piecewise 
constant CVP is precisely the correct parameterization to use, and 
we will not consider this situation.  
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3. RESULTS 
The effectiveness of the BCP parameterization is demonstrated by 
applying it to three optimal control models for diseases: optimal 
chemotherapy treatment for controlling a cancerous tumour, 
optimal vaccination schedule for controlling an epidemic, and 
optimal Reverse Transcription Inhibitor therapy for controlling 
HIV. These examples have been solved numerically by the 
indirect method in [2], permitting a comparison with the BCP 
direct method, for validation of this approach. 

3.1 Optimal chemotherapy regimen for 
cancer control 
Cancerous cells are those that can no longer regulate their cell 
growth. Due to their uncontrolled growth, these cells form 
malignant tumours that grow quickly and spread throughout the 
body. Chemotherapeutic drugs are designed to kill rapidly 
proliferating cells. Unfortunately, they do not typically 
distinguish between normal and abnormal growth. Healthy rapid-
growth cells are also targeted, such as hair follicle cells, or cells in 
the digestive tract and bone marrow. In fact, an overly aggressive 
chemotherapy regimen is as capable of causing death as the 
cancer itself. Treatment is thus restricted to a fixed time period, 
and has two important goals: to minimize both the tumour size 
and the total amount of the drug.  

For demonstration purposes, we use the following model, 
developed in [24], that describes the growth rate of a cancerous 
tumour in the presence of chemotherapy:  
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The state function, N(t), is the tumour density, normalized to 
0 1N≤ ≤ . In the absence of any treatment, the model assumes 
Gompertzian tumour growth, which is exponential for small 
tumours ( 0N ≈ ), but decreases as the tumour increases in size. 
As the tumour approaches its maximum size ( 1N ≈ ), the growth 
rate slows to zero. The parameter r represents the relative growth 
rate of the particular cancer. Chemotherapy is modelled with 
Skipper’s log-kill hypothesis, which assumes that cells are killed 
at a rate proportional to the tumour size. The control function u(t) 
represents the pharmacokinetic effect of the drug over time, and 
the parameter δ represents the magnitude of the dose.  

Since chemotherapy kills both healthy and unhealthy cells, there 
are two objectives: first to minimize the tumour density, 
represented by N(t), and second to minimize the overall toxicity, 
represented by u(t). These are combined into the single objective 
functional, 

 2 2

0

( ) ( ) ( )
T

F u AN t u t dt= +∫ , (5) 

where A is the relative weight of the first objective over the 
second, and T is the duration of the treatment. The integrand in 
the objective functional (5) is quadratic to make the problem 
possible to solve by the indirect method. The optimal control 
problem is then to minimize (5) subject to (4).  

This problem has been solved by the indirect method, in [2], for 
parameters r = 0.3, δ = 0.45, A = 3, N0 = 0.975, and T = 20. Using 
Pontryagin’s Maximum Principle, the problem is converted to a 
boundary value problem, which is solved numerically in 

MATLAB. This known solution can then be compared with the 
BCP results. 

The direct method solution uses DE to find the optimal BCP 
variables for a continuous control function u(t). The specific 
optimization strategy used is DE/local-to-best/1, with F = 0.85 
and CR = 1. BCP solutions are found for a range of Bézier curve 
orders, from n = 3 to n = 7. The dimension of the optimization 
problem is then D = n + 1, and the DE populations are of size 

10( 1)NP n= + . Initial populations are formed by random 
selection of control parameters, within the bounds [-5, 5]. 
Optimization is terminated after 200 generations. The BCP 
approach is successful in solving this problem. See Figure 1 for a 
sample solution, comparing the BCP control of degree 5 with the 
indirect solution. With only 6 optimization parameters, the BCP 
result is an excellent approximation of the indirect result.  
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Figure 1. Comparison of solutions for optimal control of 

cancer by chemotherapy, model (4), (5).  
 

In this particular example, a 20-day round of chemotherapy is 
prescribed for a very large tumour, 97.5% of its maximum 
possible size. The size makes tumour reduction more important 
than the side effects of healthy cell-kill, and a weighting factor of 
3 is chosen. Note the pattern of the resulting optimal 
chemotherapy regimen. The drug strength is high early in the 
treatment, and drops to zero by day 20. This overall pattern is a 
fairly standard medical practice. It results in a rapid initial cell-
kill for the tumour, without too much damage to the healthy cells, 
but the drop in chemotherapy strength over the last few days of 
treatment does allow the tumour to increase slightly. Typically a 
rest period would be prescribed after this regimen, to permit the 
body to recover. This would be followed by further rounds of 
treatment-rest cycles until the tumour is controlled.   

Bézier curves with more control points are better able to 
approximate arbitrary functions. One would thus expect lower 
order BCP curves to have higher deviations from the indirect 
solution.  This is in fact the case, as shown in Figure 2. The 
degree 3 curve has the highest deviation, and that deviation 
decreases monotonically as the degree of the curve is increased to 
7. This suggests that DE has indeed closely approximated the 
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globally optimal solution in each case. That is, for each n, DE has 
found the degree n Bézier curve that best minimizes the objective. 
As n is increased, those optimal Bézier curves converge to the 
actual optimal control.  
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Figure 2. Deviations from the indirect solution diminish as the 

BCP order is increased.  
 

3.2 Optimal vaccination schedule for 
epidemic control 
Next we consider a model for controlling an epidemic disease. 
Suppose that immunity can occur either through recovery from 
the disease, or through vaccination, and that everyone is born 
susceptible to the disease. Then the dynamics can be modelled 
with the well-known SEIR system of differential equations: 
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where the state functions S, E, I, and R represent the numbers of 
individuals who are Susceptible to, Exposed to, Infected by, and 
Recovered from (or immune to) the disease, respectively; and N is 
the total population size, N = S + E + I + R, at time t. SEIR 
models represent diseases with an incubation, or latency, period. 
Upon being exposed to the disease, and joining the Exposed class, 
a person remains symptom-free for a time, before becoming 
infectious and joining the Infected class of individuals.  

The real-valued parameters in (6) are as follows: b is the natural 
birth rate of the population; d the natural death rate; c is the 
incidence rate of the disease, where the number of people exposed 
is proportional to the product of those who are susceptible and 
those who are infected; e is the rate at which those exposed to the 
disease become symptomatic; and g is the rate at which infectious 
people recover. The control function u(t) represents the 
percentage of susceptible individuals being vaccinated per unit 
time. Since it is unrealistic to expect that all susceptible 
individuals could be vaccinated, the control function is limited to 
be less than 90%: 
 0 ( ) 0.9u t≤ ≤ .  (7) 

When an epidemic disease is spreading through a population, an 
optimal public health strategy is one that meets two objectives. 
The primary objective is to minimize the total number of 
infections, and the secondary is to do so at minimal cost. One way 
to formulate the two objectives is 

 2

0

min ( ) ( ) ( )
T

u

F u AI t u t dt= +∫ , (8) 

where A is the relative weight of the first objective over the 
second, and T is the duration of the vaccination program. Again, 
the quadratic term makes the indirect method transformation 
possible, mathematically. The optimal control problem is then to 
minimize F(u) (8), subject to the dynamical system (6), within the 
bounds (7). 

The bounds on the control are imposed as hard constraints. 
Wherever the control function exceeds the bounds, it is redefined 
to be the boundary value. That is, the BCP method computes the 
Bézier curve, uBez(t), as usual from (3), but the control function 
itself is defined as  
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The epidemic control problem is solved for parameters a = 0.2,    
b = 0.525, c = 10-4, d = 0.5, e = 0.5, g = 0.1, and initial values     
S0 = 1000, E0 = 100, I0 = 50, R0 = 15. Vaccination duration is        

20T =  months, and the relative objective weight is A = 0.1. For 
details of the indirect solution, see [2]. The DE strategy used is 
DE/local-to-best/1, F = 0.85, CR = 1. BCP solutions were found 
for curves of order 2, 3, and 4. The dimension of the optimization 
problem is then D = n + 1, and the DE population size used is  
NP = 10(n + 1).  The initial population is formed by random 
selection of control parameters, within the bounds [-5, 5], and 
optimization is terminated after 200 generations.  
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 Figure 3. Comparison of solutions for optimal control of an 
epidemic by vaccination, model (6) - (8). 

 
As shown in Figure 3, BCP again provides an excellent 
approximation to the numerical inverse solution. In fact, the order 
2 curve already agreed reasonably well with the indirect solution, 
and the degree 4 curve, shown, has only minor deviations. Once 
again the deviations decreased as the Bézier curve order was 
increased. Note that the curve shown is the hard constrained 
control function (9), not the actual Bézier curve. 
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The particular SEIR model parameters chosen here simulate a 
disease with a fairly low incidence rate. The optimal vaccination 
schedule involves an early round of vaccinations, beginning at 
about 20% in the first month, and then dropping significantly after 
that. This vaccination strategy protects the susceptible population 
from the significant numbers who are initially exposed to and 
infectious with the disease. This results in a rapid control of the 
epidemic. By month six, the vaccination program has ended, and 
very few people are infected. By month ten the disease has been 
eradicated. 

3.3 Optimal Reverse Transcription Inhibitor 
therapy for HIV control 
The final case study is a model for controlling the Human 
Immunodeficiency Virus (HIV) with Reverse Transcription 
Inhibitor (RTI) therapy. This therapy is based on the mechanism 
by which HIV attaches to helper T cells, the white blood cells that 
coordinate our immune system. A free HIV particle contains a 
single strand of viral RNA, its genetic instructions, and a protein 
called reverse transcriptase. This free virus particle attaches itself 
to a healthy helper T cell, injecting its viral RNA and reverse 
transcriptase. While most cells convert DNA to RNA, in order to 
communicate with other cells, retroviruses like HIV convert RNA 
to DNA through reverse transcription. The HIV particle 
essentially “writes backwards,” producing from the RNA 
instructions a chain of viral DNA. This changes the T cell. Rather 
than contributing to the immune system, the T cell is recoded to 
produce more free HIV particles, instead. Thus, if the reverse 
transcription process can be inhibited, then the spread of the virus 
can be contained. Reverse transcription inhibitors, including drugs 
such as AZT, 3TC, d4T, ddc, and ddl, do just that. They block the 
recoding of viral RNA into DNA. 

One model [25] of the interaction is as follows 
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The state functions T, I, and V represent the concentrations of 
healthy helper T-cells, infected helper T-cells, and free HIV 
particles. The control function u(t) represents the strength of the 
RTI therapy at time t, normalized to 0 1u≤ ≤ , where u = 0 
represents the maximum drug strength, and u = 1 represents no 
therapy.  

The real-valued parameters in (10) are as follows: s is the 
proportionality constant for the generation of new T cells, whose 
production rate is inversely proportional to 1 + V; m1 is the natural 
death rate of T cells; m2 is the natural death rate of infected cells; 
m3 is the death rate of free HIV particles; r is the growth rate of T 
cells, where the growth is logistic; Tmax is the maximum possible 
number of T cells; k is the proportionality constant for the 
infection of T cells, where the rate is proportional to the product 
VT; and N is the average number of virus particles produced by an 
infected T cell before it dies. Thus Nm2I is the growth rate of free 
HIV particles.  

The primary objective here is to maximize the number of healthy 
helper T cells. Recognizing that HIV may develop drug resistance 
to the RTI therapy, and that the therapy itself has side effects such 
as headaches, nausea, numbness, severe fatigue, or even kidney 
problems, the secondary goal is to minimize the cumulative drug 
strength. One way to formulate the dual objective is 
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where tf is the duration of the RTI therapy, and A is the relative 
weight of the primary objective over the secondary. Note that 

minimizing 
0
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T t dt−∫  in (11) is equivalent to maximizing 

0
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t

T t dt∫ . Finally, the bounds 0 1u≤ ≤  are imposed as hard 

constraints, as above. 

The HIV control problem is solved for model parameters s = 10, 
m1 = 0.02, m2 = 0.5, m3 = 4.4, r = 0.03, Tmax = 1500, k = .000024, 
and initial values T0 = 800, I0 = 0.04, and V0 = 1.5. The relative 
objective weight is A = 0.05, and the treatment duration is tf  = 20 
days. For details of the indirect solution, see [2]. The DE strategy 
used is DE/local-to-best/1, F = 0.85, CR = 1. BCP solutions were 
found for curves of order 3 to 6. The dimension of the 
optimization problem is then D = n + 1, and the DE population 
size used is NP = 10(n + 1).   The initial population is formed by 
random selection of control parameters, within the bounds [-5, 5], 
and optimization is terminated after 200 generations.  

The results for the HIV model correspond to those of the earlier 
models. The BCP method closely approximates the indirect 
solution, even for the degree 3 curve, shown in Figure 4. 
Deviations from the indirect solution again diminish as the degree 
of the curve increases. 
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Figure 4. Comparison of solutions for optimal control of HIV 

by RTI therapy, model (10), (11). 
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The optimal treatment begins with maximum RTI strength for the 
first five days, and then decreases to zero strength by day 20. 
Under this strategy, the concentration of healthy T cells steadily 
increases over the duration of the therapy. This behaviour is 
indeed commonly seen in drugs such as AZT and DDT. While not 
shown in Figure 4, the infected T cells and the free virus particles 
decrease initially. They do recover slightly as the RTI strength 
lessens, but never to concentration levels that approach those of 
the initial infection.  

4. CONCLUSIONS  
The BCP method proves successful for each of the varied optimal 
control problems for disease models considered here. It results in 
an accurate approximation of solutions obtained by indirect 
methods, but with considerably less effort, as only one algorithm 
is required to solve three very different problems. A common 
feature of the BCP solutions is their convergence to the actual 
optimal solution, as the order of the Bézier curve is increased. In 
practice, of course, a numerical or exact solution will not be 
known in advance, and this feature will permit a researcher using 
the BCP method to begin with a low order solution, then increase 
the degree of the curve to test whether convergence occurs. If it 
does, one can be reasonably confident that the method has indeed 
found the optimal control. The three test cases considered here 
suggest that a degree three curve is a good place to start, and that 
convergence is likely to occur by about degree six or seven.  

The evolutionary BCP direct method has potential to be a simple, 
general solution method for any optimal control problem. It can 
be applied to virtually any disease that can be modeled with a 
continuous-time control. This can be extremely helpful in the 
field of epidemiological and biomedical modeling, in which 
researchers requiring optimal public health policies or optimal 
treatment schedules may not have the mathematical skills, or the 
time, to solve the model indirectly.  

Future work will focus on enhancements to make the method 
more general yet. In its current implementation, only one control 
function can be parameterized. Many disease models, however, 
have multiple inputs controlling the system. For example, a public 
health policy might consider three strategies simultaneously:  
vaccination, quarantine, and isolation rates. The BCP method will 
be extended to represent multiple control functions. An excellent 
test case would be the SARS model controlled by quarantine and 
isolation [21].  

Evolutionary optimization also has the ability to solve many 
control models that indirect methods cannot. Because the indirect 
approach uses variational calculus to find optimal controls, it is 
inherently a local optimizer. Many disease models, however, are 
multimodal. That is, these systems are likely to have many local 
optima, making it difficult to be confident that the indirect 
solution is actually the global optimum. Evolutionary optimizers, 
on the other hand, are known for their abilities to find near-global 
solutions, even when searching through very complicated 
landscapes. DE, in particular has been shown is known to be an 
effective optimizer for multimodal optimal control problems [7], 
but only for piecewise constant control parameterization. Future 
work will investigate the efficacy of BCP for these multimodal 
problems.  

Another limitation of indirect methods is that they must be 
formulated with a single objective functional, cast in integral 
form, as in equation (1), whose integrand must often be quadratic 

in the control function. This is rather restrictive. When, for 
example, disease models have multiple objectives, these must be 
combined into one functional, and the mathematician must decide 
in advance its formulation, including the relative weight of the 
different objectives. This was the approach taken in the three 
models studied in this paper, in order to compare the direct and 
indirect results. However, other formulations of the objective may 
in fact result in treatment strategies that for various reasons might 
be preferred by health professionals. Thus, true multi-objective 
optimization is a better approach, in which a range of possible 
solutions are produced, all of them, for example, Pareto optimal. 
One of the strengths of EAs is that they can be adapted to do so. 
Future work will thus incorporate multi-objective search into the 
algorithm. This will permit a more general formulation of the 
optimal control problem. More importantly, perhaps, by providing 
multiple results, all of them in some sense optimal, it will put the 
decision-making back into the hands of medical practitioners, 
where it belongs.  
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