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ABSTRACT 
Systems for Computer-Aided Detection (CAD), specifically for 
lung nodule detection received increasing attention in recent 
years. This is in tandem with the observation that patients who are 
diagnosed with early stage lung cancer and who undergo curative 
resection have a much better prognosis. In this paper, we analyze 
the performance of a novel feature-deselective neuroevolution 
method called FD-NEAT to retain relevant features derived from 
CT images and evolve neural networks that perform well for 
combined feature selection and classification. Network 
performance is analyzed based on radiologists’ ratings of various 
lung nodule characteristics defined in the LIDC database. The 
analysis shows that the FD-NEAT classifier relates well with the 
radiologists’ perception in almost all the defined nodule 
characteristics, and shows that FD-NEAT evolves networks that 
are less complex than the fixed-topology ANN in terms of number 
of connections. 

Categories and Subject Descriptors: I.2.6 [Artificial 
Intelligence]: Learning – Connectionism and neural nets 

General Terms: Experimentation 

Keywords: Feature selection, Neural networks, Genetic 
algorithms, Lung nodule detection, Medical image analysis 
 

1. INTRODUCTION 
Recently, systems for Computer-Aided Detection (CAD) have 
been gaining in popularity [1-3]. A significant focus on lung 
cancer is observed  because it is by far the leading cause of cancer 
death among both men and women in the United States [4]. It is 
estimated that lung cancer will account for about 28% of all 
cancer deaths in the American Cancer Society’s most recent 
estimates for lung cancer in the United States in 2009 [4]. The 
prognosis for the newly diagnosed with lung cancer is poor: the 
overall five-year survival rate is approximately 14% [5]. The 
primary reason for the optimism in CAD is the observation that 
those patients who are diagnosed with early stage lung cancer and 
who undergo curative resection have a much better prognosis, 
with five-year survival rates rising to 40 to 70% [6, 7]. 

Another motivation for the development of CAD systems for lung 
nodule detection is that screening studies, such as the Early Lung 
Cancer Action Project (ELCAP) in New York [8], at the Mayo 
clinic [9] and in Japan [10] show that CT imaging is much more 
sensitive in detecting nodules and lung cancers than chest 
radiography. The ELCAP studies also showed that the vast 
majority of lung cancers uncovered during screening were early 
stage cancers and thus, presumably had a better prognosis. The 
ELCAP and Japanese studies used single detector scanners with 
10-mm-thick slices. In recent years, multidetector scanners use 
much thinner slices: 1 to 5-mm-thick slices [11], and later studies 
will undoubtedly utilize even thinner slices. These advancements 
in technology have significant implications for the detection of 
small and early stage cancers. They also have significant 
implications for radiologists. The multidetector scanners routinely 
generate 200 to 400 images per patient, which must be reviewed 
on a computer monitor. This significantly increases the reading 
burden on the radiologist. 

Early results from the National Lung Screening Trial (NLST) 
conducted by the U.S. National Cancer Institute (NCI) released in 
2010 [12] also show that low-dose CT screening for lung cancer 
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cuts lung cancer death by more than 20%. The trial followed more 
than 53,000 current and former smokers who were randomized to 
have either X-ray or low-dose CT lung screening. The NLST 
study design is described in an article that was published in 
Radiology [13]. All these factors combined, explain the 
considerable interest in the development of CAD methods to 
assist radiologists in the early detection of lung cancer. 

In many practical applications and especially CAD methods, the 
selection of relevant features is a task of tremendous importance. 
The urgency is to select features that are relevant to the system, 
features that should be included for the system to achieve optimal 
performance. The exclusion of these features will lead to sub-
optimal results whereas the inclusion of irrelevant or redundant 
features adds unnecessary dimensions to the search space. 

Many different features have been proposed for the lung nodule 
detection task, and various classifiers and feature selection 
algorithms have been analyzed. The features that have been 
proposed in the literature include gradient field descriptors, 
invariant features, shape and regional descriptors [1-3, 17-18]. In 
[14], we presented a novel feature deselection method called 
Feature Deselective NeuroEvolution of Augmenting Topologies 
(FD-NEAT). The method is a feature-deselective version of the 
NeuroEvolution of Augmenting Topologies (NEAT) algorithm 
proposed by Stanley and Miikkulainen [15]. We analyzed the 
usage and relevance of FD-NEAT in a novel computerized lung 
nodule detection system for CT images, and compared its 
performance with the more-established SVM and fixed-topology 
Artificial Neural Network (ANN) classifiers in [1]. 

In this paper, we perform an analysis of the networks evolved by 
FD-NEAT for the lung nodule detection task, and stratify the 
results according to four radiologists’ ratings of the nodule 
characteristics in the Lung Image Database Consortium (LIDC) 
database [16]. A “blinded” and “unblinded” reviewing procedure 
was established for the database. In the blinded review stage, each 
radiologist individually annotated all nodules between 3 to 30 mm 
in diameter in a blinded fashion. Then, the annotations of the 
other radiologists were compiled and presented to the radiologists 
again for the unblinded reading, in which each radiologist re-
examined the cases, but this time with the annotations of the other 
radiologists as additional information. No forced consensus was 
imposed in this unblinded review. For every CT scan, the 
unblinded read annotations from each of the four radiologists 
were combined into a single XML file. 

With the data compiled by LIDC, an analysis can be performed 
taking into account the agreement levels between the four 
radiologists, for different nodule types after the unblinded read 
session. There are various methods of building a reference 
standard based on the annotations of the four radiologists. We 
used the method employed in [17, 18] called ground truth with 
agreement level j, the list of all the nodules marked by at least j of 
the four radiologists. In general, it is desirable to obtain higher 
sensitivities for nodules identified at higher agreement levels. 

Following the rule-of-thumb that is usually applied for splitting a 
dataset in a training and independent test set – approximately ⅔ 
versus ⅓ of the cases – we chose to include in the training set 235 
randomly-selected CT scans and in the test set 125 scans from the 
database [19, 20].  

 
 

 

 

The remainder of the paper is organized as follows: Section 2 
describes the methods used. Section 3 explains the experimental 
framework of the CAD system. The results are presented in 
Section 4. In Section 5, an analysis of the networks evolved by 
FD-NEAT in the experiments is performed and Section 6 presents 
the conclusions of the study. 

2. METHODS 
This section provides the background of the FD-NEAT method, 
and the classifiers used for comparison with FD-NEAT, namely 
Support Vector Machines (SVM) and fixed-topology ANNs. 

2.1 Feature Deselective NeuroEvolution of 
Augmenting Topologies (FD-NEAT) 
We presented a novel feature-deselective classifier, FD-NEAT in 
[14]. FD-NEAT is based on NEAT, which is a method that uses 
genetic algorithms (GAs) to evolve the topology and the weights 
of networks that best fit the complexity of the task at hand. In 
NEAT, evolution starts from an almost minimal structure and new 
structure is added incrementally through the mutation operators. 

Starting minimally helps NEAT to learn faster as it searches for 
optimal solutions over a lower-dimensional search space. NEAT 
only jumps to a larger search space when performance in the 
smaller one stagnates or does not improve over a specific number 
of generations. Since only additional structures that improve 
performance are likely to be retained, NEAT tends to discover 
smaller networks without superfluous structures. 

NEAT and FD-NEAT both begin with a uniform population of 
simple networks with no hidden nodes and inputs connected 
directly to all the outputs (see Figure 1). It is often uncertain that 
all inputs are relevant and hence the initial connections of NEAT 
might impair the performance of the search algorithm when the 
search space is increased by the high number of initial input 
connections. The only difference between NEAT and FD-NEAT 
is that a mutation operator is introduced in FD-NEAT that enables 
irrelevant or redundant inputs in the initial population to be 
dropped. 

FD-NEAT prunes features in the input feature set instead of 
adding them. Various feature selection algorithms in the literature 
start with a randomly-selected feature set [21], and with all 
features connected/ selected [22]. FD-NEAT is able to optimize 
its weights quickly so as to assign suitable weights to the features 
based on their relevance or redundancy. FD-NEAT improves on 
regular NEAT in that a mutation operator is introduced in FD-
NEAT that enables discarding irrelevant or redundant inputs that 
impair network performance. In addition, at the end of evolution, 

Outputs 

Inputs 

Figure 1: Initial network topology of  both regular NEAT and 
FD-NEAT – The difference between the two methods is that 
with FD-NEAT, a mutation operator is implemented that 
enables dropping initial input connections in the algorithm. 
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less complex networks are obtained, that can be trained faster and 
have a lower computational complexity in the operational phase. 

FD-NEAT’s performance was previously examined on several 
simple feature selection experiments [14], e.g. the classical 
“exclusive or” classification problem and maneuvering a robotic 
car around a race track by selecting relevant sensors in a race car 
simulator environment (RARS) [28]. The pseudo-code of FD-
NEAT is given in Table 1. The implemented FD-NEAT algorithm 
is slightly modified from the Matlab® NEAT algorithm by 
Christian Mayr [23].  

2.2 Performance Comparisons of FD-NEAT 
with the SVM and ANN Classifiers 
In our experiments, FD-NEAT is compared with two other 
established classifiers, namely SVMs and fixed-topology ANNs. 
All results are obtained for a test set that is kept completely 
separated from the training set. 
A LIBSVM classifier [24] with the radial basis function (RBF) 

kernel, defined as ( ) ⎟
⎠
⎞⎜

⎝
⎛ −−=

2
exp, jijiK xxxx γ , γ > 0 is 

trained on a training set of instance-label pairs 
( ) liyii ,...,1,, =x where n

i R∈x and { }l1,1 −∈y . We used five-
fold cross-validation with parallel “grid-search” [25] to determine 
the optimal SVM parameters. In our approach, we performed 
linear normalization of all the input features. 
The second classifier is the standard feed-forward ANN having a 
single hidden layer with the hyperbolic tangent activation 
function at the hidden nodes, and the linear activation function at 
the  single output node. The number of input nodes is equal to the 
number of input features (45 altogether). Only one output node is 
used. Values at the output node above a certain threshold value, 
which is chosen to obtain  an acceptable false positive (FP) rate, 
correspond to nodule detections, and values below to non-nodule 
detections. The fixed-topology ANN is trained with the 
Levenberg-Marquardt backpropagation algorithm [26, 27]. The 
network’s performance is analyzed for 5 to 40 hidden nodes. The 
ANN is always initialized with random weights. 
For FD-NEAT, the hyperbolic tangent activation function is used 
at the hidden nodes whereas the modified sigmoidal activation 
function is used at the output node. Experiments show that FD-
NEAT performs better when the modified sigmoidal activation 
function instead of the linear activation function is used at the 
output node. 
FD-NEAT and the fixed-topology ANN (The fixed-topology 
ANN performs best with 11 neurons in the hidden layer) are 
trained on a target vector with different values (0.55, 0.7, 0.85, 
and 1) assigned to nodules at different agreement levels (j=1,…4). 
SVM is trained on a target vector in which the same target value  
is used for all agreement levels. This implementation was based 
on initial experimental results showing optimal performance 
under these learning strategies. 
FD-NEAT is found to perform best when variance normalization 
(normalization of the mean and standard deviation of the training 
set) is applied to the input features. SVM and fixed-topology 
ANN perform better when the features are normalized linearly to 
the range [0, 1] (refer to the results of Table 2). 
 

Table 1. Pseudo-code of FD-NEAT 
1 Set parameters  
2 Create initial population 
3 Put first individual in species one, update species record  
4 for each individual from the population 
5 while individual is not assigned to an existing species 

or there are no more species to test it against  
6 Compute compatibility distance, δ to compare 

with the species compatibility threshold, δt. 
7 if δ < δt  
8  Assign individual to existing species 
9 else 
10 Create a new species, update the species 

record and use individual as the reference 
for the new species 

11 end if 
12 end while 
13 end for 
14 generation = 1              //1st generation has passed 
15 while generation number < maximum generations allowed 

AND fitness < maximum fitness 
16 Evaluate the fitness of each individual 
17 for each species in the species record 
18 Compute the average and maximum fitness of 

each species and store it in the species generation 
record 

19 end for 
20 Check “refocus” parameter to see if the maximum 

overall fitness of the population has changed 
21 if generation number < maximum generations 

allowed AND fitness < maximum fitness  
22 Call reproduction function with parameters 

(Mutation operator in the reproduction function 
required for FD-NEAT function that enables 
the initial input connections to be dropped. At 
the end of the reproduction function, the new 
population, species record and innovation 
record are updated and returned to the main 
function) 

23 end if 
24 generation ++          // Increment generational counter 
25 end while 

 

3. EXPERIMENTS (FRAMEWORK OF 
THE LUNG CAD SYSTEM) 
We presented a novel CAD system for lung nodule detection in 
CT images in [1]. In this section, the general framework of the 
CAD system is given; for a detailed description, the reader is 
referred to [1]. The CAD system performs several main tasks, 
namely preprocessing, nodule candidate detection, feature 
selection, and classification.  
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3.1 Preprocessing 
In the preprocessing stage, isotropic resampling of the data to a 
voxel dimension of 1 mm3 was performed. Trilinear interpolation 
was used to compute the grey-values between the voxel locations. 

A simple lung segmentation procedure based on thresholding and 
a morphological closing operation similar to that proposed in [17] 
is implemented to segment the lung regions from the background. 
The lung segmentation procedure is performed to confine all 
subsequent computations to the lung regions only. 

3.2 Nodule Candidate Detection 
Specific segmentation algorithms with different parameter 
settings are derived for the three different nodule types, namely 
isolated, juxtavascular (or vessel-connected) and juxtapleural (or 
pleura-connected) nodules. The nodule candidate detection 
procedure consists of three stages: (1) Seed point detection by 
computation of the divergence of the normalized gradient; (2) 
Multiscale nodule and vessel enhancement filtering and (3) 
Cluster merging. 

In the first stage of the nodule candidate detection procedure, we 
compute the divergence of the normalized gradient of the image 

in 3D, ( )wdivk
r

=  where 
L
Lw

∇

∇
= r

r
r  and L is the image intensity. 

We do this to estimate the location of the nodule seed point. 
Computing the divergence is just the first step of our proposed 
nodule segmentation procedure. To segment the nodule 
candidates, we use nodule and vessel enhancement filters 
proposed by Li et al. [3]. The procedure and parameters of the 
nodule segmentation algorithm differ slightly for the three 
different nodule types. Details can be found in [1]. 
The third and final stage of the nodule candidate detection 
consists of merging overlapping clusters to ensure that a single 
nodule is represented by a single detection rather than by two or 
more detections. Many nodule candidates are generated at the 
detection stage that will be filtered by a process of feature 
selection and classification. 

3.3 Feature Selection and Classification 
We propose features that are invariant under the group of 
orthogonal transformations (translations, rotations), namely 
features that are calculated in a 3D gauge coordinates system [29]. 
Any derivative expressed in the gauge coordinates is an 
orthogonal invariant [30]. In our experiments, we found that the 
gauge derivatives in the principle directions, uuL  and vvL

 
were 

good at nodule and blood vessel differentiation.  

Apart from the gauge coordinate invariant features, other shape 
(compactness features, elongation factor, bounding ellipsoid) and 
regional (mean, median, standard deviation, etc.)  descriptors are 
computed on the nodule candidate segmentations and on spherical 
kernels centered at the nodule candidate centroids of different 
radii and at different scales. Altogether, 45 features are given to 
the classification stage of the CAD system. 

The number of detections is very large on the training dataset: 
111,906 detections altogether. The nodules that are identified by 
different radiologists are divided into four subsets, with the 
number of nodules equal to 202/ 113/ 104/ 155 nodules annotated 
by 1/ 2/ 3/ 4 radiologists, respectively. 

There are altogether 111,332 non-nodule regions in the training 
set generated by the detection stage of the CAD system, i.e. an 
average of 474 non-nodules per scan. The training and validation 
procedure does not work well, if there are too many negative 
examples (i.e. non-nodule regions) compared to positive ones. A 
way of reducing the number of non-nodule regions without 
altering their distribution in the feature space is by using a 2D 
self-organizing map (SOM) [31, 32]. 

As in any GA procedure, several runs or repetitions have to be 
conducted to find the optimal FD-NEAT network over the entire 
search space. The networks are evolved in a population of 200 
networks for 200 generations. The best network, namely the 
network with the highest fitness (computed using a fitness 
function based on the classification accuracy defined in [15] and 
used in [14]) on the training set at the end of the evolutionary 
process over ten runs is used to classify the nodules in the test set. 
Additional details about specific parameters that are used in the 
FD-NEAT algorithm are given in the Appendix and in [1]. 

4. RESULTS 
The CAD system sensitivities at all agreement levels for the FD-
NEAT classifier, fixed-topology ANN and SVM classifiers, 
respectively, obtained at a FP rate of 4 per scan, which is an 
acceptable FP rate used by other CAD systems in the literature 
[17, 18] are given in Table 2. It can be observed that FD-NEAT’s 
performance is highest at agreement level 3. The fixed-topology 
ANN performs best on nodules with agreement level 1. FD-
NEAT and the fixed-topology ANN both achieve the highest 
sensitivity of 87.5% on nodules with agreement level 4. 

Table 2. CAD system sensitivities of FD-NEAT, the fixed-
topology ANN and the SVM classifiers at a FP rate of 4/scan 

for nodules at the four agreement levels 

Sensitivity Agreement 
level FD-NEAT ANN SVM 

1 65.6% 68.0% 64.9% 

2 83.7% 83.1% 83.1% 

3 86.5% 84.9% 85.7% 

4 87.5% 87.5% 83.8% 

 
In the LIDC database, radiologists’ ratings of some nodule 
characteristics are assigned to each outlined nodule with diameter 
exceeding 3 mm. One nodule characteristic, “internal structure,” 
includes the categories “soft tissue,” “fluid,” “fat,” and “air,” and 
another characteristic, “calcification,” includes five categories of 
calcification morphology and distribution, if present. The other 
characteristics, namely “subtlety,” “sphericity,” “margin,” 
“lobulation,” “spiculation,” “texture,” and “likelihood of 
malignancy” are expressed as a single rating on a five-point scale, 
some of which include descriptive labels for all five points, some 
have such labels for the two extreme points only, and others also 
include a label for the middle point. 
On the Lung Image Database Consortium research page of the 
NCI website [33], it is stated that for a subset of cases, 
inconsistent rating systems were used among the five institutions 
with regard to the spiculation and lobulation characteristics of 
nodules > 3 mm. Another statement was released in March 2010 
on the NCI website that the inconsistency issue still remains to be 
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Figure 2: FROC analysis of our CAD system for the FD-
NEAT classifier, as a function of nodule subtlety. 
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Figure 3: FROC analysis of our CAD system for the FD-
NEAT classifier, as a function of nodule sphericity. 
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Figure 4: FROC analysis of our CAD system for the FD-
NEAT classifier, as a function of nodule margin. 
corrected. We thus omitted the analysis on the nodule spiculation 
and lobulation characteristics here. 
We perform the analysis with the FD-NEAT classifier. The 
analysis is performed on nodules detected at agreement level 2. 
Previous study showed that nodules at agreement level 1 are 
detected  at much lower sensitivity by our CAD system [1]; 
however, correct results at agreement level 1 might not be truly 
indicative of the good performance of a CAD system as the 
majority of the radiologists did not indicate them as nodules. The 
FROC curves of the FD-NEAT classifier for the different nodule 
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Figure 5: FROC analysis of our CAD system for the FD-
NEAT classifier, as a function of nodule internal texture. 
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Figure 6: FROC analysis of our CAD system for the FD-
NEAT classifier, as a function of nodule likelihood of 
malignancy. 
characteristics are given in Figures 2 to 6. In the analysis, we 
study the performance of the CAD system as a function of the 
nodule characteristics. Differences among the radiologist ratings 
were reconciled by computing the rounded average of the 
radiologist ratings. We do not retrain the classifier, but simply 
apply it on the test set. Retraining the classifier for each analyzed 
nodule characteristic would require the selection and computation 
of relevant features each time for the nodule characteristic in 
question. The computational requirement for this task is too high 
and the practical value of the analysis is limited. Here, we 
perform an analysis to study the performance of the CAD system 
in relation to nodule subtlety, sphericity, margin, internal texture, 
and likelihood of malignancy. 
The analysis by nodule subtlety in Figure 2 shows that a strong 
relation exists between CAD sensitivity and the radiologists’ 
perception of subtlety. The performance of the CAD system with 
the FD-NEAT classifier is considerably better on nodules that are 
more obvious (ratings from 3 to 5) than on nodules that are subtle 
(rating 2 – there are no nodules with rating 1 at agreement level 
2). Similar performance trends are reported in [2, 17] for two 
other CAD systems that were validated on nodules from the LIDC 
database as a function of the nodule subtlety ratings. 
The analysis by nodule sphericity in Figure 3 also shows that a 
strong relation exists between CAD sensitivity and the 
radiologists’ perception of sphericity. The performance of the 
CAD system is considerably better on nodules that are more 
round or spherical (ratings 4 and 5) than on linear or ovoid 
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nodules (ratings 2 and 3 – there are no nodules with rating 1 at 
agreement level 2). The FROC curve obtained for the nodules 
with sphericity rating 2 has an unusual shape as there are only 
three nodules with this rating detected at agreement level 2 in the 
independent test set. 
In Figure 4, the analysis by nodule margin shows that nodules 
with more sharply-defined margins are detected at much higher 
sensitivities than poorly-defined ones. The sensitivity results of 
our CAD system on the test set, as a function of the nodule 
internal structure ratings, are shown in Figure 5. The CAD 
system’s performance is highest on solid textured nodules and 
lowest on non-solid nodules. At agreement level 2, there is only 
one nodule with rating 1 in the test set, which was not detected by 
the system at FP rates less than or equal to 8 FP/scan. Ohta et al. 
[34] examine 87 resected lung specimens that show Ground Glass 
Opacity (GGO) texture on CT, including 47 pure ground-glass 
lesions. They report that the frequency of invasion of metastasis is 
low in pure GGOs. 
Figure 6 displays the performance of our CAD system on the 
independent test set as a function of nodule likelihood of 
malignancy. This characteristic is especially subjective, since the 
radiologists were not provided with any clinical information about 
the patients; as a general guide, likelihood of malignancy was 
rated under the assumption of a 60-year-old male smoker [16]. 
The results show that the CAD system’s performance on nodules 
with rating 1 is generally the highest, followed by nodules with 
ratings 4 and 3, respectively. The performance on nodules with 
ratings 2 and 5 are generally the lowest. 
The results of the analysis based on malignancy ratings might be 
rather surprising. Why would performance on nodules with 
ratings 4 and 5 be generally outperformed by rating 1? Most 
probably, this is caused by the specific choice for the 45 input 
features of the classifier, which are selected to solve the task of 
nodule detection and not nodule classification (i.e. differentiating 
between benign and malignant nodules). Other features will be 
more helpful for nodule classification, e.g. those that measure 
change in size or growth rate of a nodule [35] and features that 
measure nodule irregularity [36]. 

5. ANALYSIS OF NETWORK 
COMPLEXITY EVOLVED BY FD-NEAT 
FD-NEAT is based on the NEAT algorithm that starts minimally  
and with all input nodes connected to the output nodes, and adds 
structure (nodes and connections) if they improve network 
performance. Since FD-NEAT starts minimally, and 
simultaneously enables the pruning or deletion of initial input 
connections, it is expected that the  evolved networks have a 
simpler structure in terms of the number of hidden nodes or the 
number of connections or both. An analysis was performed on the 
networks evolved by FD-NEAT on the training set of the lungs 
data. Figures 7 to 9 show the graphs of the maximum fitness, the 
number of connected inputs and the number of connections of the 
best network of each generation averaged over 10 runs, each of 
which ran for 200 generations. The error bars are symmetrical, 
and are two standard deviation units in length. 
From Figure 7, it can be observed that the maximum fitness 
increases with the generation number: A rapid increase is 
observed from generation 1 to 10 followed by a more gradual 
increase from generation 11 onwards. In the graph of connected  
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Figure 7: Graph of the maximum fitness of the best network 
from each generation, averaged over all 10 runs.  
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Figure 8: Graph of the number of inputs with at least one 
connection emerging from them in the best network of each 
generation, averaged over all 10 runs.  
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Figure 9: Graph of the number of connections in the best 
network of each generation, averaged over all 10 runs.  
inputs in Figure 8, a considerable drop in the number of 
connected inputs from 45 (at generation 1) to 22 (at generation 
17) is initially observed. After generation 17, there is a general 
increase in the number of connected inputs and the graph reaches 
a steady value around generation 160. The same trend is observed 
in the graph of network sizes in Figure 9 whereby an initial drop 
is observed in the number of connections from 46 to 39 after 
which the graph generally increases and reaches a plateau around 
generation 170. 
From Figures 8 and 9, it can be observed that the standard 
deviation intervals of the input connections and especially of the 
network size are very big. The standard deviation intervals for the 
maximum fitness graph of Figure 7 are comparatively much 
smaller. The results indicate that the network structure evolved by 
FD-NEAT can vary greatly and hence, it might be difficult to 
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make a specific or targeted comparison with the fixed-topology 
ANNs.  
It can also be observed that the standard deviation intervals of the 
input connections and of the network size generally increases with 
the number of generations. This might be due to the fact that 
different features are highly correlated. If this is the case, the 
same fitness can be obtained by selecting a single feature that is 
highly correlated with the classification and yet is uncorrelated to 
other features compared with selecting a feature subset of a few 
features that are highly correlated to each other, but are not so 
correlated with the classification task. Hence, bigger variation is 
to be expected in the number of inputs and network size if the 
experiments are extended further to higher generation numbers. 
From Figure 9, it is observed that the number of connections 
averaged over all 10 runs reaches a plateau value of 110 after 
~170 generations. The number of connections in a fully-
connected, cycle-free 11-hidden-node ANN = (45×11 input 
connections) + (11×1 output connections) + 11 hidden layer bias 
connections + 1 output bias connection = 518. If we compare this 
value with the network size attained by FD-NEAT after 170 
generations (i.e. 110±95 connections),  we see that the sizes of the 
networks evolved by FD-NEAT are still smaller  than in the case 
of a fixed ANN (The FD-NEAT algorithm written in Matlab® 
also evolves cycle-free networks so valid comparisons with the 
fully-connected, cycle-free fixed-topology ANN can be made). 
The average number of nodes evolved by FD-NEAT (i.e. the sum 
of the bias, connected input, output, and hidden nodes), averaged 
over the 10 runs = 55.9±32.2. The total number of nodes of the 
fully-connected 11-hidden-node ANN is 57.   
In summary, from the results of network size, it is observed that 
FD-NEAT produces networks that have much fewer connections 
compared to the fixed-topology ANN. The average number of 
nodes evolved by FD-NEAT is slightly lower than the ANN; 
however, the standard deviation of the number of nodes evolved 
by FD-NEAT is too high to make a conclusive comparison with 
the ANN. 

6. CONCLUSIONS 
We performed an analysis of our CAD system with the feature-
deselective neuroevolution classifier, FD-NEAT, as a function of 
various nodule characteristics defined in the LIDC database. We 
also performed an analysis of network complexity based on 
maximum fitness, connected inputs and network size on the 
networks evolved by FD-NEAT for the lung nodule detection 
experiments. The analysis on nodule characteristics shows that the 
sensitivity results of FD-NEAT relates well with the radiologists’ 
perception of nodule subtlety, sphericity, margin, and internal 
texture. A strong relation of the FD-NEAT classifier with the 
radiologists’ perception of nodule likelihood of malignancy is not 
present, as FD-NEAT was trained on features for lung nodule 
detection, and not nodule classification (benign/ malignant 
differentiation). The analysis on network complexity shows that 
FD-NEAT evolves networks that are less complex than the ANN 
in terms of number of connections, but not always in terms of 
number of nodes. 
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8. APPENDIX 
This Appendix describes the FD-NEAT parameters used for 
experiments in this paper. The list is not exhaustive; the reader is 
referred to [1] for a complete list of all the parameter values used. 
Each population has 200 networks. The coefficients for measuring 
compatibility are c1 (coefficient to determine the importance of 
excess genes in measuring compatibility) = 1.0, c2 (coefficient to 
determine the importance of disjoint genes in measuring 
compatibility) = 1.0, and c3 (coefficient to determine the 
importance of average weight difference in measuring 
compatibility) = 0.3. The initial compatibility distance for 
speciation, Ct is 8.0. However, because the population dynamics 
can be unpredictable over the course of evolution, we assign a 
target of 10 species. If the number of species exceeds 10, Ct is 
increased by 4.0 to reduce the number of species. Conversely, if 
the number of species is less than 10, Ct is decreased by 4.0 to 
increase the number of species. The champion of each species 
with more than five networks is copied unchanged into the next 
generation. There is a 10% chance that an inherited gene is re-
enabled in the offspring if it is inherited disabled. Conversely, 
there is a 15% chance that an inherited gene is disabled in the 
offspring if it is inherited enabled – This probability only applies 
to the initial input connections, and is the principle of selecting 
relevant features for FD-NEAT. The probability that recurrent 
connections are formed is put to zero. The interspecies mating 
rate is only 5%. The probability of adding a new node is set 
initially to 0.5, and the probability of adding a new link or 
connection to 0.8. After 20 generations from the start of 
evolution, the add node probability is changed to 0.05, and the 
add link probability to 0.9. After 45 generations, the add link 
probability is modified to be 0.1 whereas the add node probability 
is maintained at 0.05.  
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