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ABSTRACT
In this paper, we present the Flea Market Simulator: a minimal 
market  simulator,  where  agents  have  strategies  they  use  to 
determine which goods to trade and at what rate. The primary goal 
is  to  understand  how  intelligent  strategies  can  develop  in  a 
dynamic economic environment. The simulator is designed to run 
multiple  independent  strategy generating functions  at  once,  for 
isolated sub-populations of agents in the market. The timing and 
extent  of  interaction  between  these  sub-populations  can  be 
flexibly controlled by the user. Resultant differences between sub-
populations  provides  data  with  which  to  compare  the  different 
strategy  generating  functions.  Specifically,  these  strategy 
generating  functions  are  intended  to  be  evolutionary 
computational (EC) methods, and as such, the simulator provides 
the framework for tournaments between EC methods, in terms of 
their ability to produce “successful” agent trading strategies. The 
definition of success is left purposefully open-ended.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
—Intelligent Agents; I.6.8 [Simulation and Modeling]: Types of 
Simulation—Distributed;  J.4  [Computer  Applications]:  Social 
and Behavioral Sciences—Economics
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1.   INTRODUCTION
1.1   Background

Agent-based economic simulation has a very deep history. In 
terms of evolutionary computation (EC), the earliest experiments 
were performed at the Santa Fe Institute in the late 80s and early 
90s.  Arifovic  (1989)  used  genetic  algorithms,  in  a  variety  of 
models, to evolve strings representing agent strategies [2]. Based 
on John Holland's schema, each string was essentially a table for 
matching  predefined  market  conditions  with  decisions.  More 
broadly, the Santa Fe Artificial Stock market was also based upon 
“condition-matching” (again, based on Holland's schema) [5].
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Andrews  &  Prager  (1992)  used  genetic  programming  to 
evolve  agents  in  a  double  auction  market  simulator  [1].  In  a 
double auction, agents “call out” both buying and selling offers, 
then  trades  occur  when  there  is  a  match.  Andrews  &  Prager 
showed that genetic programming could beat many hand-coded 
strategies. Chen (2000) uses a very similar double auction market 
with genetic programming [4].

The  above  simulations  have  various  disadvantages.  One 
frequent  limitation  is  the  constraining  of  agent  strategies  to  a 
series  of  weights  for  various  market  status  indicators.  In  other 
words, agent strategies in previous market simulators were really 
just specific combinations of preset conditions and rules. On the 
other hand, the Flea Market Simulator is very open-ended in terms 
of  what  an  agent  strategy  can  be:  simply,  an  expression  that 
evaluates  to  a  number.  Arthur  (1992) argues  that  deductive 
reasoning is  an incomplete  explanation for  rational behavior  in 
economic  agents  [3].  He  claims  that  inductive  reasoning  must 
operate  in  agent  strategies  in  heterogeneous  conditions—which 
are the conditions of all real-world markets.

Another limitation has been something we might call “need 
mandating”.  For  example,  in  Andrew & Prager  (1992),  agents 
were  rigidly  divided  into  “buyers”  or  “sellers”  for  any  given 
round.  The  fitness  function  for  the  genetic  programs  would 
compare  agent's  performance  to  some  mandated  ideal  price 
(specific to each agent). Although this ideal price was determined 
intelligently, it could limit the performance of agents by what is 
currently understood.  In the Flea Market Simulator,  as shall  be 
shown, agents develop their own conceptions of “need”.

1.2   Motivations
The  primary  motivation  for  this  market  simulator  is  to 

understand how to use EC to produce successful  agent trading 
strategies  in  a  dynamic,  heterogeneous  market.  Even  more 
fundamentally, the goal is to understand the limitations of current 
EC methods on dynamic problems such as this one. The hope is to 
tease out what may be needed to resolve these limitations.

The  secondary  motivation  for  this  market  simulator  is  to 
understand the emergence of different human social and economic 
dynamics  under  varying  conditions.  In  this  case,  a  given 
simulation  would  have  only  one  active  genetic  programming 
paradigm.  Simulation  parameters  (e.g.  market  size)  would  be 
varied, and the object of scrutiny would be emergent properties of 
the market that develops.

These motivations, although conceptually independent, have 
the potential  for  synergy.  After  all,  different market  parameters 
should  catalyze  or  cultivate  successful  strategies  to  different 
degrees—where  effective  parameters  may  be  those  that  most 
closely  produce  human-like  emergent  market  properties. 
Reciprocally, robust agent strategies should be a significant factor 
in accurately simulating human social and economic dynamics.
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2.   FLEA MARKET SIMULATOR
2.1   Overview

The  Flea  Market  Simulator  is  a  trading  market  simulator 
written in Clojure1. The simulation proceeds in discrete time steps, 
or rounds. Each round, agents (called fleas) trade in pairs, then 
consume essential goods, and potentially “die” (are removed) if 
they  hold  zero  of  any  essential  good.  Then  the  market  is 
repopulated with fleas (to a constant size) and goods repossessed 
from the dead fleas are distributed equitably among the “living”. 
The two fleas in any trading pair mutually determine (haggle) the 
goods and rate of trade. The details of trading mechanics will be 
explained later, but for now, think of the simulator determining 
the terms of trade (which goods and at what rate) by calculating 
the “maximally mutually beneficial  trade” for  each flea trading 
pair. Refer to Table 1 for definitions of terms.

The simulator is purposed for use in tandem with one or many 
EC methods, which it relies upon to generate the “strategy” of a 
new  flea  given  the  current  market  state  (which  includes  the 
current flea strategies). A viable “flea strategy” is an expression 
that always evaluates  to a number.  However,  to understand the 
context  of  this  number,  you  must  understand  that  it  will  be 
interpreted by the simulator as a “relative value”. The following 
sections describes what a “relative value” is.

In turn, a relative value is itself just a number, and only has  
meaning in relation to other relative values generated by the same 
flea.  In some abstract sense, a flea's relative value for good x 
stands for the flea's perceived utility of good x. The simulator uses 
these relative values to generate, for each flea, an exchange table 
of any good for any other good, where exchange rate of good x to 
good y (Exy) is simply the relative value of x (Rx) divided by the 
relative  value  of  y  (Ry):  Exy =  Rx/Ry.  In  summary,  a  strategy 
should  produce  a  set  of  numbers.  Subsequently,  the  simulator 
extrapolates this set of numbers into an exchange table for each 
flea.  The  trading  mechanics  using  these  exchange  tables  is 
described later.

Table 1. The meanings of terms used in the text.

Term Working definition Critical function

Flea Trading agent Generates relative values for 
each good

Clan Reproductively 
isolated group of fleas

Generates a viable strategy 
for each new flea

Market Group of clans Manages interaction between 
fleas of different clans by 
determining trade groups and 
good redistribution

Relative 
value

A flea's perceived 
utility for a given good

A value used in conjunction 
with other relative values of 
the same flea to generate an 
exchange table of proposed 
trading rates

Flea 
strategy

What a flea uses to 
compete for goods in 
the market

An expression that evaluates 
to a relative value for each 
good

Flea 
strategy 
generator

A clan-specific EC 
method for generating 
new flea strategies

Must output a viable strategy 
given the current fleas in a 
clan

1 Clojure  is  a  recently  created  impure  functional  Lisp  dialect 
which  compiles  to  Java  Virtual  Machine  bytecode.  See: 
http://clojure.org.

2.2   Market Structure
Although useful, the definitions from Table 1 do not provide a 

complete  story.  It  is  also important  to  understand the elements 
composing a flea, a clan, and a market. These elements, and their 
components, are what we here call the “market structure”. Refer 
to Table 2 for an outline of the market structure.

The market  is  composed  of  “clans”,  in  which each clan is 
reproductively isolated from the others. Each clan is defined by its 
own  EC method  for  generating  new flea  strategies.  This  “flea 
strategy generator” must take as input a list of the current fleas of 
the given clan, and must output a viable flea strategy. There are no 
restrictions or requirements on how the method could or should 
do this. In fact, the simulator itself will not know or care whether 
the method  involves  EC  or  not.  The  market  determines  trade 
groups and good redistribution each round. As such, it manages 
interactions between fleas of different clans.

Table 2. Outline of the structure in the simulator.

Term Property Description

Flea Holdings (for each 
good)

An integer representing how much 
of each good the flea has

Information about 
past trades

A look-up table with information 
on time and trade rate for every 
pair of goods, for all past trades

Strategy An expression that evaluates to a 
relative value

Relative values 
(for each good)

A number representing the flea's 
perceived utility for each good

Clan Fleas A list of fleas currently in the clan

Flea strategy 
generator

A function that outputs a viable flea 
strategy

Population size A constant integer for how many 
fleas compose the clan

Market Clans A list of clans in the market

Trade group 
manager

A function that, for each round, 
outputs the trade groups

Redistribution 
manager

A function that, for each round, 
outputs which clans will receive 
which repossessions

2.2.1   Structure of a Flea
The state of a given flea is characterized by: holdings for each 

good, information, a strategy, and relative values for each good. 
Holdings  are  simply  an  integer  value  for  each  good. 
“Information” can be thought of as a look-up table of past trading 
rates. The table can be indexed at any pair of goods, and it will 
return an associative pairing of times and lists of trade rates (for 
the first good to the second good) at those times. For example, 
let's say that a flea traded food for water at a rate of 1:2 exactly 3 
time steps after it was born. Concurrently, it received information 
from its clan members that others traded food for water at a rate of 
4:5,  6:7,  and 8:9.  Now,  within its information map,  indexed at 
“food:water”, it will create a new sub-index “3”, and within that  
store the list (1/2, 4/5, 6/7, 8/9). The simulator comes equipped 
with functions to retrieve information about pairs of goods and/or 
time steps. These functions can then be used in the function set for 
the flea strategy generators of clans. In this way,  flea's can use 
exchange rate information within their strategy definitions. 
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2.2.2   Structure of a Clan
The state of a clan is given by: a list of fleas, a flea strategy 

generator,  and  a  population  size.  A single  clan  has  a  constant 
population size. This is a simple measure to ensure each clan is  
always  active,  and that  no EC reproductive method (i.e.  a flea 
strategy generator) is ever killed off.

2.2.3   Structure of a Market
The state  of  a  market  is  defined  by:  a  list  of  clans in  the 

market,  a  trade  group  manager  function,  and  a  redistribution 
manager function. Together, the latter two define how the market 
manages  interactions  between  fleas  of  different  clans.  A trade 
group manager is a function that, based on the current time step,  
outputs  a  list  of  pairings  of  fleas  (trade  groups),  thus defining 
which fleas will trade with which other fleas. The default trade 
group manager randomly pairs all fleas in all clans once every 50 
rounds, and otherwise randomly pairs fleas only with fleas from 
the same clan. A redistribution manager is a function that, based 
on the current time step, outputs which repossessions will go to 
which clans. Each clan will then distribute its allotment equitably 
among its currently living members. By default, the redistribution 
manager will not disperse repossessed goods between clans. That 
is, repossessions will be clan-isolated by default: clan X will only 
receive repossessed goods from dead fleas from clan X.

2.3   Simulation Loop
Figure 1 is a flow chart representing a Flea Market Simulation 

run, with initialization remaining obscure for now. First, fleas are 
organized  into  trade-groups  (pairs  of  fleas)  by the  trade-group 
manager. Next, fleas undergo trades through mechanics that will 
be  explained later.  For  now,  suffice  to  say that  the  trade  is  a 
maximally  mutually  beneficial  trade  of  two  goods,  derived 
indirectly  from  the  fleas'  strategies.  After  all  flea  pairs  have 
traded,  all  fleas  consume  essential  goods.  Any dead  fleas  are 
removed from the  market,  and  their  non-essential  holdings  are 
amassed as repossessions. Death is defined as having zero of any 
essential good. Then, clans are repopulated up to their constant 
size limit. New fleas are given a set starting amount of essential  
goods.  Finally,  repossessions  are  distributed  to  the  clans  (as 
managed  by  the  redistribution  manager),  where  they  are  then 
distributed equitably to fleas within clans to all the current living 
(both newly born and otherwise).

2.4   Initialization of a Run
For initializing a run, a simulation duration must be provided. 

A starting  market  is  generated  with  a  list  of  clans,  where  the 
defining  factor  of  each  clan  is  its  flea  strategy  generator  (EC 
method) and its size. The market can be initialized with a variety 
of  optional  settings.  The  most  important  settings  are  the  trade 
group manager function and the redistribution manager function 
(both previously described).

Additional options allow for defining what goods are in the 
market, and/or for each good, the starting amount and use rate. If 
a good has a use rate, it is considered an essential good, such that  
fleas will die if they hold zero of it. New fleas are always given 
the  starting  amount  of  essential  goods,  but  only the  very  first 
generation of fleas is given the starting amount of non-essential 
goods. Non-essential goods are not subsequently infused into the 
market, but rather recycled through redistribution from dead fleas 
to living fleas. In this way, the total amount of each non-essential 
good in the market is a constant, equal to the total number of fleas  
times the starting amount of that good.

By default, information is extremely local. Each flea only has 
information  on  its  own trading  rate  history.  However,  optional 
settings allow for clan information sharing—where all members 
of a clan have access to the trading history for trades in which 
members  of the same clan participated—and also entire-market 
information sharing—where every flea in the market has access to 
all trading rate histories for all trades in the market.

When  initializing  a  clan,  an  optional  clan  setting  is 
“maximum give fraction”. This setting defaults to 0.5, and must 
be a value greater than 0 and less than or equal to 1. It defines the 
maximum fractional amount of any good a flea is allowed to give 
in one transaction. In a trade, the flea whose give rate (a function 
of maximum give rate and holdings) is more limited determines 
the actual trade amounts.

2.5   Trading Mechanics
For each trade group, the simulator determines which pair of 

goods, and what trade rate, would be most mutually beneficial to 
the two fleas. The simulator mandates which goods and at what 
rate the fleas trade. However, it is important to understand that 
although the fleas' strategies seem to play “passive” role in this 
process, they are, in fact, critical in determining the outcome. This 
is  because  each  flea  ultimately  “proposes”  exchange  rates  for

Initialization
(duration is set)

Trades happen

Fleas consume
essential goods

Dead fleas are
removed

Non-essential goods
repossessed from dead

Clans are
repopulated

Repossessions
redistributed

Output final
market state

Each new flea is given
the starting amount of 

essential goods

Each new flea is given
a strategy generated by
its clan's flea strategy

generator

Each new flea is given 
zero non-essential goods

time step = duration?No YesIncrement
time step

The trade group manager
outputs flea trading pairs
For each trading pair, the
simulator determines the

goods and rate by
maximizing for mutual
benefit for the flea pair

Figure 1. Flow chart of the simulation loop. Initialization is explained in the text. 
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every  pair  of  goods.  The  simulator  determines  the  maximally 
mutually beneficial  trade through a stepwise process that is the 
same for every trade group:

1) As previously described, use the relative values of both fleas 
to  determine  their  respective  proposed  exchange  rates  for 
every pair of goods. Flea1:Exy and Flea2:Exy.

2) For each pair of goods, calculate the geometric mean of the 
two  fleas'  proposed  exchange  rates.  Each  geometric  mean 
represents the “ideal” trading rate for the given pair of goods. 
In essence, this step simulates “haggling” to a middle ground. 
Ideal rate, I = square_root(Flea1:Exy*Flea2:Exy).

3) Bound each ideal exchange rate based on the holdings of the 
two  fleas  for  that  pair  of  goods.  Since  good  holdings  are 
integer  values,  actual  exchange  rates  must  be  constrained 
based  on  holdings.  Actual  rate,  A  = 
bound_by_actual_trade_possibilities(I)2.

4) For each pair of goods,  calculate the benefit  of this actual  
exchange rate to each flea. Benefit is the absolute quotient of 
the actual exchange rate and each flea's proposed exchange 
rate. Here, the absolute quotient of x and y is defined as x/y if 
x>y  or  y/x  otherwise.  Benefit  for  Flea1, Flea1:B  = 
absolute_quotient(A,  Flea1:Exy);  for  Flea2, Flea2:B  = 
absolute_quotient(A, Flea2:Exy).

5) For each pair of goods, take the minimum of the two benefit 
values  (one  per  flea).  This  is  the  benefit  value  for  this 
proposed  trade.  Trade  benefit,  Btrade =  minimum(Flea1:B,  
Flea2:B).

6) For all pairs of goods, select the trade that has the maximum 
benefit value. In turn, the trade rate will be equal to the actual 
exchange rate for that pair of goods. For the set of all pairs of 
goods,  P, where p ϵ P, and p:Btrade is the Btrade value for that 
pair of goods, select p where p:Btrade is maximum. The trade 
rate  R will be equal to  p:A (i.e. the value  A for that pair of 
goods).

2.6   Properties of the Simulator
• Fleas are heterogeneous agents that trade in pairs.
• A flea strategy is open-ended.  It  is  only required to be an 

expression that evaluates to a number.
• Functionally,  a  flea  strategy  is  a  method  that  outputs  an 

exchange table for every pair of goods.
• A flea strategy  indirectly determines the goods and ratio of 

each trade.
• In  the  default  configuration,  fleas  have  access  to  local 

information of only their own trading rate history. Optional 
settings allow for clan information sharing, and even entire-
market information sharing.

• The market is characterize by overlapping generations.
• A flea  strategy  generator  is  also  open-ended.  It  is  only 

required that it be a function that takes a set of fleas as input, 
and outputs a viable flea strategy.

• Throughout  a  run,  the  total  market  amount  for  each  non-
essential good is constant.

2 Since holdings are integer values, the actual trade possibilities 
for a given flea are a function of its holdings and its clan-defined 
maximum give fraction.  For example,  for the possible trade of 
F1:F2 for  food:water,  let's  say that  I  equals  2/9.  However,  F1 
holds 2 food and F2 holds 6 water, where both of their maximum 
give fractions is equal to 0.5. As a result, F1 can only give 1 food, 
and F2 can only give 3 water. So the actual trade rate will be 1/3. 
Even if F2 holds 10 water, the actual trade rate would then be 1/5 
due to rounding. The only way F1 and F2 could trade at a rate of 
2/9 would be if F1 had at least 4 food and F2 has at least 18 water.

3.   DISCUSSION
3.1   Potential Advantages

There is no stable equilibrium for exchange rates of goods: 
The simulator creates an unstable environment by leveraging the 
destabilizing effects of heterogeneous dynamic trading strategies. 
As  a  result,  successful  strategies  may  need  to  be  dynamic 
themselves.

Fleas are theory blind: Flea strategies do not, by default, have 
any  economic  theory  or  principles  embedded  into  them. 
Potentially, this means that fleas are not biased to act in ways that 
are already understood. Ideally, this allows for possibility of new 
theoretical discoveries.

Agent strategies are really abstract methods for determining  
relative need and utility of various goods: Although flea strategies 
only  indirectly  determine  the  goods  and  rate  of  trade,  the 
strategies are elegant in that they abstractly represent a function 
for determining relative utility.  This broadens the application of 
this simulator to modeling any “ecology” of agents competing for 
limited resources, where an agent is allowed to determine its own 
relative needs of those limited resources.

Information use of fleas may lead to sophisticated strategies: 
In addition to the pricing history information available to fleas, 
strategies can also indirectly utilize information about other fleas'  
strategies.  Primarily,  this  may  exist  due  to  the  overlapping  of 
generations. When new fleas are generated based on extant flea 
strategies, they could theoretically “predict” the actions of other 
fleas by incorporating important pieces of their parents' code as 
conditionals in their own code. This principle also applies in the 
context of the genetic relatedness of peers in a population.

Different strategies can be compared in an open-ended user-
defined context: Fleas from different clans can trade (with a user-
defined schedule). This feature provides some way to understand 
the  performance  of  flea  strategies.  Within  a  clan,  fleas  are 
constantly  competing  internally.  Without  comparison  to  some 
external strategies, quantifying strategy performance is limited to 
analyzing the actual code of individual strategies (yuck). These 
external  strategies  could  be  hand-coded  or  themselves  could 
evolve. Which leads to an exciting implication: the potential for 
meta  EC.  In  theory,  one  could  use  a  “meta  EC  method”  to 
generate flea strategy generating functions (the “lower level EC 
methods”) and define some “meta fitness function” that compares 
whole clans' performances.

3.2   Potential Disadvantages
Analytically poor: Currently there are no built-in methods for 

analyzing strategies or markets using theories or methods from 
economics.  Although  theory  blindness  of  flea  strategies  is 
potentially a good thing, theory blindness of analytic tools is not.

Simple  results: Perhaps  the  dynamics  are  too  simple  to 
produce  truly interesting  strategies.  The  minimal  nature  of  the 
simulator  is  useful  for  accessibility and analysis,  but  also may 
have the disadvantage of only allowing for simple or uninteresting 
strategies.  Further testing is required to determine the utility of 
this simulator.

Potential problems with local optima: Due to the large gap in 
“need” between essential and non-essential goods, fleas may only 
be  able  to  achieve  locally  optimal  strategies  that  extend  life 
slightly  through  extremely  high  relative  valuation  of  essential 
goods. However, the function that determines trades does act to 
neutralize this behavior.

Flea strategies only indirectly determine the terms of a trade: 
This  property limits  the  power  of  fleas  to  directly  choose  the 
terms of their own trades. By taking this power away from fleas,  
the potential for sophisticated strategies may be watered down.
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3.3   Future Directions
Controlling  good  availability: Instability  in  the  market 

dynamics  is  currently  created  by  heterogeneous  agent  trading 
strategies. Controlling good availability would be another way to 
produce  unstable  environmental  conditions,  with  different 
implications.

Incorporating more complicated good properties: Currently, 
goods have only one differentiable property: use rate. This may 
lead  to  strategies  that  are  similarly limited  in  complexity.  One 
possible additional good property could be transfer rate. If some 
goods were only slowly transferred after a trade, then those goods 
would  potentially  be  less  valuable.  This  property  would  be 
similar, but not identical, to the concept of liquidity in economics.

Incorporating game modifiers:  It  may be interesting to add 
goods  that  act  to  modify  the  behavior  of  other  goods.  For 
example, “ice” could be a good that decreases the use rate of food, 
but  only  to  a  certain  extent.  More  complicated  good:good 
interactions could significantly enhance the potential complexity 
of strategies without significantly damaging the minimal nature of 
the simulator.

Incorporating information trading: Information, if is useful, 
could  also  be  something  that  fleas  value  and  trade  for. 
Incorporating  this  feature  would  require  a  big  change  to  the 
program, but does seem enticing.

4.   CONLUSION
The  Flea  Market  Simulator  is  a  minimal  market  trading 

simulator, composed of agents (fleas) that compete for essential 
goods.  Fleas  are  divided  into  reproductively  isolated  sub-
populations  (clans)—where  each  clan  has  its  own user-defined 
reproductive method, which generates flea strategies. When a flea 
dies (runs out of some essential good), it is replaced by a new flea 
with a new strategy generated by its clan's strategy generator. A 
flea's  strategy  can  be  thought  of  as  a  “utility  determining 
function”, where each flea's strategy is used to derive an exchange 
table  of  proposed  trading  rates  for  every  pair  of  goods.  Each 
round of simulation, fleas are organized into trading pairs through 
a user-define function. The simulator determines the “maximally 
mutually beneficial” trade for every trade group, by using both 
fleas' exchange tables to determine which pair of goods compose 
the ideal trade. “Haggling” is simulated by taking the geometric 
mean of proposed trading rates of those goods.

One important aspect of the simulator is an agent “strategy” 
is,  abstractly,  a  method for  determining the relative  “need”  for 
every good. This framework should provide a flexible and elegant 
way for fleas to determine trades.  As a result  of heterogeneous 
trading strategies, this simulator creates an unstable environment 
for  its  agents.  In  turn,  in  order  for  agents  to  survive  for  an 
extended period of time, they will likely have to develop highly 
dynamic strategies. Furthermore, through user-defined scheduling 
of flea trading between clans,   strategies will  intermingle.  This 
intermingling  allows  for  open-ended  measures  of  strategy 
performance.
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