
Flea Market Simulator: A Market Simulator for Experiments
on the Computational Evolution of Trading Strategies for

Economic Agents
Omri Bernstein
Cognitive Science
Hampshire College
Amherst, MA 01002

ob08@hampshire.edu

ABSTRACT
In this paper, we present the Flea Market Simulator: a minimal
market simulator, where agents have strategies they use to
determine which goods to trade and at what rate. The primary goal
is to understand how intelligent strategies can develop in a
dynamic economic environment. The simulator is designed to run
multiple independent strategy generating functions at once, for
isolated sub-populations of agents in the market. The timing and
extent of interaction between these sub-populations can be
flexibly controlled by the user. Resultant differences between sub-
populations provides data with which to compare the different
strategy generating functions. Specifically, these strategy
generating functions are intended to be evolutionary
computational (EC) methods, and as such, the simulator provides
the framework for tournaments between EC methods, in terms of
their ability to produce “successful” agent trading strategies. The
definition of success is left purposefully open-ended.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
—Intelligent Agents; I.6.8 [Simulation and Modeling]: Types of
Simulation—Distributed; J.4 [Computer Applications]: Social
and Behavioral Sciences—Economics

Keywords
Economics, experimentation, theory, market simulation

1. INTRODUCTION
1.1 Background

Agent-based economic simulation has a very deep history. In
terms of evolutionary computation (EC), the earliest experiments
were performed at the Santa Fe Institute in the late 80s and early
90s. Arifovic (1989) used genetic algorithms, in a variety of
models, to evolve strings representing agent strategies [2]. Based
on John Holland's schema, each string was essentially a table for
matching predefined market conditions with decisions. More
broadly, the Santa Fe Artificial Stock market was also based upon
“condition-matching” (again, based on Holland's schema) [5].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07...$10.00.

Andrews & Prager (1992) used genetic programming to
evolve agents in a double auction market simulator [1]. In a
double auction, agents “call out” both buying and selling offers,
then trades occur when there is a match. Andrews & Prager
showed that genetic programming could beat many hand-coded
strategies. Chen (2000) uses a very similar double auction market
with genetic programming [4].

The above simulations have various disadvantages. One
frequent limitation is the constraining of agent strategies to a
series of weights for various market status indicators. In other
words, agent strategies in previous market simulators were really
just specific combinations of preset conditions and rules. On the
other hand, the Flea Market Simulator is very open-ended in terms
of what an agent strategy can be: simply, an expression that
evaluates to a number. Arthur (1992) argues that deductive
reasoning is an incomplete explanation for rational behavior in
economic agents [3]. He claims that inductive reasoning must
operate in agent strategies in heterogeneous conditions—which
are the conditions of all real-world markets.

Another limitation has been something we might call “need
mandating”. For example, in Andrew & Prager (1992), agents
were rigidly divided into “buyers” or “sellers” for any given
round. The fitness function for the genetic programs would
compare agent's performance to some mandated ideal price
(specific to each agent). Although this ideal price was determined
intelligently, it could limit the performance of agents by what is
currently understood. In the Flea Market Simulator, as shall be
shown, agents develop their own conceptions of “need”.

1.2 Motivations
The primary motivation for this market simulator is to

understand how to use EC to produce successful agent trading
strategies in a dynamic, heterogeneous market. Even more
fundamentally, the goal is to understand the limitations of current
EC methods on dynamic problems such as this one. The hope is to
tease out what may be needed to resolve these limitations.

The secondary motivation for this market simulator is to
understand the emergence of different human social and economic
dynamics under varying conditions. In this case, a given
simulation would have only one active genetic programming
paradigm. Simulation parameters (e.g. market size) would be
varied, and the object of scrutiny would be emergent properties of
the market that develops.

These motivations, although conceptually independent, have
the potential for synergy. After all, different market parameters
should catalyze or cultivate successful strategies to different
degrees—where effective parameters may be those that most
closely produce human-like emergent market properties.
Reciprocally, robust agent strategies should be a significant factor
in accurately simulating human social and economic dynamics.

549

2. FLEA MARKET SIMULATOR
2.1 Overview

The Flea Market Simulator is a trading market simulator
written in Clojure1. The simulation proceeds in discrete time steps,
or rounds. Each round, agents (called fleas) trade in pairs, then
consume essential goods, and potentially “die” (are removed) if
they hold zero of any essential good. Then the market is
repopulated with fleas (to a constant size) and goods repossessed
from the dead fleas are distributed equitably among the “living”.
The two fleas in any trading pair mutually determine (haggle) the
goods and rate of trade. The details of trading mechanics will be
explained later, but for now, think of the simulator determining
the terms of trade (which goods and at what rate) by calculating
the “maximally mutually beneficial trade” for each flea trading
pair. Refer to Table 1 for definitions of terms.

The simulator is purposed for use in tandem with one or many
EC methods, which it relies upon to generate the “strategy” of a
new flea given the current market state (which includes the
current flea strategies). A viable “flea strategy” is an expression
that always evaluates to a number. However, to understand the
context of this number, you must understand that it will be
interpreted by the simulator as a “relative value”. The following
sections describes what a “relative value” is.

In turn, a relative value is itself just a number, and only has
meaning in relation to other relative values generated by the same
flea. In some abstract sense, a flea's relative value for good x
stands for the flea's perceived utility of good x. The simulator uses
these relative values to generate, for each flea, an exchange table
of any good for any other good, where exchange rate of good x to
good y (Exy) is simply the relative value of x (Rx) divided by the
relative value of y (Ry): Exy = Rx/Ry. In summary, a strategy
should produce a set of numbers. Subsequently, the simulator
extrapolates this set of numbers into an exchange table for each
flea. The trading mechanics using these exchange tables is
described later.

Table 1. The meanings of terms used in the text.

Term Working definition Critical function

Flea Trading agent Generates relative values for
each good

Clan Reproductively
isolated group of fleas

Generates a viable strategy
for each new flea

Market Group of clans Manages interaction between
fleas of different clans by
determining trade groups and
good redistribution

Relative
value

A flea's perceived
utility for a given good

A value used in conjunction
with other relative values of
the same flea to generate an
exchange table of proposed
trading rates

Flea
strategy

What a flea uses to
compete for goods in
the market

An expression that evaluates
to a relative value for each
good

Flea
strategy
generator

A clan-specific EC
method for generating
new flea strategies

Must output a viable strategy
given the current fleas in a
clan

1 Clojure is a recently created impure functional Lisp dialect
which compiles to Java Virtual Machine bytecode. See:
http://clojure.org.

2.2 Market Structure
Although useful, the definitions from Table 1 do not provide a

complete story. It is also important to understand the elements
composing a flea, a clan, and a market. These elements, and their
components, are what we here call the “market structure”. Refer
to Table 2 for an outline of the market structure.

The market is composed of “clans”, in which each clan is
reproductively isolated from the others. Each clan is defined by its
own EC method for generating new flea strategies. This “flea
strategy generator” must take as input a list of the current fleas of
the given clan, and must output a viable flea strategy. There are no
restrictions or requirements on how the method could or should
do this. In fact, the simulator itself will not know or care whether
the method involves EC or not. The market determines trade
groups and good redistribution each round. As such, it manages
interactions between fleas of different clans.

Table 2. Outline of the structure in the simulator.

Term Property Description

Flea Holdings (for each
good)

An integer representing how much
of each good the flea has

Information about
past trades

A look-up table with information
on time and trade rate for every
pair of goods, for all past trades

Strategy An expression that evaluates to a
relative value

Relative values
(for each good)

A number representing the flea's
perceived utility for each good

Clan Fleas A list of fleas currently in the clan

Flea strategy
generator

A function that outputs a viable flea
strategy

Population size A constant integer for how many
fleas compose the clan

Market Clans A list of clans in the market

Trade group
manager

A function that, for each round,
outputs the trade groups

Redistribution
manager

A function that, for each round,
outputs which clans will receive
which repossessions

2.2.1 Structure of a Flea
The state of a given flea is characterized by: holdings for each

good, information, a strategy, and relative values for each good.
Holdings are simply an integer value for each good.
“Information” can be thought of as a look-up table of past trading
rates. The table can be indexed at any pair of goods, and it will
return an associative pairing of times and lists of trade rates (for
the first good to the second good) at those times. For example,
let's say that a flea traded food for water at a rate of 1:2 exactly 3
time steps after it was born. Concurrently, it received information
from its clan members that others traded food for water at a rate of
4:5, 6:7, and 8:9. Now, within its information map, indexed at
“food:water”, it will create a new sub-index “3”, and within that
store the list (1/2, 4/5, 6/7, 8/9). The simulator comes equipped
with functions to retrieve information about pairs of goods and/or
time steps. These functions can then be used in the function set for
the flea strategy generators of clans. In this way, flea's can use
exchange rate information within their strategy definitions.

550

http://clojure.org/

2.2.2 Structure of a Clan
The state of a clan is given by: a list of fleas, a flea strategy

generator, and a population size. A single clan has a constant
population size. This is a simple measure to ensure each clan is
always active, and that no EC reproductive method (i.e. a flea
strategy generator) is ever killed off.

2.2.3 Structure of a Market
The state of a market is defined by: a list of clans in the

market, a trade group manager function, and a redistribution
manager function. Together, the latter two define how the market
manages interactions between fleas of different clans. A trade
group manager is a function that, based on the current time step,
outputs a list of pairings of fleas (trade groups), thus defining
which fleas will trade with which other fleas. The default trade
group manager randomly pairs all fleas in all clans once every 50
rounds, and otherwise randomly pairs fleas only with fleas from
the same clan. A redistribution manager is a function that, based
on the current time step, outputs which repossessions will go to
which clans. Each clan will then distribute its allotment equitably
among its currently living members. By default, the redistribution
manager will not disperse repossessed goods between clans. That
is, repossessions will be clan-isolated by default: clan X will only
receive repossessed goods from dead fleas from clan X.

2.3 Simulation Loop
Figure 1 is a flow chart representing a Flea Market Simulation

run, with initialization remaining obscure for now. First, fleas are
organized into trade-groups (pairs of fleas) by the trade-group
manager. Next, fleas undergo trades through mechanics that will
be explained later. For now, suffice to say that the trade is a
maximally mutually beneficial trade of two goods, derived
indirectly from the fleas' strategies. After all flea pairs have
traded, all fleas consume essential goods. Any dead fleas are
removed from the market, and their non-essential holdings are
amassed as repossessions. Death is defined as having zero of any
essential good. Then, clans are repopulated up to their constant
size limit. New fleas are given a set starting amount of essential
goods. Finally, repossessions are distributed to the clans (as
managed by the redistribution manager), where they are then
distributed equitably to fleas within clans to all the current living
(both newly born and otherwise).

2.4 Initialization of a Run
For initializing a run, a simulation duration must be provided.

A starting market is generated with a list of clans, where the
defining factor of each clan is its flea strategy generator (EC
method) and its size. The market can be initialized with a variety
of optional settings. The most important settings are the trade
group manager function and the redistribution manager function
(both previously described).

Additional options allow for defining what goods are in the
market, and/or for each good, the starting amount and use rate. If
a good has a use rate, it is considered an essential good, such that
fleas will die if they hold zero of it. New fleas are always given
the starting amount of essential goods, but only the very first
generation of fleas is given the starting amount of non-essential
goods. Non-essential goods are not subsequently infused into the
market, but rather recycled through redistribution from dead fleas
to living fleas. In this way, the total amount of each non-essential
good in the market is a constant, equal to the total number of fleas
times the starting amount of that good.

By default, information is extremely local. Each flea only has
information on its own trading rate history. However, optional
settings allow for clan information sharing—where all members
of a clan have access to the trading history for trades in which
members of the same clan participated—and also entire-market
information sharing—where every flea in the market has access to
all trading rate histories for all trades in the market.

When initializing a clan, an optional clan setting is
“maximum give fraction”. This setting defaults to 0.5, and must
be a value greater than 0 and less than or equal to 1. It defines the
maximum fractional amount of any good a flea is allowed to give
in one transaction. In a trade, the flea whose give rate (a function
of maximum give rate and holdings) is more limited determines
the actual trade amounts.

2.5 Trading Mechanics
For each trade group, the simulator determines which pair of

goods, and what trade rate, would be most mutually beneficial to
the two fleas. The simulator mandates which goods and at what
rate the fleas trade. However, it is important to understand that
although the fleas' strategies seem to play “passive” role in this
process, they are, in fact, critical in determining the outcome. This
is because each flea ultimately “proposes” exchange rates for

Initialization
(duration is set)

Trades happen

Fleas consume
essential goods

Dead fleas are
removed

Non-essential goods
repossessed from dead

Clans are
repopulated

Repossessions
redistributed

Output final
market state

Each new flea is given
the starting amount of

essential goods

Each new flea is given
a strategy generated by
its clan's flea strategy

generator

Each new flea is given
zero non-essential goods

time step = duration?No YesIncrement
time step

The trade group manager
outputs flea trading pairs
For each trading pair, the
simulator determines the

goods and rate by
maximizing for mutual
benefit for the flea pair

Figure 1. Flow chart of the simulation loop. Initialization is explained in the text.

551

every pair of goods. The simulator determines the maximally
mutually beneficial trade through a stepwise process that is the
same for every trade group:

1) As previously described, use the relative values of both fleas
to determine their respective proposed exchange rates for
every pair of goods. Flea1:Exy and Flea2:Exy.

2) For each pair of goods, calculate the geometric mean of the
two fleas' proposed exchange rates. Each geometric mean
represents the “ideal” trading rate for the given pair of goods.
In essence, this step simulates “haggling” to a middle ground.
Ideal rate, I = square_root(Flea1:Exy*Flea2:Exy).

3) Bound each ideal exchange rate based on the holdings of the
two fleas for that pair of goods. Since good holdings are
integer values, actual exchange rates must be constrained
based on holdings. Actual rate, A =
bound_by_actual_trade_possibilities(I)2.

4) For each pair of goods, calculate the benefit of this actual
exchange rate to each flea. Benefit is the absolute quotient of
the actual exchange rate and each flea's proposed exchange
rate. Here, the absolute quotient of x and y is defined as x/y if
x>y or y/x otherwise. Benefit for Flea1, Flea1:B =
absolute_quotient(A, Flea1:Exy); for Flea2, Flea2:B =
absolute_quotient(A, Flea2:Exy).

5) For each pair of goods, take the minimum of the two benefit
values (one per flea). This is the benefit value for this
proposed trade. Trade benefit, Btrade = minimum(Flea1:B,
Flea2:B).

6) For all pairs of goods, select the trade that has the maximum
benefit value. In turn, the trade rate will be equal to the actual
exchange rate for that pair of goods. For the set of all pairs of
goods, P, where p ϵ P, and p:Btrade is the Btrade value for that
pair of goods, select p where p:Btrade is maximum. The trade
rate R will be equal to p:A (i.e. the value A for that pair of
goods).

2.6 Properties of the Simulator
• Fleas are heterogeneous agents that trade in pairs.
• A flea strategy is open-ended. It is only required to be an

expression that evaluates to a number.
• Functionally, a flea strategy is a method that outputs an

exchange table for every pair of goods.
• A flea strategy indirectly determines the goods and ratio of

each trade.
• In the default configuration, fleas have access to local

information of only their own trading rate history. Optional
settings allow for clan information sharing, and even entire-
market information sharing.

• The market is characterize by overlapping generations.
• A flea strategy generator is also open-ended. It is only

required that it be a function that takes a set of fleas as input,
and outputs a viable flea strategy.

• Throughout a run, the total market amount for each non-
essential good is constant.

2 Since holdings are integer values, the actual trade possibilities
for a given flea are a function of its holdings and its clan-defined
maximum give fraction. For example, for the possible trade of
F1:F2 for food:water, let's say that I equals 2/9. However, F1
holds 2 food and F2 holds 6 water, where both of their maximum
give fractions is equal to 0.5. As a result, F1 can only give 1 food,
and F2 can only give 3 water. So the actual trade rate will be 1/3.
Even if F2 holds 10 water, the actual trade rate would then be 1/5
due to rounding. The only way F1 and F2 could trade at a rate of
2/9 would be if F1 had at least 4 food and F2 has at least 18 water.

3. DISCUSSION
3.1 Potential Advantages

There is no stable equilibrium for exchange rates of goods:
The simulator creates an unstable environment by leveraging the
destabilizing effects of heterogeneous dynamic trading strategies.
As a result, successful strategies may need to be dynamic
themselves.

Fleas are theory blind: Flea strategies do not, by default, have
any economic theory or principles embedded into them.
Potentially, this means that fleas are not biased to act in ways that
are already understood. Ideally, this allows for possibility of new
theoretical discoveries.

Agent strategies are really abstract methods for determining
relative need and utility of various goods: Although flea strategies
only indirectly determine the goods and rate of trade, the
strategies are elegant in that they abstractly represent a function
for determining relative utility. This broadens the application of
this simulator to modeling any “ecology” of agents competing for
limited resources, where an agent is allowed to determine its own
relative needs of those limited resources.

Information use of fleas may lead to sophisticated strategies:
In addition to the pricing history information available to fleas,
strategies can also indirectly utilize information about other fleas'
strategies. Primarily, this may exist due to the overlapping of
generations. When new fleas are generated based on extant flea
strategies, they could theoretically “predict” the actions of other
fleas by incorporating important pieces of their parents' code as
conditionals in their own code. This principle also applies in the
context of the genetic relatedness of peers in a population.

Different strategies can be compared in an open-ended user-
defined context: Fleas from different clans can trade (with a user-
defined schedule). This feature provides some way to understand
the performance of flea strategies. Within a clan, fleas are
constantly competing internally. Without comparison to some
external strategies, quantifying strategy performance is limited to
analyzing the actual code of individual strategies (yuck). These
external strategies could be hand-coded or themselves could
evolve. Which leads to an exciting implication: the potential for
meta EC. In theory, one could use a “meta EC method” to
generate flea strategy generating functions (the “lower level EC
methods”) and define some “meta fitness function” that compares
whole clans' performances.

3.2 Potential Disadvantages
Analytically poor: Currently there are no built-in methods for

analyzing strategies or markets using theories or methods from
economics. Although theory blindness of flea strategies is
potentially a good thing, theory blindness of analytic tools is not.

Simple results: Perhaps the dynamics are too simple to
produce truly interesting strategies. The minimal nature of the
simulator is useful for accessibility and analysis, but also may
have the disadvantage of only allowing for simple or uninteresting
strategies. Further testing is required to determine the utility of
this simulator.

Potential problems with local optima: Due to the large gap in
“need” between essential and non-essential goods, fleas may only
be able to achieve locally optimal strategies that extend life
slightly through extremely high relative valuation of essential
goods. However, the function that determines trades does act to
neutralize this behavior.

Flea strategies only indirectly determine the terms of a trade:
This property limits the power of fleas to directly choose the
terms of their own trades. By taking this power away from fleas,
the potential for sophisticated strategies may be watered down.

552

3.3 Future Directions
Controlling good availability: Instability in the market

dynamics is currently created by heterogeneous agent trading
strategies. Controlling good availability would be another way to
produce unstable environmental conditions, with different
implications.

Incorporating more complicated good properties: Currently,
goods have only one differentiable property: use rate. This may
lead to strategies that are similarly limited in complexity. One
possible additional good property could be transfer rate. If some
goods were only slowly transferred after a trade, then those goods
would potentially be less valuable. This property would be
similar, but not identical, to the concept of liquidity in economics.

Incorporating game modifiers: It may be interesting to add
goods that act to modify the behavior of other goods. For
example, “ice” could be a good that decreases the use rate of food,
but only to a certain extent. More complicated good:good
interactions could significantly enhance the potential complexity
of strategies without significantly damaging the minimal nature of
the simulator.

Incorporating information trading: Information, if is useful,
could also be something that fleas value and trade for.
Incorporating this feature would require a big change to the
program, but does seem enticing.

4. CONLUSION
The Flea Market Simulator is a minimal market trading

simulator, composed of agents (fleas) that compete for essential
goods. Fleas are divided into reproductively isolated sub-
populations (clans)—where each clan has its own user-defined
reproductive method, which generates flea strategies. When a flea
dies (runs out of some essential good), it is replaced by a new flea
with a new strategy generated by its clan's strategy generator. A
flea's strategy can be thought of as a “utility determining
function”, where each flea's strategy is used to derive an exchange
table of proposed trading rates for every pair of goods. Each
round of simulation, fleas are organized into trading pairs through
a user-define function. The simulator determines the “maximally
mutually beneficial” trade for every trade group, by using both
fleas' exchange tables to determine which pair of goods compose
the ideal trade. “Haggling” is simulated by taking the geometric
mean of proposed trading rates of those goods.

One important aspect of the simulator is an agent “strategy”
is, abstractly, a method for determining the relative “need” for
every good. This framework should provide a flexible and elegant
way for fleas to determine trades. As a result of heterogeneous
trading strategies, this simulator creates an unstable environment
for its agents. In turn, in order for agents to survive for an
extended period of time, they will likely have to develop highly
dynamic strategies. Furthermore, through user-defined scheduling
of flea trading between clans, strategies will intermingle. This
intermingling allows for open-ended measures of strategy
performance.

5. ACKNOWLEDGMENTS
Thanks especially to Lee Spector, who provided constant advice,
support, and creative brainstorming throughout. Also thanks to
Thomas Helmuth, Kyle Harrington, and Emma Tosch for their
feedback, and to Hampshire College for support for the
Hampshire College Institute for Computational Intelligence. This
material is based upon work supported by the National Science
Foundation under Grant No. 1017817. Any opinions, findings,
and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

6. REFERENCES
[1] Andrews, M.; Prager, R. (1994). “Genetic Programming for

the Acquisition of Double Auction Market Strategies”, in
Advances in Genetic Programming. Kinnear, K. Jr. (Ed).
Cambridge, MA: The MIT Press.

[2] Arifovic, J. (1989). “Learning By Genetic Algorithms in
Economic Environments”. University of Chicago (Chicago,
IL). Doctoral dissertation.

[3] Arthur, W. B. (1992). “On Learning and Adaptation in the
Economy”. Santa Fe Institute (Santa Fe, NM) Paper 92-07-
038.

[4] Chen, S.-H. (2000). “Toward an agent-based computational
modeling of bargaining strategies in double auction markets
with genetic programming”. Lecture Notes in Computer
Science 1983: 517-53.

[5] Lebaron, B. (2002). “Building the Santa Fe Artificial Stock
Market”. Working paper, Brandeis University (Waltham,
MA).

553

