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ABSTRACT

In prior work, we presented GAMID, an extension of GAMI
(Genetic Algorithms for Motif Inference), which allows the
system to ignore some of the sequences when looking for
candidate conserved motifs in noncoding DNA. This abil-
ity is useful both when looking for candidate motifs in co-
expressed genes (where it is not expected that all genes re-
spond to the same transcription factors) and when looking
for candidate motifs in divergent species (where functional
elements might appear only in related species). In these
cases, we would like to allow the inferred motif to be present
in only a subset of the input data. By excluding some se-
quences from the match process, GAMID succeeded at find-
ing known functional elements. Here we use the results of
experiments using artificial data with GAMID to show that
GAMID’s success in inferring motifs in subsets of the in-
put data results in it finding fewer motifs when they are
present in all the sequences. Therefore, GAMID is useful as
an adjunct tool to GAMI, but is not a replacement for its
functionality.

Categories and Subject Descriptors

J.3 [Life and Medical Sciences]: Biology and Genetics;
I.2.8 [Artificial Intelligence]: Problem solving, Control
methods, and Search

General Terms

Algorithms

Keywords

Evolutionary computation, genetic algorithms, DNA motif
inference

1. INTRODUCTION
GAMI [7, 8] (Genetic Algorithms for Motif Inference) uses

a Genetic Algorithms (GA) search to identify putative func-
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tional elements in noncoding DNA. The system was designed
to identify putative functional elements following the notion
that elements that have been conserved across evolution are
more likely to be functional; therefore, GAMI seeks to find
highly conserved patterns in the data, which are called mo-
tifs. In previous work, GAMI has been shown to be adept at
finding highly conserved elements in long sequence lengths
(e.g., 100kb) and across several dozen sequences.

It is thought that co-expressed genes frequently share reg-
ulatory elements, so it should also be possible to use GAMI
for the inference of motifs in co-expressed genes. However,
a limitation of GAMI in this regard is that it seeks to find
evidence of a motif in all sequences of the data, and this is
not appropriate when investigating genes that may be co-
regulated. Even if the target genes share some functional
regulatory elements, it is unlikely they share them all. Of-
ten, a functional element will appear in only a subset of the
sequences [1], [16]. Similarly, in a dataset of highly diver-
gent species, it is likely that some species have developed
novel methods of regulation for what are still orthologous
genes [6]. Therefore, a functional element might be present
in sequences from closely related species, but not appear in
all sequences in the dataset.

Therefore, we developed GAMID [19], an extension to
GAMI with the capability of selectively ignoring sequences
when evaluating motifs if it seems likely that doing so will be
beneficial in identifying a putative functional element. We
refer to this process as “dropout”. In prior work we showed
that GAMID was able to find known functional elements
present in only a subset of the input sequences. However,
we did not establish if GAMID can function as a replace-
ment for GAMI, or if the process of identifying motifs in
subsets of the input negatively affects its ability to identify
better represented motifs. In this work, we study how our
changes to GAMI affect GAMID’s ability to identify well
represented motifs.

In this paper, we first present background information on
genetic algorithms and the problem of motif inference as
it relates to both co-expressed and orthologous genes, in-
cluding the particular problem of motifs represented in only
a subset of the sequences of interest. Second, we discuss
GAMID, our solution to that problem and how it relates
to this current work. Third we discuss our methodology.
Fourth, we analyze our results and show that there appears
to be a trade-off in the results when using GAMID. Finally,
conclusions are presented and future work is considered.
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2. BACKGROUND

2.1 Motif Inference in Orthologous Genes
Several studies suggest that comparative analysis, when

applied to evolutionarily diverse organisms, helps to predict
functionally important noncoding regions [9], [18], [10]. Mo-
tif inference in this case involves analyzing the regulatory
regions of orthologous genes to look for areas of high con-
servation. The hypothesis motivating this approach is that
highly conserved regions are more likely to contain func-
tional elements, and that is why the regions have been con-
served through evolution [11], [23].

2.2 Approaches to Motif Inference
Depending on the number of sequences being examined,

the sequence length, and the motif length, exhaustive searches
can be prohibitively expensive. Therefore, most approaches
to motif inference use some sort of heuristic search tech-
nique.

As noted by Lones and Tyrell [15], the most common ap-
proach to locating and characterizing conserved regions in
sets of biological sequences is to first use a global sequence-
alignment system. However, global sequence alignment is
computationally expensive, particularly as the number and
length of the sequences increases. Furthermore, for evolu-
tionarily distant species, the degree of sequence divergence
precludes global alignment, especially in noncoding regions,
which often exhibit less overall conservation than coding re-
gions.

Another highly favored approach to motif inference is to
search for an optimized and coadapted set of window loca-
tions across the set of sequences. The set of windows form
a matrix that describes the motif. This approach is used,
for example, in Multiple Expectation Maximization for Mo-
tif Elicitation (MEME) [2], Gibbs Sampler [20], and Fogel
et al. [12]. The latter also uses an evolutionary computa-
tion approach. Note that these approaches are also suited
to detection of overrepresented motifs in co-expressed genes.

2.3 GAMI’s Approach to Motif Inference
GAMI was designed to infer motifs using sequences from

evolutionarily distant species [7, 8]. Of course, the spe-
cific goals of motif inference vary for different researchers.
With GAMI, the goal was to find a more computation-
ally tractable approach than those listed above; therefore, it
searches the space of possible motifs instead of the space of
possible matrices, and it does not rely on global alignment.
The following characteristics describe the unique combina-
tion of requirements for GAMI:

1. GAMI was originally designed to look for conserved re-
gions using data sets with support for the motifs iden-
tified in each of the sequences in the set. The work on
GAMID changed this requirement.

2. Searches are done in noncoding regions, where there is
usually less overall conservation than in coding regions.

3. Searches are for putative regulatory regions and not
specifically transcription factor binding sites.

4. The ability to search in long sequence lengths, perhaps,
100 kb or longer.

5. The ability to search a large number of sequences when
quality sequence is available.

6. Computationally tractable.

Several of these characteristics differ from other motif in-
ference approaches. For example, many motif inference ap-
proaches do not require that motifs are contained in all of the
sequences; this is evidenced in published benchmarking data
sets such as [21]. Some tools search only for TFBSs and are
therefore limited in the scope of regulatory elements that
can be identified [4]. Some motif inference projects look
in the core promoter region only (for example, 1-200 bp).
Many motif inference projects restrict the input to a small
number of sequences or short sequences due, in part, to run-
time concerns. GAMI’s use of Genetic Algorithms to search
the possible motif space means that it is not constrained by
most of these limitations.

For the purposes of this work, a motif is defined in a
given data set of nucleotide sequences as an N-mer that oc-
curs in the sequences being examined. We allow imperfect
matches, so that the pattern might not be represented ex-
actly in one or more of the input sequences. N-mers that
are more strongly matched across the set of sequences are
considered stronger motifs.

2.4 Finding Overrepresented Motifs in
Co-expressed Genes

The idea behind these motif inference systems can be ex-
tended to the study of co-expressed genes. The difference
is that in this case motifs are not a product of conservation
through evolution. Instead, it is assumed that genes that are
co-expressed are often regulated by a common transcription
factor. Therefore, these genes are assumed to share TF-
BSs more often than other genes would by chance [1], [16].
Therefore, motifs for these binding sites should be overrep-
resented in the input sequences, compared to what would
be found by chance. A number of methods have been de-
veloped to aid in the detection of such overrepesented mo-
tifs, including MEME [2], Gibbs Sampler [20], Fogel et al
[12], Frith et al. [13], and Zheng et al. [24]. For the most
part, these approaches use various statistical methods to
find motifs that are overrepresented in the input data, often
by comparing motifs to some set of control data, such as a
random sample of genes ([12] is an exception to this). In
addition, some methods of statistical inference for overrep-
resented motifs also make use of phylogenetic information
to improve the accuracy of their results, such as oPOSSUM
[14], PhyloCon [22], and BlockSampler/BlockAligner [16].
These methods first identify putative functional elements in
each input sequence using phylogenetic footprinting, then
use statistical analysis to identify common elements. This
limits the number of motifs that must be considered, which
is computationally more tractable and may help eliminate
false positives.

2.5 Identifying Motifs Represented in Subsets
of Gene Sequences

As we have discussed, when examining the regulatory re-
gions of both co-expressed and orthologous genes, a subset of
the input sequences may be missing motifs that are present
in the others. Actually, there may be numerous subsets,
each of which share certain motifs. Therefore, to identify
motifs that are represented only in a subset of the input, it
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is necessary to have some method of comparison that will
not be overly disrupted by sequences missing some motifs.

There are a number of different approaches described in
the literature, each of which has strengths and weaknesses.
We have tried to make the following examples representative
of the most popular:

1. MEME is a widely used approach that discovers mo-
tifs through a statistical process known as expectation
maximization. Essentially, this involves a measure of
the probability of each letter occuring at any posi-
tion in a pattern. This is achieved in part through
local alignments between sequences to find recurring
patterns, though there is also the option to use back-
ground data to improve the sensitivity of the results.
MEME is able to incorporate sequences missing motifs
into this process, though it obviously does interfere, to
an extent, with its probability calculations. According
to the authors [2], MEME is better suited to input se-
quences less than 1000 bp long, with a minimal number
of input sequences that do not share motifs.

2. Blanchette et al. [3], developed a statistical method
for motif discovery, known as Footprinter, that in-
corporates phylogenetic information to find parsimony
scores. This involves finding the number of changes
it takes when looking along a phylogenetic tree in or-
der to move from one form of a motif to another. It
then identifies the motifs with the smallest number
of changes (i.e. the most parsimonious). It is also
able to handle motifs that occur in only a subset of
the input sequences. Footprinter will show a motif as
being conserved if it has a low parsimony when con-
sidering how diverged the species are that the sub-
set of sequences are from. This can be a useful ap-
proach for the discovery of regulatory elements when
a researcher has sufficient orthologous sequence with
which to test, and is able to construct a phylogenetic
tree that shows the evolutionary relationships between
the input sequences. However, this is not always the
case. Also, FootPrinter is computationally expensive,
and problems involving large motifs or long sequences
can be intractable with this approach. It is also im-
portant to note that FootPrinter was specifically de-
signed for phylogenetic footprinting, not the study of
co-expressed genes.

3. A number of other approaches, including methods us-
ing evolutionary computation, are able to handle some
sequences missing motifs present in the others, but few
appear to be designed with that functionality in mind.
GALF-P was designed to handle such missing motifs
[5]. However, this is handled in a post-processing step.
Therefore, solutions must survive to the final popula-
tion to be considered, which may hide motifs that are
strong only in the context of a subset.

In general, statistical methods are computationally inten-
sive, which may limit the sequence length that can reason-
ably be investigated. Depending on the data set, motifs
may be too long to handle with such approaches. Mean-
while, methods depending on phylogenetic trees work well
in some circumstances, but are not applicable to working
with co-expressed genes. Multi-step approaches that com-
bine orthologous and co-expressed genes also depend on a

Figure 1: An example of the 17-mer motif TGTC-

CTGGGCCTGACCC matching locations in short selections
of sequences from a few pregnancy-related genes.
The motif location is shown in bold type. Locations
where a sequence’s best match differs from the con-
sensus motif are shown in red. The overall Match
Percentage (MP) score for this motif is 84.88 %,
which corresponds to matching 101 of the possible
119 bases (17 bases in each of 7 sequences).

greater availability of data, making some data sets difficult
or impossible to work with. Although systems for working
with motifs represented only in a subset of the input do ex-
ist, most were not designed with that functionality in mind,
and we found none that met our requirements for working
with long sequences, long motifs, and a large number of in-
put sequences.

3. GAMID
In order to meet the objective of finding motifs represented

in a subset of the input data while at the same time being
able to handle a large number of long sequences and possibly
long motifs, we decided that it made sense to extend GAMI.
GAMI has already performed well on motif inference with-
out dependence on phylogenetic trees, or computationally
expensive statistics. Because our solution to this problem
involves allowing GAMI to selectively ignore sequences dur-
ing motif evaluation, we refer to this approach as GAMI
with Dropout (GAMID).

GAMI was originally designed to search a set of nucleotide
sequences for patterns that appear at least once in each se-
quence. The motif representation is the standard consensus
motif: an N-mer composed of the bases A, C, G, and T.
For example, if we are searching for 8-mers, possible motifs
identified would include CATGCAAT, TAGGAACT, ACTTACGT, and
so forth.

The fitness function uses a metric called “match percent”
(MP). To evaluate the MP of a given motif, each sequence
is searched to find the best consecutive match for that mo-
tif within that sequence. Forward and reverse-complement
matches are considered for each sequence. The best match
maximizes the number of bases that match the motif across
all the sequences; there might be more than one best match
for a given motif and nucleotide sequence (but this does
not alter the score). An example match for the motif TGTC-
CTGGGCCTGACCC is shown in Fig. 1. The (maximum) number
of bases matched in each sequence is the score for that mo-
tif with that sequence. The score for the motif across all
sequences in the data is the percent of the overall matches
found out of the theoretical maximum possible (number of
input sequences × motif length).
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Our modifications to GAMI involved giving it the ability
to allow a sequence to “dropout” from the evaluation process
when scoring a motif as described above. In this case, the
MP score of a motif reflects the percentage of bases matched
in only a subset of the sequences examined.

GAMID accomplishes this in the following manner:

• In GAMI’s fitness function, each time the best match
for a motif is found, GAMID adds the amount that
match contributes to a motif’s fitness to an array, in-
dexed by sequence number.

• Once the motif’s total fitness is calculated, GAMID
traverses the array and checks if the total percent of
matches would be better if the sequence was excluded
from the motif’s fitness.

• If dropping the sequence would improve the motif’s
score by a user-defined threshold value, then the se-
quence number is added to the motif’s internal list of
dropped sequences.

• Finally, the motif’s fitness is calculated based on which
sequences are retained.

It is worth noting that if the Dropout Threshold is set too
low (i.e. it is very easy for a sequence to drop), then GAMID
will simply drop all but one sequence. In that case, GAMID
will report all motifs as perfectly conserved, since they will
not be compared against any other sequences. Therefore, it
is important to find an appropriate Dropout Threshold set-
ting that reveals previously hidden subsets that share motifs,
without allowing too many sequences to drop. Furthermore,
since conservation between sequences will vary by data set,
the most appropriate setting will probably have to be found
through experimentation.

4. METHODOLOGY
In prior work, it has been establed that GAMID is able to

find known functional elements in biological sequences even
when the elements are present in only a subset of the input
data. Now we would like to determine if GAMID is also able
to identify better represented motifs as well as the original
GAMI, or if there is some trade-off in its approach.

To that end, we ran GAMI and GAMID using artificial
DNA sequences containing implanted motifs using a variety
of DropoutThreshold settings. By comparing the recovery
rates of both approaches using motifs that are either well
or poorly represented in the input, we should be able to
show if GAMID is able to recover well represented motifs
for settings at which is also recovers a maximal number of
poorly represented motifs.

4.1 Data
We generated artificial DNA sequences using Rouchka and

Hardin’s rMotifGen V2.0 [17]. We created 100 sets of 10
sequences with 10 implanted motifs using the following set-
tings:

• 5 of the motifs were present in every sequence, but
were 90% degraded. In other words, each implanted
motif was 90% similar to the original one generated by
rMotifGen. This was done to simulate a more realistic
motif problem, in which conserved motifs are seldom
perfect matches.

• 5 of the motifs were present in only 6 of the 10 se-
quences (these motifs were also 90% degraded). This
setting was chosen to make the problem more chal-
lenging, to make any differences between GAMI and
GAMID more apparent.

• The ACGT content of each motif was varied. For each
set of motifs, the following percentages of each base
were used (in the order A,C,G,T). (Motifs 1-5 appear
in each sequence, Motifs 6-10 appear in only 6 out of
every 10 sequences):

– Motif 1: 25,25,25,25

– Motif 2: 50,30,15,5

– Motif 3: 5,50,30,15

– Motif 4: 15,5,50,30

– Motif 5: 30,15,5,50

– Motif 6: 25,25,25,25

– Motif 7: 50,30,15,5

– Motif 8: 5,50,30,15

– Motif 9: 15,5,50,30

– Motif 10: 30,15,5,50

4.2 Parameter Settings
In this work we are comparing our modifications of GAMI

to its original form. Therefore, for the time being, the most
important factor is that the settings are consistent between
the two versions. For all experiments reported here, we used
a population size of 1,000, crossover rate 0.8, and a muta-
tion rate of 0.02. We used a motif length of 15, performing
20 runs for each data set. The length of motif was chosen
to make the problem challenging, again with the hope of
making differences between GAMI and GAMID runs more
apparent.

For each run, 55,000 trials were performed. The number
of trials is the number of fitness function evaluations. Due
to elitism, and the ability to recognize when a reproduction
operator has no effect, there is not a clean mapping between
trials and the number of generations.

In order to elucidate the affect of GAMID on our results,
we ran it against all 100 data sets using a range of 20 different
DropoutThreshold settings, starting at .001 and working up
to .020 in increments of .001. A setting of .020 means that
a motif would need to be 2% stronger than it would have
been, in order to justify dropping a sequence.

Fifty percent elitism was used to preserve the best 500
motifs in the population every generation. Thus, at most 500
new motifs are created each generation, and the “result” of a
run can be considered to be the 500 best solutions in the final
population. The 80 percent crossover rate means that 80
percent of the remaining motifs are candidates for crossover
(a total of 150). The 2 percent mutation rate means that
each nucleotide in a solution has a 2 percent chance of being
set to a random value (possibly, the same as it was before).
Rank-based selection was used.

5. RESULTS
As stated above, there were 20 runs performed for each

of 100 data sets at each of 20 DropoutThreshold settings
for GAMID, as well as another 20 runs for each 100 data
sets with GAMI. Due to the stochastic nature of Genetic
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Figure 2: Average number of recoveries using GAMI
and GAMID at different DropoutThresholds. The
black bars correlate to the motifs present in all se-
quences. The gray bars are recoveries of motifs
present in subsets of sequences. GAMID recovers
the greatest number of motifs present in subsets be-
tween DropoutThresholds of .006-.008, but not as
many strongly represented motifs.

Algorithms, it is to be expected that not all motifs will be
recovered in any particular run, especially with a difficult
problem. We decided to count how many runs a motif was
recovered in across all 100 data sets for GAMI and for each
DropoutThreshold setting used for GAMID. Since this left
us with 21 (setting) × 100 (data sets) × 10 (motifs) = 21000
results, we decided to average the results for each motif. Fig-
ure 2 shows the average recovery rates across the 21 different
settings (1 GAMI, 20 GAMID), grouped by motifs present
in every sequence (shown in black) and motifs present in a
subset of sequences (shown in gray). Table 1 shows the av-
erage recovery rates of GAMI and GAMID (using Dropout
Thresholds of .006-.008) for motifs that appear in all se-
quences and those that appear in only a subset.

6. DISCUSSION
In Figure 2 a couple of things can be seen:

1. When recovery of the motifs that appear in only a
subset of the data is best (using DropoutThreshold
settings of .006-.008), the recovery of well represented
motifs is lower than it was for GAMI.

2. At extremely low DropoutThreshold settings, the im-
planted motifs are recovered much less frequently, both
for those well represented and those that appear only
in a subset of the sequences. This shows that it is
probably not beneficial to use too lax a setting for this
parameter.

In Table 1 it can be seen that for DropoutThresholds .006-
.008, GAMI’s results were on average stronger by a factor of

Table 1: Average Recovery Rates for GAMI vs
GAMID at Dropout Thresholds .006-.008

GAMI .006 .007 .008

Motifs in all seq’s 11.26 10.07 10.28 10.25

p-value - 0.0001 0.0015 0.0007

Motifs in subsets 2.09 4.18 4.40 4.22

p-value - < 0.0001 < 0.0001 < 0.0001

1.10 than GAMID for motifs present in each sequence. How-
ever, GAMID’s results were on average stronger by a factor
of 2.01 for motifs present in only a subset of the sequences.
For these data, GAMID recovered fewer well represented
motifs when it recovered the most poorly represented ones.

7. CONCLUSIONS
The goal of this work was to evaluate how adding“dropout”

functionality to the motif inference software GAMI affected
its ability to recover motifs that are well represented in the
input sequences. GAMID has been shown to identify func-
tional motifs that are represented in only a subset of the
input sequences. With the artificial sequences used in this
work GAMID was able to recover such motifs even when
given a challenging problem. Nevertheless, our results show
that GAMI is better at recovering well represented motifs
present in the same data set. This suggests that GAMID is
not currently a replacement for GAMI, but instead, GAMID
should be viewed as a useful alternative to GAMI for par-
ticular problems.

8. FUTURE WORK
In future work we would like to identify exactly why the

trade-off discovered with GAMID exsits. The number of
motifs used in this work would not preclude GAMID from
having recovered all the motifs, so perhaps there is some
change that we can make to the algorithm that would enable
it to do so.
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