
Evolving Software Applications using Genetic
Programming

PushCalc: The Evolved Calculator

Kwaku Yeboah-Antwi
Institute for Computational Intelligence

Hampshire College
Amherst, MA

ky10@hampshire.edu

ABSTRACT
This paper describes PushCalc, a system that evolves a Cal-
culator, a complete software application. PushCalc is a mod-
ified version of Clojush, the clojure implementation of the
PushGP genetic programming system1. PushCalc supports
the definition and storage of names and functions via its
naming mechanism, tags. The goal of this system is to
utilise this ability to evolve an individual that can create
the modular parts of the calculator and also know when and
in what situations to use which modular functions and per-
form the correct operations depending on the input given to
the system.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis

General Terms
Algorithms

Keywords
Genetic Programming, Dynamically Scaling Genetic Oper-
ator Usage, Variable Point Size System, Gecco proceedings,
Evolving Software Applications

1. INTRODUCTION
Genetic programming has always been concerned with

evolving a population of computer programs to solve prob-
lems. These computer programs are traditionally repre-
sented as syntax trees and are composed of primitive func-
tions and operands. These computer programs are evolved

1The PushGP Genetic programming system was
invented by Lee Spector. It can be found at
http://hampshire.edu/lspector/push.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

to generalize from sample input and be able to perform a
general task and do it very well. They are in effect, just mod-
ular programs/functions that can be integrated into other
bigger software applications. This research project is con-
cerned with the broader view of evolving whole and com-
plete software applications that are made up of modular
parts. Instead of individually evolving all the parts of the
application, the system defines and evolves named functions,
automatically defined functions(ADF)[4] that will then be
put together to make a complete software application. The
concept of naming and defining functions in genetic pro-
gramming runs has been investigated and implemented in a
few genetic programming systems. These systems however
require the human to pre-specify in advance, the number
and types of names[3] and when they don’t, very complex
operators are required to ensure all names are defined before
they’re used and that calls to functions match their defini-
tions[4]. Spector, Harrington, Martin and Helmuth (2011)[2]
described and implemented a new approach to naming in ge-
netic programming which allows for automatic definition of
functions and names by the gp system during a run. They
called their approach the tag based system. The system
allows tags to be applied to variables and code and when
the tag values are called, they then refer back to the vari-
ables/code that the tag was applied to. Tags references im-
plement an inexact matching system where if the tag number
does not exist, the closest matching tag gets called thereby
making sure a tag value will always return something. The
tag system has been implemented in PushCalc and as such
allow the genetic programming system to automatically de-
fine and name its own functions. This project is based on the
hypothesis that, since the PushCalc genetic programming
system evolves modular programs and has the capability to
automatically define and name these modular functions, we
can therefore replicate the software development process by
evolving a complete software program that will be a sum of
different named modular programs.

2. THE PUSHCALC SYSTEM
This software application is evolved using a modified ver-

sion of the clojure 2 implementation of the PushGP genetic
programming system called PushCalc. The PushCalc sys-
tem evolves programs written in the Push programming lan-
guage. Push is a strongly typed tree based language with
no syntactic constraints. Each data type in Push has its

2http://clojure.org/

569

own stack. There is also a stack for “code” data and code
from programs being evolved reside on this stack. This al-
lows Push to support and allow recursion and automatic
definition of functions without any human intervention or
pre-specification. The code stack also allows programs to
perform operations and manipulate all their code or frag-
ments of their code.

PushCalc utilizes the standard stacks for the boolean, in-
teger and string types. A code and exec stack is also uti-
lized to allow for manipulation of program code. A new
stack called the symbol stack was created for the storage
and manipulation of the set of standard primitive mathe-
matical operators(or symbols), ie (+ - * /).

The function set utilized by programs is listed below.

Table 1: The set of primitive functions that are uti-
lized in program

Types Default Instructions Used

integer add eq swap pop dup lt mult
div gt max sub mod rot min

boolean swap eq rot and not or
frominteger dup pop

exec pop eq if when swap dup noop
code member do* dup quote cons

container if extract wrap
nth discrepancy size length
cdr map atom contains list
do*range eq fromboolean
frominteger do*count car
position do do*times rot

string pop eq map rot toInt toSym-
bol oper? concat Int swap
dup

symbol pop plus sub div mult
tag tag-instruction-erc tag-

when-instruction-erc untag-
instruction-erc

3. TECHNIQUES
A number of techniques were created and implemented in

this system to reduce program sizes by controllin bloatand
helping speed up therat at which succesful individuals are
evolved. These techniques are presented below.

3.1 Variable MaxPoints System
. The first technique that was created ad implemented is

theVariable MaxPoints System(VPS) PushCalc utilizes the
VPS technique that allows variable program sizes in the pop-
ulation and penalises individuals depending on how much
bigger they are than other members in the population. For
each generation, the average size of the best individual from
each of the past 10 generations is calculated(Sb) and during
selection, programs are allowed to grow to a limit of maxi-
mum size(Smax) of

Sb + Sr

(Sr = size-radius, the max number of points individual
sizes can be bigger than max-points)

The average size of the top 10% best individuals in the
population is calculated(Spop) and subtracted from the size
of each individual. The resulting resulting value is then
added to the total error of each individual to get its size-
error. During selection, individuals with the lowest size-
errors are selected. Code bloat is severely curtailed because
increase in size without a corresponding increase in fitness
as compared to the other individuals increases the fitness
penalty of that individual and individuals are rewarded with
a better fitness by growing bigger only when it is necessary.
Also, individuals can only grow to be Sr bigger than the max
program size. In effect, the population adapts to increasing
its max program size only when the increase in size benefits
the whole population.

3.2 Dynamically Scaling Genetic Operator Us-
age

The other technique also created and implemented is the
Dynamically Scaling GeneticOperatorUsage(DSGOU). This
technique scales the probability of each genetic operator be-
ing chosen in order to breed the child-individuals depending
on how many past individuals have been bred by the op-
erator. Each operator has a standard default probability
lower limit(OPmin). The number of best individuals gener-
ated by each mutation operator(Mbest) is kept track of and
the probability of that operator being chosen to breed child
programs is calculated using this equation.

(1.0− (number of operators ×OPmin))

× (generation number÷Mbest)

+ OPmin

where OPmin is the default probability limit and Mbest is the
number of best individuals generated the genetic operator.

This ensures that all operators have at least an OPmin

chance of being chosen to breed the child program and that,
operators that produce better individuals have a higher chance
of being chosen to breed the child programs. Preliminary re-
search has shown that for each variable size range(the time it
takes for the population to increase or decrease max-points
(±Sr), one operator usually generates the most best individ-
uals during that period. This technique capitalizes on this
phenomena and increases the probability of that operator
being selected to breed a child during that period thereby
ensuring that, the operator generating the best individuals
during a period gets used more during that period.

4. SELECTION
During selection, individuals with the lowest error rate af-

ter VPS is applied, are selected to breed thereby making sure
that individuals that are doing very well at solving most of
the problems and with the least amount of bloat get selected
to pass on their genome.

5. FITNESS FUNCTION
The fitness function takes in a map of test data. This

map contains keys of a list of inputs. These inputs are key
presses fom a calculator. The key presses are represented
as single characters corresponding to the value of the key

570

pressed; for example, the operation “3+4” is represented by
three keypresses, “3” “+” “4”. These sample sets of inputs
are all mapped to their corresponding resulting values which
are the result of running the key presses specificed in each
key. During evaluation, individuals in the population being
evolved are executed on a new stack state that has been
initialized with the inputs popped onto the string stack in
the order of when the keys were pressed, ie. first keypress
being pushed onto the string stack first and so on. The
fitness of each indiviual is the difference between the final
item on the integer stack after executing the individual and
the pre-specified expected corresponding output of the ini-
tialized input from the map of test data. Each individual is
evaluated at the end of every generation and if no individual
exists with a total error of 0, a new generation is then ini-
tialized with a population bred from the population of the
previous generation.

The test cases are composed of possible combinations of
the buttons on a calculator (eg. “43”“43+3”“27/4” 45*2-5”
,etc)

6. RESULTS
Four different experiments with different instruction sets

were created.
The first experiment, titled PushCalc-ALL enabled access

to all the instruction sets/primitives listed above for all the
programs. The VPS and DSGOU techniques were also en-
abled. The population was also allowed access to the tagging
mechanism present in PushCalc.

The second experiment, titled PushCalc-NONE also en-
abled access to all the instruction sets/primitives listed above
except for the tagging instructions for all the programs. The
VPS and DSGOU techniques were disabled and the popula-
tion had no access to tagging mechanisms and as such tags
did not exist in this experiment.

The third experiment, titled PushCalc-TagOnly enabled
access to all the instruction sets/primitives listed above for
all the programs. The VPS and DSGOU techniques were
disabled but the population had access to the tagging mech-
anism in PushCalc.

The fourth and final experiment, titled PushCalc-NoTag
enabled access to all the instruction sets/primitives listed
above except for the tagging instructions for all the pro-
grams. The VPS and DSGOU techniques were also enabled.

Each experiment was allowed a maximum population of
1000 individuals and a max-generation of 1000.Each popula-
tion also had an initial program size limit of 100. Numerous
runs were done for each experiment and the data for the
runs for each experiment were averaged and are presented
in Table 2.

Table 2: Standard GP runs for the different experi-
ments

Experiment Average
Best In-
dividual
Size

Average
Best Initial
Error

Average
Best Total
Error at
end of run

ALL 42 635457 3675
NONE 80 782784 34146
NOTAG 32 772780 16968

TAGONLY 62 690435 3015

Seperate runs were also done to measure the effects of
each of the techniques that were crafted to help improve
the fitnesses of individuals in the population. The average
change in error-rate per generation were calculated for the
populations that used each technique and this data is also
presented in Table 3.

Table 3: Average rate of increase in fitness per gen-
eration for each technique

Technique Average fitness increase per generation

DSGOU 668.149
VS 782.548

DSGOU-VS 752.744
NONE 687.42

The average size of individuals that used each of the tech-
niques was also calculated and is presented in Table 4.

Table 4: Average size of individuals in population
for each technique

Technique Average size of individuals

DSGOU 86
VS 53

DSGOU-VS 44
NONE 88

Since there were no succesful individuals in any of the
experiments, the techniques were also tested on the ”Dirt-
Sensing, Obstacle-Avoiding Robot”problem presented in [6].
The results are presented in Table 5.

Table 5: Standard GP run for techniques on Dirt
Sensing Obstacle Avoiding Robot Problem

Techniques Average Best In-
dividual Size

Average Best
Generation

DSGOU 40 69
VS 180 21

DSGOU-VS 149 27
NONE 147 108

7. CONCLUSION
We have described four experiments that were used to

test the hypothesis that complete software applications can
evolved by a genetic programming system that has the abil-
ity to automatically evolve and name its own modular func-
tions.

No individuals in any of the populations were able to
evolve a complete calculator within 1000 generations. In-
dividuals that had access to the tagging mechanism present
in PushCalc had smaller average initial error rates than in-
dividuals without tags and these individuals also succeeded
the most at evolving the calculator by having the smallest
errors. At the end of 1000 generations, individuals with ac-
cess to the tagging mechanism had error rates that were
over 400% smaller than individuals that had no access to
the tagging mechanism. This supports the hypothesis that
tags would be very useful in solving the problem.

571

The data also proved that the merits of the new tech-
niques that were implemented to help improve the genetic
programming system. As can be seen Table 3, the two new
techniques increased the problem solving abilities of invdi-
viduals as compared to the standard genetic programming
system. VPS accounted for the highest increase in fitness
per generation followed b a combination of the VPS and
DSGOU techniques. The VPS techniques average fitness in-
crease per generation was approximately a 100 points bigger
than the standard genetic programming system. Individuals
that were in populations that utilised these techniques were
also found to have a smaller size as shown in Table 4. In-
fact, individuals in populations that utilised a combination
of both VPS and DSGOU had an average size that was half
that of individuals in the standard population.

The techniques were also tried out on the Dirt Sensing
Obstacle Avoiding Robot(DSOAR) problem[6] with a grid
of 8x8. This problem seeks to evolve a program that causes
a robotic mopper to mop the floor in all of the squares in a
grid. The grid has irregularly placed objects through which
the robot cannot move. The robot has sensors that allows it
tell which adjacent grids have dirt and or obstacles. As seen
in Table 5, the two new techniques allowed the genetic pro-
gramming system to evolve programs of smaller sizes that
were succesful in the least amount of generations. Infact,
a combination of the two techniques resulted in individuals
that were more succesful in 1/4th the number of genera-
tions individuals in the standard gp system took to solve
this problem. The succesful individuals in populations util-
ising DSGOU were 1/3rd the size of succesful individuals in
the standard gp population.

These results demonstrate that the VPS and DSGOU
techniques are very useful and can help evolve better popula-
tions of individuals who are less bloated and solve problems
faster than individuals in the standard genetic programming
system.

I beleive that the shown success of tags in evolving indi-
viduals that have fitnesses that over 5 times better than indi-
viduals that do not have access to tags and the demonstrated
benefits from the VPS and DSGOU techniques mean, that
the problem is solvable and thus, my next steps are focused
on continuing the experiment.

8. FUTURE WORK
Future work is going to explore how the problem is rep-

resented to the system. Currently as detailed above, the
system is initalized with the inputs as characters. Future
work will focus on representing the input as tags. All the
buttons on the calculator will be randomly tagged at the be-
ginning of the experiment and the tags will be evenly spread
out across the tag space. The fitness function will take an in-
dividual, and run the individual and then will have the tag
referring to the first keypress pushed onto the exec stack
and run. After that tag has been run, the tag for the next
keypress will be also pushed onto the exec stack and also
run. This process will be repeated until all tags have been
run and the fitness will be then calculated. This alternate
way of representing the problem to the system is more in-
line with how calculators work(ie. operations are peformed
before being applied to the next input being given).

Another future avenue that I’m planning to explore is de-
veloping a co-evolution system where there are populations
for each of the fitness cases. These populations will special-

ize in each fitness case and at the end of each generation
will be allowed to interact with the other populations. The
best individuals in each population will then be selected and
added to a master population that will be applied to all the
fitness cases and which should hopefully allow for general-
ization.

9. ACKNOWLEDGEMENTS
I am grateful to Lee Spector of the Hampshire College

School of Cognitive Science and the members of the Insti-
tute for Computational Intelligence for providing me with
this great opportunity of working with them.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1017817. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do not
necessarily reflect the views of the National Science Founda-
tion.

10. REFERENCES
[1] J. Klein and L. Spector. 3d multi-agent simulations in

the breve simulation environment. In M. Komosinski
and A. Adamatzky, editors, Artificial Life Models in
Software, pages 79–106. Springer London, 2009.

[2] J. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. Complex
Adaptive Systems. MIT Press, 1992.

[3] J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press,
Cambridge Massachusetts, May 1994.

[4] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane.
Genetic Programming III: Darwinian Invention and
Problem Solving. Morgan Kaufmann, May 1999.

[5] J. Rosca. Generality versus size in genetic
programming. In Genetic Programming 1996:
Proceedings of the First Annual Conference, pages
381–387. MIT Press, 1996.

[6] L. Spector. Advances in genetic programming. chapter
Simultaneous evolution of programs and their control
structures, pages 137–154. MIT Press, Cambridge, MA,
USA, 1996.

[7] L. Spector, K. Harrington, B. Martin, and T. Helmuth.
What’s in an Evolved Name? The Evolution of
Modularity via Tag-Based Reference. In Genetic
Programming Theory and Practice IX. Springer New
York, 2011.

572

