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ABSTRACT
Differential evolution (DE) algorithm has a wide use in opti-
mization problems, whose performance is closely related to
the separability of the fitness function. In this paper, we
propose Principle Coordinate (PC) strategy, a new adaptive
control strategy to improve DE’s performance. PC attempts
to maximize the fitness function’s separability and make
crossover operator more robust through coordinate rotation.
In PC, Principal Component Analysis (PCA) is adopted to
draw the ideal coordinate system from the difference vec-
tors distribution. In the numerical experiments, PC is com-
bined with two versions of classical DE algorithms to test
its ability. The first experiment measures the accuracy of
the coordinate system obtained by PC. In the second exper-
iment, four benchmark functions and an engineering project
are used to evaluate PC’s efficiency. The results show that
PC improves DE’s efficiency, robustness and stability.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization

General Terms
Evolutionary Algorithm

Keywords
Differential Evolution, Coordinate System, Separability

1. INTRODUCTION
Differential evolution (DE) algorithm is a heuristic algo-

rithm, which is designed to tackle complex optimization and
searching problems by iteratively improving a batch of can-
didate solutions. DE is firstly introduced in a technical re-
port by K. Price and R. Storn in 1995 [18], and two years
later it is described in details in a journal paper [19]. Since
then, DE has been attracting much attention of researchers,
which results in a rapid development of DE.
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Although it is widely believed that DE has many advan-
tages over most other evolutionary algorithms [5], classical
DE still has some drawbacks. Under some fitness function
landscapes, DE is likely to be deceived by local optima [11].
Besides, DE lacks sufficient robustness with strong interde-
pendent variables [20]. The work [11] also indicates that DE
has a limited ability to move its solutions over long distance
when its population is clustered in a relatively small part of
searching space.

Some researchers have already made their efforts to re-
move classical DE’s weaknesses. The works [3, 22] show
that DE can be combined with Niche technology to design
adaptive penalty function, which can be automatically ad-
justed by factors such as population, diversity of individu-
als. In this way, the premature convergence phenomenon is
avoided. Some variants of DE develop adaptive control pa-
rameters in DE’s operators to improve DE’s performance,
such as jDE [4], which has adaptive mutation parameter F
and crossover rate Cr. Some works improve the original
DE operators to more robust and flexible ones. For exam-
ple, trigonometric mutation operator in [7] and self-adaptive
different evolution (SaDE) in [13]. DE has also been hy-
bridized with some other optimization algorithms, such as
ant optimization algorithm (AOA) [6], simulated annealing
(SA) [10], artificial neural network (ANN) [9]. The hybrid
algorithms yield better performance than classical DE.

Besides the forgoing works, some researches reveal that
DE’s performance is related to the coordinate system [2, 15,
16], because the separability of the fitness function is af-
fected by the coding system, which is uniquely defined by
the coordinate system. Separable means that a function can
be divided into several sub-functions, each of which only
relates to single variable. Some previous works [17, 14] in-
dicate that DEs are more successful with separable fitness
functions than non-separable ones because crossover opera-
tor becomes more efficient with separable fitness functions.
Therefore, an appropriate coordinate system can improve
the separability of fitness function. In this way, DE can
yield a better performance.

In this paper, a novel control strategy, Principal Coordi-
nate (PC) strategy is proposed, which improves DE’s per-
formance by adaptively adjusting the coordinate system into
the most suitable one for the fitness function. In this strat-
egy, principal component analysis [1] (PCA) is adopted to
obtain the best coordinate system from the current differ-
ence vectors distribution. In the experiments, the hybridized
algorithms of classical DEs and the PC strategy are used
to test PC’s accuracy as well as efficiency. Two benchmark
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functions with the known ideal coordinate systems prove PC
has good ability to track suitable coordinate system for the
fitness function. Then four benchmark functions and an en-
gineering project are chosen to draw a comparison between
the hybridized algorithms and classical DEs, in which the
hybridized algorithms outperform the classical DEs. The
experiment results show PC is a promising control strategy.

This paper is organized as follows: in Section 2, two vari-
ants of classical DE are reviewed. Section 3 introduces the
PC strategy and presents the details. The experiment re-
sults on both accuracy and efficiency of PC are presented
and analyzed in Section 4. Section 5 discusses the future
work and concludes the paper.

2. BACKGROUND: CLASSICAL DE
The classical DE algorithm can be described as a search of

a real-coded vector xn,g in the search space Ω, to optimize
objective function f(x) with a dimension of D. For the
first generation, in which g = 0, DE initializes candidate
solutions: x1,0,x2,0, · · · ,xN,0 randomly in the Ω. Then,
with constant population size of N , DE tries to improve
these solutions through iterative mutation, crossover, and
selection, until the termination condition is satisfied.

With an eye to the experiment in Section 4, this section
mainly reviews two variants of classical DE, DE/rand/1/bin
and DE/rand/1/exp.

2.1 DE/rand/1/bin
As its name suggests, the notation means in mutation pro-

cess, each donor vector vn,g is equal to a randomly chosen
base individual xr1,g (”/rand/”) added to one scaled differ-
ence vector (”/1/”), which is also generated from two ran-
domly chosen individuals xr2,g and xr3,g:

vn,g = xr1,g + F · (xr2,g − xr3,g) (1)

where mutation parameter F ∈ [0, 1] controls the signifi-
cance of the difference vector built by xr2,g and xr3,g. The
index r1, r2, r3 are randomly selected integers from the range
[1, N ], whose value differ from each other, and also differ
from the target vector xn’s index n.

Moreover, the notation ”/bin”refers to that in the crossover
process, the number of the same elements shared by trail
vector un,g and donor vector vn,g, approximates a binomial
distribution. The generation of trail vector un,g is given by:

ud,n,g =

{
vd,n,g if ϕd,n < Cr
xd,n,g otherwise

, d = 1, 2, · · · , D. (2)

where D is the dimension of individual; ϕd,n is a uniformly
distributed random number within interval [0, 1], which is
independent with different d or n; crossover rate Cr is a
parameter to control the probability of the components of
xn,g being replaced by vn,g’s components.

Selection operator chooses the next generation’s individ-
ual xn,g+1 from target vector xn,g and donor vector vn,g.
The criterion to weigh vectors is represented as fitness func-
tion, which is mostly equal to objective function f :

xn,g+1 =

{
vn,g if f(vn,g) ≤ f(xn,g)
xn,g otherwise

(3)

In this method, the candidate solutions can keep a constant
population size N and each newly created individual xn,g+1

can yield equal or better performance than former one xn,g.

2.2 DE/rand/1/exp
In DE/rand/1/exp, the mutation and selection operators

are exactly the same Eq. (1) (3) in the DE/rand/1/bin.
Only crossover method is different, in which a starting po-
sition of crossover is chosen randomly from [1, D], and L
consecutive elements are counted in circular manner. The
probability of replacing the dth element from [1, L] decreases
exponentially with increasing d [21].

3. PRINCIPAL COORDINATE STRATEGY
In this section we introduce Principal Coordinate (PC)

strategy, which attempts to maximize the separability of the
fitness function and get an improved DE’s performance with
non-separable fitness function through adaptively adjusting
the coordinate system during the whole evolution process.
The framework of the PC strategy is presented first, and
later the method to obtain the most suitable coordinate sys-
tem is discussed.

3.1 Framework of the PC Strategy
With the PC strategy, we suppose the best coordinate

system for the fitness function is attainable. (all the coordi-
nate systems discussed in this paper refer to orthogonal) In
each generation, we draw the best coordinate system from
the current population, and let crossover operator be op-
erated under the newly-calculated best coordinate system,
while without changing the coordinate system for mutation
and selection operators. This is because crossover operator
can generate different trail vectors under different coordinate
system and has potential to improve the DE’s performance
[17]. One highlight of the PC strategy is the wide adaptabil-
ity so it can be combined with various DE algorithms. The
structure of DE with PC is briefly shown in Figure 1.

Figure 1: the PC Strategy’s Framework

The following notations are important in this paper. In
the D-dimension searching space Ω, every coordinate system
XB corresponds to a basis matrix B. Specifically, B0 de-
notes the basis matrix of the original coordinate system X0.
Obviously, B0 = I. The notation of an individual under
X0 can remain as xn,g, while the same individual’s value
under a rotated coordinate system XB can be represented
as xn,g(B). The transformation is illustrated as{

xn,g(B) = xn,g ·BT

xn,g · I = xn,g(B) ·B (4)

where BT = B−1, which is because B is orthogonal matrix.

3.2 Determine the Best Coordinate System
The previous researches [12, 20] reveal that mutant vec-

tors which generated by difference vectors are most effective
mutant vectors because population distribution can exactly
describe the fitness function’s landscape, which is due to
selection’s carving effect. Based on this conclusion, we as-
sume that the ideal offspring is highly likely to appear on the
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direction of difference vector. As [20] indicates, individual’s
stepwise movement tends to be orthogonal to the coordinate
axes. Hence, we infer that the coordinate system, whose
axes reflect the principal directions of difference vectors, is
able to maximize the efficiency of crossover operator and im-
prove separability of the fitness function. This assumption is
preliminarily validated by our observation. Figure 2 shows
empirical distributions of difference vectors under two 2-D
functions. It can be seen that the best coordinate systems
(arrows), which enable the fitness functions to be separable,
are related to the difference vectors distributions (dots).

Figure 2: Difference Vectors Distribution and Fit-
ness Function’ Ideal Coordinate System

The algorithm to compute the best coordinate is described
as below:

Step 1. For each individual xn,g, compute three dif-
ference vectors ∆ between xn,g and k nearest individuals
marked as xn1,g, · · · ,xnk,g. ∆n1 = xn1,g − xn,g

· · ·
∆nk = xnk,g − xn,g

, n = 1, 2, · · · , N. (5)

In this paper, we set k = 3, because the significance of dif-
ference vector declines when the distance increases. So 3N
difference vectors are obtained.

Step 2. Normalize each differential vector:

∆∗n = ∆n/||∆n||, n = 1, 2, 3, · · · , 3N. (6)

All the normalized differential vectors form a matrix ∆∗ =
(∆∗1; ∆∗2, · · · ,∆∗3N )T .

Step 3. Apply Principal Component Analysis (PCA) to
compute the basis matrix Bg of the best coordinate system
XBg for the current generation g.

C =
1

3N
∆∗ ·∆∗T (7)

and applying SVD decomposition:

C = BgDV T (8)

Where C is the covariance matrix of ∆∗. The coordinate
system can be transformed by Bg via Eq. (4).

The method used in Step 3 is different from classical PCA,
because classical PCA reduces dimension of parameter while
our method doesn’t change the dimension of coordinate sys-
tem, just minimizes the correlation coefficient of each coor-
dinate axis.

The PC strategy can be combined with various DEs. Here
we present the pseudo code of DE/rand/1/bin with PC as
an example:

4. EXPERIMENTS
This section aims at evaluating the PC strategy in two

aspects: accuracy and efficiency. Accuracy is the level that
the coordinate system obtained by PC is close to the ideal
coordinate system which maximizes the separability of the
fitness function. Efficiency means the algorithm’s conver-
gence speed to the optimal solution.

The PC strategy is independent from mutation, crossover
and selection operators, so it can be combined with differ-
ent DE’s variants. Without loss of generality, in the ex-
periments two variants of classical DE, DE/rand/1/bin and
DE/rand/1/exp are chosen to combine with the PC strategy,
which respectively correspond to the notation DE/rand/1/bin
/PC and DE/rand/1/exp/PC. These algorithms are com-
pared with the original DEs to test PC’s ability.

4.1 Accuracy of the PC strategy
In this experiment, DE/rand/1/bin/PC and DE/rand/1/

exp/PC are respectively applied to two benchmark func-
tions, Rosenbrock Function and rotated Michalewicz Func-
tion under 2-D searching space. The angle, by which the
original coordinate system clockwise rotate to a specific co-
ordinate system, can be used to uniquely define the coordi-
nate system. Rosenbrock Function and Michalewicz Func-
tion are chosen because their ideal coordinate systems are al-
ready known. Rosenbrock Function is a non-separable func-
tion, but it becomes approximate separable when the co-
ordinate system is rotated by 45◦. Michalewicz Function’s
ideal coordinate is X0 since it is separable. In order to make
this experiment more convincing, the coordinate system of
Michalewicz Function is rotated by θ = 35◦. Therefore the
best rotation angle for this function also changes to 35◦.

The experiment results are shown in Figure 3, which records
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Figure 3: The Rotation Angle Obtained by The PC Strategy

the changes of rotation angles obtained by the PC strategy
over generations.

From Figure 3, we can see that before the 6th generation
in Rosenbrock Function and 20th generation in Michalewicz
Function, the rotation angles obtained by PC have big dither-
ing, which is because the difference vectors are gotten from
relative random population distribution. As the genera-
tions’ number increases, the difference vectors have collected
enough information about the fitness function, so the angle
gets steadier and approximates to the ideal angle. In the last
several generations, the angle might become unsteady again,
which is caused by that the population is gathered in the
optimal solution and the difference vectors get less relevant.
This experiment’s results indicate that the PC strategy has
good ability to draw the best coordinate system from the
current population and has robustness to overcome many
local optima in Michalewicz Function.

4.2 Efficiency of the PC Strategy
In this experiment, we present a comparison between clas-

sical DEs and the combination of DEs and the PC strategy in
algorithms’ performance. DE/rand/1/bin, DE/rand/1/exp,
DE/rand/1/bin/PC and DE/rand/1/exp/PC are tested by
a set of benchmark functions as well as an engineering project.

4.2.1 Benchmark Functions
Four benchmark functions f1(x)−f4(x) are given in Table

1, among which f1(x) contains gaussian noise; f2(x), f3(x),
f4(x) are multimodal; f1(x), f2(x), f4(x) are non-separable;
and all functions here are rotated by a random rotation ma-
trix.

Set parameters as follow: N = 50, Cr = 0.6, F = 0.85. In
this experiment, we apply each algorithm in every function

Table 1: The Benchmark Functions
Function Domain

f1(x) =

(∑10
i=1

(∑i
j=1 zj

)2)
· (1 +

0.4|N(0, 1)|)

[−100, 100]

f2(x) = −20 exp(−0.2
√

1
10

∑2
i=1 z

2
i ) −

exp( 1
10

∑10
i=1 cos(2πzi)) + 20 + e

[−100, 100]

f3(x) = −
∑5
i=1 sin(zi) ·

(
sin
(
i·z2i
π

))20
[−π, π]

f4(x) =
∑10−1
i=1

(
100(z2i − zi+1)2 + (zi − 1)2

)
[−100, 100]

zi = (xi − o) ·M

for 10 times, from which we compute the mean number of
generations when a set of value-to-reach (VTR) terminating
conditions are satisfied, shown as Figure 4. The successful
rate of algorithm, which means the rate to find the optimal
solution in the experiment, is also analyzed.

From the results obtained in four benchmark functions,
we can see that the PC strategy generally improves the effi-
ciency of the original classical DEs. Given VTR=1e− 5, in
f1(x) (Schwefel Function with Noise), PC reduces DE/rand
/1/exp’s generations by 7.2%. Nevertheless, PC does not
bring much advantage to DE/rand/1/bin, which is because
the instability of coordinate system obtained by PC in the
beginning of experiment keeps the algorithm performing bet-
ter.

In f2(x) (Ackley’s Function), which is a non-separable
function with strong multimodal behavior, PC improves the
efficiency of DE/rand/1/bin by 1.07% and DE/rand/1/exp
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Figure 4: The Comparison Between the Hybridized Algorithms and Classical DEs under Benchmark Functions

10.02%, which indicates that PC has enough robustness to
overcome the deception by local optima.

In the experiment of f3(x) (Michalewicz Function), PC
brings significant improvements to both DE/rand/1/bin and
DE/rand/1/exp: a reduction of 7.03% in DE/ rand/1/bin’s
generation number and 10.74% in DE/rand/1/exp’s.

The experiment result of f4(x) (Rosenbrock Function)
shows that classical DEs gain more stability when combined
with PC. The figure reads DE/rand/1/bin’s performance
is much worse than DE/rand/1/exp. However, hybridized
with PC, DE/rand/1/bin’s efficiency is improved by 59.53%,
getting a performance almost as good as DE/rand/1/exp,
and DE/rand/1/exp’s generation number is also reduced by
3.17% with PC.

Besides, PC brings DEs higher successful rates. In f1(x),
f2(x), f4(x), successful rates in our experiment are 1, while
in f3(x), the original classical DEs get a low successful rate:
DE/rand/1/bin 32% and DE/rand/1/exp 34%, which is due
to the strong multimodal behavior. In f3(x), PC improves
the successful rate to: DE/rand/1/bin/PC 52% and DE/
rand/1/exp/PC 59%, (from 400 times experiments)which
proves that PC increases classical DEs robustness for mul-
timodal fitness function.

In sum, PC is able to improve DE’s efficiency, stability
and robustness.

4.2.2 Engineering Project: Sidelobes Suppression
Sidelobes suppression is a practical problem in telecom-

munication [8]. In optical communication, the optimization
goal is to maximize the ratio of mainlobe’s radiation pat-
tern and the maximum sidelobe’s radiation pattern, which
is illustrated by Figure 5. The objective G(w) function is
defined as

G(w) = min

{
−10 lg

|E(θ = 0,w)|
maxε<|θ|<π

2
|E(θ,w)|

}
(9)

E(θ,w) =

D∑
d=1

sin( π
2λ

sin θ)
π
2λ

sin θ
exp(jkθ

d∑
j=1

wj) (10)

Where wd is the width of the dth waveguide; λ denotes wave-
length and k wave number; ε is width of mainlobe.

DE has been one of the classic methods to this optimiza-
tion problem. In the experiment, the parameters are set as:
N = 50, f = 0.85, Cr = 0.9, D = 30. The fitness values for
the first 300 generations are recorded, shown in Figure 6.
It can be seen that PC significantly accelerates the conver-
gence of classical DEs. Taken fitness value=−9.5 as VTR,
PC reduces 61.5% generations of DE/rand/1/bin and 77.2%
of DE/rand/1/exp, while PC only adds 7.8% cost to classi-
cal DEs per generation, which is 0.005s of extra time. As a
result, PC reduces the cost by 61.6% in DE/rand/1/bin and
80.1% in DE/rand/1/exp. This result indicates that PC has
good potential in engineering application, and its extra cost
per generation is minor when compared with the efficient
improvement it brings.

Figure 5: The Illustration of Sidelobes Suppression
in Optical Communication
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Figure 6: The Fitness Value Over Generations

5. CONCLUSION & FUTURE WORK
In this paper, the PC strategy, a novel adaptive control

strategy for EA is proposed. This approach constructs an
adaptive method to adjust the coordinate system during the
whole evolution process. The Accuracy Experiment shows
that PC can efficiently draw approximate ideal coordinate
system from the current population distribution. Efficiency
Experiments suggests that PC improves efficiency, stability
and robustness of classical DEs. Lastly, the real scenario ap-
plication proves PC’s advantage for complicated engineering
application.

As for future research, the authors intend to broaden the
matrix conversion from rotation transformation to linear
transformation, to further maximize the separability of func-
tion. The authors also plan to explore a steadier and more
effective way to draw the ideal coordinate system in high
dimension’s cases.
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