
Evolutionary Fabrication

A System of Autonomous Invention

Timothy J Kuehn
Union College
807 Union St.

Schenectady, NY 12308
kuehnt@garnet.union.edu

ABSTRACT

Evolutionary algorithms have had success in designing com-
plex objects, ranging from antennae to telescope lenses. How-
ever, evolutionary design is limited by the ability of a sim-
ulation to accurately represent the physical world. Addi-
tionally, evolved designs carry no set of specific instructions
describing how to physically create such a design. Our ap-
proach, called Evolutionary Fabrication, evolves a process
rather than a product. This system of evolution can, in
principle, automatically invent and build anything, from soft
robots to new toys. We have implemented Evolutionary Fab-
rication in designing ”EvoFab”, a machine that consists of
four components: A) a genotype for printing objects, con-
sisting of a linear set of instructions sent to a Fab@Home,
an open-source 3D printer; B) a way to evaluate printed
objects using custom machine vision algorithms; C) a way
to automate printing by implementing a custom conveyor
belt; D) a way of elaborating upon designs by implementing
a genetic algorithm. In the near term, we aim to produce
an evolved arch. Current results indicate increased fitness
over time. Future improvements are possible through re-
strictions in extrusion along the Y-axis as well as refining
fitness evaluation to be less exploitable.

Categories and Subject Descriptors

I.2.1 [Artificial Intelligence]: Robotics

General Terms

Design, Experimentation

Keywords

Evolution, Fabrication, Genetic Algorithms, Vision

1. INTRODUCTION
Evolutionary algorithms have had success in designing

complex objects, ranging from antennae used in NASA’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

Space Technology 5 (ST5) mission [5] to astronomical tele-
scope lenses [1]. By evolving the antennae designs using
evolutionary algorithms, [5] produced, within one month,
two antenna designs suitable for the ST5 mission satellites.
[1], in turn, used evolutionary algorithms to automatically
design an optical lens, completely from scratch. They found
that genetic algorithms were capable of making ”human-
competitive” results – lenses that were as good, if not bet-
ter, than human-designed lenses. Indeed, one of the evolved
lenses actually infringed upon a patent of a preexisting lens;
another evolved lens improved upon another existing lens
patent.

However, evolutionary algorithms have a tendency to ex-
ploit their medium. If an evolutionary algorithm is run in
a simulation that doesn’t exactly replicate a real-world sce-
nario, one may find evolved objects that are suitable for the
software in which they are tested but incapable of fulfilling
their original intention in practice. [10] found that, when
simulating a physical environment, the simulation must be
”reasonably accurate”; else, various bugs or rounding errors
inevitably occur, leading to undesired solutions that obtain
high fitness only through the exploitation of these discrep-
ancies. [2] coined this problem the reality gap: desirable
characteristics can be missed and undesirable results can
occur when solutions are evolved solely in simulation.

One way to skirt this issue is to evolve solutions in sim-
ulation but evaluate their fitness in physical tests. Such a
method would prevent any high-fitess traits from evolving
if they only have high fitness from exploiting simulations.
However, what happens when an evolved design is too dif-
ficult to transform into an actual object? This problem is
called the fabrication gap: evolved designs may be well de-
scribed, but they often carry no set of specific instructions
describing how to get to such an end result [8]. Consider
a picture of a soufflé: it may look tasty, but someone with
merely a picture would have a difficult time replicating it,
due to the hidden process that led to the end result. In
fact, [3] have proven that the problem of assembling a final
product from blueprints is NP-Complete. Thus, the task of
constructing an object from a relatively simple design may
not be that difficult for a person to do, but the ease of con-
struction rapidly falls off as the initial design increases in
complexity.

[11] provided an elegant solution to the reality gap. Tasked
with creating a circuit that could discriminate between 1kHz
and 10kHz signals, without the benefit of a clock, he used a
reprogrammable circuitboard to evolve the actual hardware
rather than a circuit design. This was very interesting be-

579

cause, in simulation, a circuitboard alone would never be
able to discriminate between two signals without the aid of
a clock. However, [11] found that, when running real-world
tests rather than simulated results, the circuitboard devel-
oped a pattern that exploited electromagnetic interactions
to successfully discriminate between the two signals.

[12] later coined the term ”embodied evolution” for an
approach similar to that taken by [11]: they showed how
an autonomous population of robots could evolve behaviors
that would allow them to successfully compete each other,
without the aid of a central computer running a genetic al-
gorithm. The main takeaway for our purposes, however,
is not that it was decentralized: it’s that instead of evolv-
ing blueprints that would then later be converted into real
products; the robots themselves were directly evolved. This
notion of embodied evolution leads us back to our current
research.

Our approach, called evolutionary fabrication, bridges the
reality and fabrication gaps by combining evolutionary de-
sign with a physical process of fabrication. By doing so,
we ensure that any evolved product already comes with the
build instructions, in addition to ensuring that any way in
which the evolutionary algorithm exploits the process will be
a replicable exploitation. EvoFab, our machine that imple-
ments evolutionary fabrication, works in a three-stage cycle:
first an object is printed, then its fitness is evaluated, and
then the print space is cleared for the next object to be
printed.

This process acts on each member of a population. Af-
ter a whole population has been printed and evaluated, the
best fit members breed a new generation, for which the cy-
cle begins anew. By refining its products over time until it
produces a result that fits the design requirements, evolu-
tionary fabrication is, in principle, capable of automatically
inventing and building anything, from soft robots to new
toys.

In this paper, we will detail the previous work, EvoFab
0.1, and will detail the improvements that went into creat-
ing EvoFab 0.2. We will describe the individual mechanisms
that, together, make EvoFab. We will show our most cur-
rently produced results and discuss current pitfalls of Evo-
Fab 0.2, including ways in which we plan to improve it in
the future.

2. PREVIOUS WORK: EVOFAB 0.1
[9] have shown that it is possible to implement a genetic

algorithm into the process of fabrication, successfully using a
process of evolutionary fabrication to print two-dimensional
objects, such as letters. Such an interactive evolutionary
algorithm requires a person to judge with their own, sub-
jective eyes the best products of a generation. Addition-
ally, between generations, a person would physically remove
the printed objects and reset the platform to be ready for
more objects to be printed. By addressing these two pri-
mary issues, EvoFab (Figure 1) is now capable of making
its own judgment on the level of fitness of printed objects,
in addition to being able to fully automate the process au-
tonomously, almost completely removing humans from the
loop.

3. EVOFAB 0.2: A FULLY AUTOMATED EVO-

LUTIONARY FABRICATION SYSTEM

Figure 1: “EvoFab” consists of a Fab@Home printer,

computer vision software to determine fitness, and

a conveyor belt, all controlled by an evolutionary

algorithm.

Figure 2: A graphical representation of the three-

stage process: print, evaluate, recycle.

EvoFab is, essentially, a machine that implements a ge-
netic algorithm. EvoFab creates each population via a three-

stage process (Figure 2): first, an object is printed; the ob-
ject is then evaluated; then, the object is moved off the print-
ing platform to begin the process anew. The information for
each printed object is stored within a genotype controlled by
a genetic algorithm, written in python. What follows is a
deconstruction of EvoFab 0.2 into its basic components.

The primary process of fabrication is controlled by Fab@Home,
an open-source 3D printer designed by [6] and useful for its
low cost and relative ease of use. Fab@Home operates by ex-
truding material through a syringe and depositing it onto a
platform, constructing objects layer-by-layer. The carriage
that holds the syringe is free to move along the X- and Y-
axes. The platform upon which the material is deposited is
free to move along the Z-axis.

Fab@Home is currently in its second revision, Model 2 [4];
however, due to currently greater access to the API of the

580

Model 1, we have used the Model 1 as the basis for Evo-
Fab. Additionally, previous work attempted to make use of
the Model 2’s ability to extrude plastic, which would have
allowed for magnitudes longer durations of printing without
material refills. However, printing with plastic requires the
plastic to be melted, and the associated high temperatures
to do so necessitate caution and constant vigilance by the
user. Because this negates the ability of EvoFab to act au-
tonomously, it was decided that the long-term benefits of
other materials (discussed below) outweighed the ability of
plastic to print for long periods without refills.

Fab@Home normally builds its products by interfacing
through USB with a program that contains the products’
blueprints in .STL files. However, our Fab@Home is out-
fitted with a serial connection in lieu of USB, allowing us
to send commands directly to Fab@Home [9]. The utility
of this is that it allows the evolutionary algorithm to store
genotype encodings as a list of commands. The commands
that we use to control the printer’s actions are as follows:

• extrude – This command causes a small amount of
material to be deposited onto the print platform.

• beginExtrude – This command, rather than send a
command directly to the printer, controls the action of
the other commands. When activated, all other com-
mands except endExtrude will send their command
coupled with an extrude command. Effectively, all
other commands say ”do this while extruding” when
beginExtrude is activated.

• endExtrude – This command deactivates beginEx-
trude.

• goUp – Raises the print platform. The platform starts
at its max height and cannot be moved upward until
a command has been sent to lower it first. This pre-
vents problems of the platform bumping into the sy-
ringe (which would, in effect, break the system). Sim-
ilarly is goDown.

• goLeft – Causes the print carriage to move left along
the X-axis (in the negative X-axis direction). goLeft
and its similar commands all act within certain bounds,
outside of which the command ceases to effect move-
ment of the print carriage. For example, the X-axis
range may be [-300, 300], so that if the X-axis position
is currently -300, goLeft will have no effect on print
carriage’s movement. Similarly are goRight, goIn,
and goOut.

With a printer ready for use, the next step was decid-
ing what material to print with. Previously, [9] chose sili-
cone bath caulk as the material of choice. With new goals,
however, come new requirements, and after attempts with
plastic (described above) and silicone caulk, we settled on
a brand of modeling compound similar to Play-Doh. Sili-
cone caulk is easily extrudable, readily available, and comes
in many colors, which is useful in allowing computer vision
software to easily differentiate a printed object from its back-
ground. However, it is also sticky when first printed, and its
cure time of approximately thirty minutes for faster-drying
variants is too long to wait between prints. Thus, the mate-
rial would inevitably stick to the print platform, making au-
tomation difficult. Some workarounds were attempted (dis-
cussed below), but the Play-Doh variant proved much more

usable for our purposes. It has the same benefits of being
readily available in many colors and easily extrudable with-
out the drawback of stickiness upon first being extruded.
This lack of stickiness comes with its own set of problems
(see results), but it has proven to be the best option that
has been tried thus far.

When printing objects, original iterations did not have
movement in the Z-axis due to restrictions put on the system
by the camera (see below). However, more recent revisions
to the vision system allowed us to free Z-axis movement.
This, in turn, allowed us to set the platform much closer to
the syringe tip at the beginning of each fabrication. Previ-
ously, the platform was at a constant distance of a few inches
from the syringe tip. This tended to cause circular extru-
sions in which the thread of material would spiral downward.
This effect, in turn, caused a high degree of unpredictability
in how certain instructions would translate to the print: for
instance, a command to extrude in a straight line along the
X-axis previously would have resulted in something more
similar to a sinusoidal function than a linear thread. Now,
however, this has been vastly improved, as the average dis-
tance between syringe tip and platform is much smaller.

Using the computer vision libraries openCV, we have de-
veloped computer vision software that works in tandem with
a camera affixed to the front of the printing platform. In this
way, we can reliably control the method of evaluation. The
camera that we used for this process is an Ipevo Point 2
View USB Camera, useful for its ability to focus on close-
up images. Additionally, the Point 2 View is supported by
open-source Ubuntu drivers, making installation and access
to a useful API relatively easy. Additionally, the Point 2
View is versatile in its ability to be positioned in various
ways, allowing us to attach it directly to the print platform,
thus freeing the platform to move along the Z-axis without
worry that the platform will move out of visible range of the
camera.

To allow for automation, we introduced a conveyor belt
into EvoFab. Once an object has been evaluated, it is moved
off of the platform and deposited in a disposal container
via a conveyor belt that interfaces with the evolutionary
algorithm via USB. Through this system, EvoFab can run
unattended for approximately thirty minutes before requir-
ing a refilled syringe. Not including refilling, EvoFab can run
unattended indefinitely. Thus, the only factor that currently
inhibits EvoFab from working completely independently of
human attendence is, simply, a large enough syringe.

Initially, when we were still testing plastic printing, we
used an Automated Build Platform Kit developed by Maker-
Bot Industries for use with their own MakerBot 3D printer.
Because the MakerBot also uses plastic, the Automated Build
Platform provided a heated base to print onto and would
have meshed very well with the printer. However, when
switching to silicone caulk, we needed to devise a new con-
veyor belt, because the Automated Build Platform, as a con-
veyor belt, would have quickly become too messy to be use-
able. We therefore devised a new conveyor belt that worked
much like a scroll works: instead of depositing products af-
ter being printed and evaluated, the ”scroll” would roll it up
into one side of the scroll, destroying the print but clearing
the platform. This solved the short term problem of the
objects sticking to the platform; however, it merely delayed
the inevitable work required of a human to fix the platform.
Once the scroll ran out on one end, it needed to be replaced.

581

Thus, it did not entirely solve the problem of complete au-
tomation. Thus, when we converted to modeling material, it
was a natural transition to turn the ”scroll” back into a con-
veyor belt much like the initial Automated Build Platform.
There were two primary reasons why we did not go back to
the original MakerBot conveyor belt: first, it was simpler to
build a larger conveyor belt, given that the Fab@Home used
a much larger platform than the size of the conveyor belt.
Second, a custom conveyor belt allowed us to control the
color of the surface, making the job of the computer vision
software that much easier.

In evolutionary algorithms, a different software implemen-
tation is required for each type of object one wishes to evolve.
Thus, due to the proof-of-concept nature of this research,
we implemented software that evaluates exactly one type of
object. In choosing what object to evolve, we looked for
some shape that is currently not easily produced by a 3D
printer. The reason we wanted something that is not easily
produceable is that evolutionary algorithms are only truly
useful in designing things that have not previously been de-
signed – otherwise, there would be no need to use the evo-
lutionary algorithm in the first place. In determining what
a 3D printer cannot easily produce, we focused on the fact
that Fab@Home always prints from the bottom-up. In other
words, it builds upwards, layer by layer, and cannot con-
struct an object with a portion that is ”floating”without any
supporting material underneath. Consider, for example, an
arch. An arch’s supporting columns are easily constructed
by Fab@Home, but how will the middle area be created?
It cannot deposit material onto mid-air. While a software-
limited approach may have trouble desigining a method of
construction for such an arch, an evolutionary algorithm is
not restricted to follow any set of rules, allowing it to freely
explore all possibilities, thought-of or unthought-of by the
algorithm’s creators. Thus, the potential for finding a solu-
tion greatly increases when using an evolutionary algorithm,
making ”archness” a good object to evolve as a proof of con-
cept.

In evaluating archness of a printed object, fitness increases
proportionally to the percent of overhanging mass that an
object contains. Figure 3 shows how such a fitness is eval-
uated: an image is captured by a camera that views the
printing stage. Then, the image is thresholded so that the
printed object is white and the background is black. This
is made simple by printing in a color negatve to that of the
background, in this case pink being the negative of green.
Then, a bounding box is drawn around the contours of the
white image. For all pixels contained within the bounding
box, fitness increases for every black pixel that is vertically
below a white pixel in its column. Fitness is then divided by
total pixels within the bounding box to account for different
sized objects, returning the percentage of overhanging mass
in the image.

In determining the evolutionary algorithm to use, it was
worthwhile to consider the differences between genetic al-
gorithms and random mutation hill climbers. Both genetic
algorithms and random mutation hill climbers both create
new generations based on the best fit of previous genera-
tions, but the way in which they do so is meaningfully dif-
ferent. With genetic algorithms, a child can be created in
two different ways:

1. A child can be based off of one mutated parent, in
which a combination of the following actions occurs:

Figure 3: Evaluating ”archness”: Fitness is deter-

mined by first, thresholding the image into black and

white, and second, drawing a bounding box around

the object and calculating the percentage of over-

hanging mass.

random instructions in the parent’s genotype are deleted,
new instructions are randomly added, and existing in-
structions are mutated into different instructions.

2. A child can be based off of crossover between two par-
ents: each parent provides a segment of its genotype,
and the two segments are combined to make the geno-
type of the new child

Random mutation hill climbers, in comparison, create chil-
dren only though method 1. Additionally, the type of hill
climber used in this research, called a 1 + N hill climber,
differs in another way: each new generation, of size 1 + N,
consists of 1 parent and N children all created from that
same parent. In other words, all but the one best of each
generational population are culled before choosing a parent
to use as the basis for the new generation.

Although genetic algorithms may seem more versatile at
first glance – and they are, in some ways – they are not, in
fact, more efficient than 1 + N hill climbers in many sce-
narios. In practice, genetic algorithms are only more useful
when solutions to the problem at hand are known to be
formed from building blocks [7] that can be joined together,
through crossover, to form higher-order solutions. With the
sort of problems that EvoFab is currently trying to solve,
there is little to suggest that building blocks exist. Thus,
for our purposes, a 1 + N hill climber is satisfactory.

3.1 Results
Over sixteen generations of running EvoFab on a 1 + 4

random mutation hill climber, best fitness per generation
increased only three times, as seen in Figure 4. However,
average fitness makes quite large jumps between low fitness
(around 0.17) to high fitness (around 0.26).

In our runs of EvoFab, we have also found the evolutionary
algorithm to consistently exploit the fitness function in an
undesirable fashion. The fitness function, as it currently
stands, captures a three-dimensional image but treats it as
if it were two-dimensional. Because of this, pixels that occur
at higher elevations in the captured image are treated as if

582

Figure 4: While best fitness per generation rarely

increases, average fitness jumps quite drastically for

better and for worse. One possible cause is too many

degrees of freedom.

they are higher along the Z-axis; in reality, they may only be
further along the negative Y-axis, which the fitness function
treats as nonexistant. Thus, archness is frequently measured
to be higher in objects that have an ”arm”extending forward
on the Y-axis, as seen in the second and third images of
Figure 3.

Another undesirable exploitation that occurs when print-
ing is that, if the material is not extruded quickly enough, it
will not have time to stick to the platform, causing the print
carriage to drag around the thread of material instead. This
has led to a certain degree of unpredictability in how a given
set of instructions will translate into a printed product. In
some cases, this can even cause material that has already
been deposited onto the print platform to be dragged along
with the hanging thread. This is an example of a mostly-
negative exploitation that would go unaccounted for in a
simulation-only evolutionary environment. Because of the
dramatic effects on overall fitness that this can lead to, we
believe that 3-D printers in particular, such as Fab@Home,
lend themselves to a method of embodied evolution.

One exploitation that may still turn out to have interest-
ing effects is that, when the platform moves upward along
the Z-axis until it is very close to the tip of the syringe, some-
times the syringe tip moves across the object and ”picks up”
material, moving it to form a new design. This is an ex-
ample of a potentially positive exploitation that would be
nonexistent in a simulation-only evolutionary environment.

4. CHALLENGES IN EVOFAB
As seen by the types of evolutions in Figure fig:evaluation,

the horizon line of the stage greatly affects measured fitness.
When an image is evaluated, pixels higher on the Y-axis are
assumed to higher in elevation. However, when the camera
captures an image while looking down upon a printed object
– thus causing the horizon to shift upward – this measure-
ment becomes skewed. One possible cause for this is that
there are too many degrees of freedom in the movement of
the carriage. An arch is well suited to be represented in two
dimensions; thickness is no concern. Thus, the carriage’s
extra variability afforded by movement on the Y-axis may

very well be the cause of these jumps. Future tests that re-
strict movement along the Y-axis – so that only movements
up, down, left, and right are allowed – will be able to test
this hypothesis.

Another possible way in which this can potentially be fixed
in future iterations of EvoFab could involve changing the
weighting of the fitness function. Currently, an equal weight
is applied to all black pixels found beneath white pixels. If,
however, we instead weight more heavily black pixels found
at higher elevations in the two-dimensional representation,
we speculate that this would offset some of the erroneous
fitness encountered below the horizon line. We do not want
to completely discount the data below the horizon line, be-
cause it could still potentially lead to true higher fitness in
non-exploitive ways.

With respect to the dragging of threads that have not yet
been deposited onto the print platform: while it may seem
like increasing extrusion rates would solve this problem, it
is not so simple in practice. The problem does not occur
constantly, and it is difficult to predict when it will. It is
likely due to an uneven dispersion of pressure throughout the
syringe, causing some areas to dispense more quickly than
others. There is no easy solution, and it presents a problem
in that it will always lead to some unreliability in repro-
ducibility of prints. The best way to control for this is care-
ful preparedness in how material is inserted into the syringe.
Avoiding air bubbles and using the same method of inser-
tion every time will help control for these kinds of problems.
Again, this is another example of a physical-representation
that could not be easily represented in simulation.

Regarding the phenomenon of the syringe tip picking up
and moving about material, while no positive results have
yet been seen from this, it is likely that this exploitation
could potentially lead to objects that would not be able to
be formed in simulation alone. One could imagine the sy-
ringe tip dragging a a dangling thread of material across two
pillars, forming a makeshift arch. Hard to anticipate and al-
most impossible to control manually, this is exactly the kind
of thing that makes software simulation so much harder to
use effectively.

5. CONCLUSION
We have constructed a system of Evolutionary Fabrica-

tion, the first closed-loop cycle of evolving physical objects.
We have shown that the system can produce objects of in-
creasing fitness over time and that embodied evolution can
uniquely exploit physical realities of various parts of the fab-
rication process. We have additionally specified areas that
currently hamper the system.

Future work will consist of bettering the reliability of Evo-
Fab 0.2 through improvements to the accuracy of its fitness
function and restrictions of movement along the Y-axis. Ad-
ditionally, new types of objects will be presented for evolu-
tion to test the versatility of the system, along with new
fitness functions to tackle those objects.

In Star Trek: The Next Generation, machines called repli-
cators are capable of creating any object asked of them:
food, toys, clothing, and spare parts for spacecraft repairs
are all available at the push of a button. While replicators
won’t be invented any time soon, this vision of the future is
not necessarily impossible. As technology advances, so, too,
will implementations of evolutionary fabrication. We envi-
sion a future in which a person can ask a machine to create

583

virtually anything for him, and evolutionary fabrication may
be the process that gets us there.

References
[1] S. H. Al-Sakran, J. R. Koza, and L. W. Jones.

Automated re-invention of a previously patented
optical lens system using genetic programming. In
M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert,
and M. Tomassini, editors, Proceedings of the 8th
European Conference on Genetic Programming,
volume 3447 of Lecture Notes in Computer Science,
pages 25–37, Lausanne, Switzerland, 2005. Springer.

[2] N. Jacobi, P. Husbands, and I. Harvey. Noise and the
reality gap: The use of simulation in evolutionary
robotics. In Proceedings of the Third European
Conference on Advances in Artificial Life, pages
704–720, London, UK, UK, 1995. Springer-Verlag.

[3] L. E. Kavraki, J.-C. Latombe, and R. H. Wilson. On
the complexity of assembly partitioning. Information
Processing Letters, 48(5):229–235, 1993.

[4] J. I. Lipton, D. Cohen, M. Heinz, M. Lobovsky,
W. Parad, G. Bernstein, T. Li, J. Quartiere,
K. Washington, A.-A. Umaru, R. Masanoff,
J. Granstein, J. Whitney, and H. Lipson. Fab@home
model 2: Towards ubiquitous personal fabrication
devices. In Solid Freeform Fabrication Symposium,
pages 70–81, 2009.

[5] J. D. Lohn, G. S. Hornby, and D. S. Linden. An
Evolved Antenna for Deployment on NASA’s Space
Technology 5 Mission. In U.-M. O’Reilly, R. L. Riolo,
T. Yu, and B. Worzel, editors, Genetic Programming
Theory and Practice II. Kluwer, 2005.

[6] E. Malone and H. Lipson. Fab@home: The personal
desktop fabricator kit. Rapid Prototyping Journal,
13(4):245–255, 2007.

[7] M. Mitchell, S. Forrest, and J. H. Holland. The royal
road for genetic algorithms: Fitness landscapes and ga
performance. In Proceedings of the First European
Conference on Artificial Life, pages 245–254. MIT
Press, 1991.

[8] J. Rieffel. Evolutionary Fabrication: the co-evolution
of form and formation. PhD thesis, Brandeis
University, 2006.

[9] D. Sayles and J. Rieffel. Evofab: A fully embodied
evolutionary fabricator. In G. Tempesti, A. Tyrrell,
and J. Miller, editors, Evolvable Systems: From
Biology to Hardware, volume 6274 of Lecture Notes in
Computer Science, pages 372–380. Springer Berlin /
Heidelberg, 2010.

[10] K. Sims. Evolving virtual creatures. In Proceedings of
the 21st annual conference on Computer graphics and
interactive techniques, pages 15–22. ACM Press, 1994.

[11] A. Thompson. An evolved circuit, intrinsic in silicon,
entwined with physics. In T. Higuchi, M. Iwata, and
L. Weixin, editors, Proc. 1st Int. Conf. on Evolvable
Systems (ICES’96), volume 1259 of LNCS, pages
390–405. Springer-Verlag, 1997.

[12] R. A. Watson, S. G. Ficici, and J. B. Pollack.
Embodied evolution: Embodying an evolutionary
algorithm in a population of robots. In CONGRESS
ON EVOLUTIONARY COMPUTATION, pages
335–342. IEEE Press, 1999.

584

