
Supportive Coevolution

Brian W. Goldman
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
brianwgoldman@acm.org

Daniel R. Tauritz
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
dtauritz@acm.org

ABSTRACT

Automatically configuring and dynamically controlling an
Evolutionary Algorithm’s (EA’s) parameters is a complex
task, yet doing so allows EAs to become more powerful
and require less problem specific tuning to become effec-
tive. Supportive Coevolution is a new form of Evolutionary
Algorithm (EA) that uses multiple populations to overcome
the limitations of other automatic configuration techniques
like self-adaptation, giving it the potential to concurrently
evolve all of the parameters and operators in an EA.
As a proof of concept experimentation comparing self-

adaptation of n uncorrelated mutation step sizes with Sup-
portive Coevolution for mutation step sizes was performed
on the Rastrigin and Shifted Rastrigin benchmark functions.
Statistical analysis showed Supportive Coevolution outper-
forming self-adaptation on all but one of the problem in-
stances tested. Furthermore, analysis of instantaneous mu-
tation success rate showed that this new technique is better
able to adapt to the changes in the population fitness. Fur-
ther study using multiple evolving parameters is needed to
fully test Supportive Coevolution, but the results presented
here show a promising outlook.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.6 [Artificial Intelligence]: Learn-
ing—parameter learning

General Terms

Algorithms

Keywords

Coevolution, Parameter Control, Self-Adaptation, Support-
ive Coevolution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

1. INTRODUCTION
The behavior of an Evolutionary Algorithm (EA) is con-

trolled by a number of parameters and operators, each of
which can affect the solution quality of the EA. Unfortu-
nately, operator and parameter selection are not separable
search spaces, and optimal settings are problem dependent.
As a result, the difficulty of solving the target problem is
often transformed into the difficulty of properly designing
and tuning the EA. In order to allow EAs to be easier to use
as well as more generally effective, a method is needed to
reduce the impact of this problem specific tuning or remove
the need for it entirely.

A further difficulty in EA configuration is the need for
parameter values to change dynamically during the course of
a single run [2]. This compounds the problem of EA tuning
combinatorially: instead of just determining a single best
value for each parameter, each parameter’s value needs to
change during different stages of a run in an optimal manner.

In order to automatically determine quality parameter
and operator settings for each stage of an EA, Supportive
Coevolution evolves these settings concurrently with candi-
date solutions. Supportive Coevolution differs from previous
techniques by decoupling the evolution of parameters and
operators from the main population allowing any number of
settings to be evolved in this way.

2. BACKGROUND

2.1 Parameter Setting
The most commonly automated parameter in an EA is

the mutation operator. One of the earliest mutation control
methods used offspring quality to evaluate mutation qual-
ity [13]. While this method was able to make the EA less
sensitive to a priori tuning as well as achieve better solution
quality, it relied on a manually created feedback structure
that has been greatly outperformed by self-adaptation.

Self-adaptation increases an individual’s genome to in-
clude genes used for parameter control. For example, CMA-
ES is a very successful method in which each individual en-
codes its own control values for how to perform mutation [6].
The quality of each individual’s encoded mutation impacts
the quality of its offspring. Therefore, if an individual has
a good mutation operator, it is more likely to create good
offspring, allowing that gene to propagate. If its mutation
gene is bad, it will likely be unable to produce quality off-
spring, preventing propagation. Many other EA parameters
have also been encoded using self-adaptation. For exam-
ple, the operators controlling how offspring are created have

59

been controlled [4, 15, 3], and mate selection has been con-
trolled allowing each individual to evolve their own mate
selection [14].
Self-adaptation has limitations. First, the fitnesses of

the self-adapted genes are indirectly linked to their survival
chance. Just because an individual is highly fit does not
mean its self-adapted genes are fit. Consider the case where
a suboptimal mutation method – which contains a normally
distributed stochastic element – randomly creates a single
high quality individual. Even though the operator worked
once, that does not mean it will work again. Jointly, this
individual may have difficulties creating offspring of its own,
hampered by its self-adapted genes. In order to overcome
this issue, a method is needed to separate the operator’s
quality from the individual’s quality.
This problem of indirect fitness becomes even more ap-

parent when adapting multiple parameters. In [11], control
methods were devised for all of the parameters in an EA.
While this method was more generally applicable than less
adaptive EAs, it was unable to achieve the same levels of
solution quality as correctly tuned EAs on specific prob-
lems. If a self-adaptive approach attempted to control all of
the parameters in an EA, all of an individual’s encoded pa-
rameters would share the same fitness, independent of their
actual fitness.

2.2 Coevolution
Coevolutionary Algorithms (CoEAs) determine the fitness

of an individual in relation to other individuals. This field
originally used a competitive model, in that individuals com-
peted against each other to achieve their own fitness in a host
parasite relationship [7]. This technique was later expanded
to include a cooperative design, in which individuals worked
together toward a common goal by splitting up the prob-
lem search space [8]. In both methods, all individuals are
directly evaluated by the target problem’s fitness function,
either as antagonist or protagonist.
Coevolution of mutation step size was proposed in [12].

This algorithm used a two-population approach, with one
population encoding solutions to the target problem and
the other encoding offset vectors. Each generation, a single
individual was created using a form of randomly weighted
arithmetic crossover. The difference in genetic position be-
tween the offspring of this crossover and its nearest parent
was added to the population of offset vectors. The rest of
the offset vectors were initialized to zero, with random per-
turbations added upon each application. The rest of the
offspring in the main population for each generation were
created by adding and subtracting a random offset vector to
a random individual, choosing the best of the two for each.
This algorithm reported limited success.
There are a number of weaknesses in evolving mutation

step size in this way. First, by using the offset vectors as
discrete steps instead of step size probabilities, each offset
vector has a much lower chance of being widely useful as
it can only move an individual to two points in the search
space. Second, the use of truncation selection based on rel-
ative fitness, with no reward for improving diversity, will
likely cause offset vectors to trend to zero as smaller vectors
have a lower risk of making changes drastic enough to an in-
dividual to significantly reduce fitness quality. As the offset
vectors trend to zero, the only method to prevent premature
convergence is crossover’s creation of individuals and offset

Figure 1: Supportive Coevolution information flow

vectors. Unfortunately, the maximum magnitude of the off-
set vector created by crossover is equal to half the span of
the individuals in the main population, meaning that the
more individuals converge, the less mutation can change in-
dividuals. Furthermore, the offset produced by crossover is
not rated on the quality of the offspring created.

Endosymbiotic Evolutionary Algorithms are a variant on
cooperative coevolution which also splits the solution to a
target problem into multiple species [9]. To evaluate a solu-
tion, individuals must be chosen from all of the populations
and evaluated together. This method differs from standard
cooperative coevolution in that individuals who work partic-
ularly well together are occasionally combined and evolved
together in a new population. While this style of coevolution
borrows its inspiration and name from cooperative natural
systems composed of primary and support organisms, En-
dosymbiotic EAs do not use this type of relationship.

3. METHODOLOGY
Supportive Coevolution (SuCo) uses a multi-species, multi-

population CoEA design. There are two main types of species:
Primary and Support. The former is used to evolve solutions
and the latter is used to evolve configuration information.

3.1 The Primary Population
The Primary population interacts with the target fitness

function identically to a traditional EA. This means that
each individual in the Primary population encodes all of the
genetic information required to represent a problem solution.
To evaluate an individual in the Primary population, the
fitness function can be directly applied to its genes, as shown
in Figure 1. All of the other operations in SuCo happen
transparently around individuals of the Primary population.

3.2 The Support Populations
Instead of using tunable parameters and operators, the

Primary population relies on the Support populations to
evolve parameters and operators for each stage of evolution.
This relationship is represented by the right half of Figure 1.
Each Support population is used for a different parameter
or operator. The research presented in this paper was re-
stricted to using a single Support population to encode mu-
tation step size, but any combination of parameters could
be used, for example population size and the recombination
operator.

To determine the fitness of an individual in the Support
population, it is used by a Primary population to perform
a task. The Primary population then rates how useful the
Support individual was. As such, the supportive individual
is never directly evaluated by the target fitness function, but
instead receives an indirect fitness from the primary popu-
lation. In the case of mutation step size, this is achieved by
using an individual to create offspring in the Primary pop-
ulation. The fitness of the offspring created in this way is
used to determine how fit the Support individual is. Because
each Support individual is applied to different parents, the

60

Figure 2: Supportive Coevolution multiple Support

offspring’s fitness relative to its parents needs to be consid-
ered. Equation 1 is a natural counter measure to this prob-
lem, but other effective methods may exist. This equation
subtracts the average parent fitness from the offspring’s fit-
ness to determine if the offspring is a relative improvement.

RelativeF itness = offspring − average(parents) (1)

If only Equation 1 was used, the Support population would
likely converge to very small mutation step sizes to reduce
the risk of exploration [13]. To reward exploration, the fit-
ness from Equation 1 can be scaled by Equation 2. In this
equation, all of the distances between the offspring and its
parents are multiplied. This encourages Support individuals
to create Primary individuals that are more genetically dis-
similar from all of their parents, while still emphasizing the
need to improve the fitness of the offspring.

RelativeDistance =

∏

distance(off, parents)
∏

allPairsDistance(parents)
(2)

By using each Support individual multiple times and ac-
counting for parent fitness, the true fitness of that individual
can be approximated. To use SuCo for other parameters and
operators, similar techniques can be devised.

3.3 Multiple Support Populations
Figure 1 depicts SuCo using one Primary and one Sec-

ondary population. While in most previous work, only a sin-
gle parameter or operator is evolved at once, SuCo can easily
be expanded to evolve multiple aspects of an EA configura-
tion concurrently, as shown in Figure 2. For each evolving
parameter and operator, another Support population with
its own fitness function can be created. When using multi-
ple Support populations, the fitness of each individual can
still be determined by using an individual multiple times in
combination with different individuals from the other pop-
ulations.
If a recombination Support population was used in con-

junction with a mutation population, the fitness of a muta-
tion individual would be determined by using it with mul-
tiple recombination individuals and determining its relative
success. Increasing the number of supportive populations
has no impact on how the primary population is assigned

Figure 3: Supportive Coevolution multiple Primary

its fitness, and does not necessarily require any extra evalu-
ations of the target fitness function.

3.4 Multiple Parallel Primary Populations
The need to evaluate a Support individual multiple times

to truly evaluate its fitness highlights another advantage of
SuCo. Traditionally, EAs are run multiple times on the same
problem to improve the odds that one run will stochasti-
cally obtain acceptable results. In these cases, the same
EA is applied to the problem with no changes, or the only
changes made are in parameter tuning. To make better use
of these evaluations and allow the Support populations to re-
act faster to the needs of the Primary population, SuCo can
be extended to use multiple Primary populations at once,
as shown in Figure 3.

When using a Primary population, Figure 1 shows the
target problem requesting individuals from that population,
evaluating them, and returning their fitness. To expand
this to multiple Primary populations, the target problem
simply requests for one individual from each population, one
at a time. From the point of the target problem and the
Primary populations, this is functionally identical to the
multiple runs commonly done for stochastic reasons.

The advantage of parallel Primary populations is the abil-
ity for all of them to share the same set of Support popu-
lations. No matter how many Primary populations are in
a SuCo, there is only one Support population for each pa-
rameter or operator being evolved. This allows the Support
populations to receive fitness information from all Primary
populations, and in effect allow them to evolve at an accel-
erated rate.

Another advantage to using multiple populations is the
ability to evolve parameters that are typically more difficult
for dynamic evolution, such as population size and survival
rate. Because the Support population for each of these can
receive feedback from multiple populations, it can evaluate
the effects of using each value for these parameters at the
same point in each Primary population’s evolution.

4. EXPERIMENTAL SETUP
Since many of the previous methods for dynamic param-

eter control only allow for a single dynamic parameter, only
a single Support population was used for this initial testing
of SuCo. While this set does not test all of the proposed
features of SuCo, such as multiple Support populations con-
trolling more complex configuration options, starting simple

61

Rastrigin Shifted Rastrigin
Parameter N=10 N=20 N=10 N=20

Parallel Populations 11 5 7 9
Population Size 413 492 237 280
Offspring Size 75 238 9 24
Parent Tournament 8 5 29 27
Maximum Mutation Step Size 0.2698 0.2993 1.564 1.0445

Table 1: Experiment parameters by benchmark for SA

Rastrigin Shifted Rastrigin
Parameter N=10 N=20 N=10 N=20

Parallel Populations 6 13 8 5
Population Size 183 261 202 248
Offspring Size 204 161 89 343
Parent Tournament 2 6 12 15

Support Configuration
Population Size 1 446 291 373
Offspring Size 312 85 187 210
Parent Tournament 16 1 25 12
Maximum Mutation Step Size 0.3756 0.4475 2.45 2.5072
Evaluations Per Generation 2 2 9 8

Table 2: Experiment parameters by benchmark for SuCo

Parameter Value
Parent Selection Tournament
Recombination Arithmetic
Survivor Selection Truncation
Evaluations 100,000
Runs 100

Table 3: Common configuration across all algo-
rithms on all problems

provides an initial proof of concept by comparing with the
most similar, and most commonly used, effective method for
dynamic configuration. As mutation step size is the most ex-
plored dynamic parameter, it was the logical choice for ex-
perimentation. For comparison, an EA using self-adaptation
of n uncorrelated mutation step sizes (SA) was used, similar
to a traditional Evolutionary Strategy. In this method, a
mutation step size for each locus, denoted as σi, is added to
each individual in the population. Whenever that individ-
ual creates an offspring, it first provides the offspring with a
mutated version of its mutation step size information. The
offspring then uses its own mutation step sizes to control a
Gaussian mutation, as shown in Equation 3.

σ′

i = σi · e
τ ′

·N(0,1)+τ ·Ni(0,1)

x′

i = xi + σi ·Ni(0, 1)
(3)

A SuCo using a Support population for mutation step size
was designed to act in a very similar method as the compar-
ison algorithm. Each individual in the Support population
encoded a mutation step size for each locus in the Primary
population. When the Primary population needs to perform
mutation, it uses a randomly chosen Support individual to
provide the σi values for Equation 3. To determine the fit-
ness of a Support individual, Equation 1 and Equation 2 were

multiplied together and averaged for each application of the
individual. This fitness metric may not be the best possible
method, but was used as a natural example of SuCo’s abil-
ity to directly manipulate the Support individual’s fitness, a
feature inherently unavailable to SA techniques.

To help ensure similarity of comparison, both SA and
SuCo were allowed to use multiple concurrent populations.
As such, a single run of either algorithm involves running
multiple concurrent populations and splitting the maximum
number of evaluations evenly among populations. As SA
does not share information between populations, using mul-
tiple concurrent populations only allows this algorithm more
chances to improve its best fitness found. One hundred
runs of each multiple concurrent population EA was used
to achieve statistical significance.

A set of benchmark problems was employed to perform
comparative testing and analysis. As mutation step size is
primarily designed for real-valued functions, the commonly
used Rastrigin Function [10] was chosen. This function is a
representative of highly multimodal functions that contain
no gene interdependence, the hardest problem class that an
EA using self-adapted uncorrelated mutation step sizes per-
forms well on. The Rastrigin function is give in Equation 4.

An+
n
∑

i=1

[

x2
i −A cos(2πxi)

]

, ∀x ∈ [−5.12, 5.12] (4)

The global optima for the Rastrigin function occurs when
all xi are equal to zero. This artificial centering of the global
optima in the search space has the potential to be exploited
by algorithms in ways not applicable to real world problems.
As such, the Shifted Rastrigin problem offsets the location of
the global optima values. At initialization, the Shifted Ras-
trigin problem randomly generates an offset vector o, where
oi ∈ [−5.12, 5.12]. When evaluating a solution, Shifted Ras-
trigin temporarily adds the o vector to the solution vector
before using Equation 4 to determine solution fitness.

62

N SA SuCo
Rastrigin

10 -0.2390 (-0.4249) -0.0199 (-0.1393)

20 -0.3494 (-0.4905) -1.4132 (-0.7481)

Shifted Rastrigin

10 -4.4215 (-1.8744) -2.2518 (-0.9811)

20 -10.3967 (-4.3567) -5.7718 (-2.2848)

Table 4: Mean (standard deviation) of final best fit-
nesses on each problem; statistical best highlighted

To maximize the effectiveness of both algorithms on each
problem, REVAC [1] was used to tune all configurable pa-
rameters. Tuning was performing using 3000 REVAC eval-
uations, where each of those involved running the algorithm
being tuned 10 times to completion. The fitness of a configu-
ration was set as the median final best fitness found of those
10 runs. While SuCo has more parameters to tune (con-
figuration of the Support population), the limited amount
of tuning available and the increase in tuning search space
likely prevents SuCo from achieving better specialization
than SA. Problem specific tuned configuration parameters
for SA and SuCo can be found in Table 1 and Table 2, re-
spectively. A complete listing of all common configuration
settings is provided in Table 3.

5. RESULTS
Table 4 shows the mean and standard deviation of the final

best fitnesses achieved by SA and SuCo on each instance
of the Rastrigin and Shifted Rastrigin benchmark functions.
To determine the significance of the resulting values, a T-test
was performed comparing SA with SuCo on each instance.
All differences were found to be statistically significant using
a confidence level of α=0.001.
In order to better understand the effectiveness of each

mutation method, Figure 4 through Figure 11 are provided.
During evolution, any time a mutation was about to be per-
formed, the individual it was about to be applied to was
evaluated. The mutation was then performed, and the re-
sulting individual was reevaluated, and the change in fit-
ness was recorded. If the mutation resulted in a positive
change (made the individual more fit), it was considered
a success. If the mutation resulted in a negative change
(made the individual less fit), it was considered a failure.
Mutations that did not change the individual’s fitness, were
not counted. At regular intervals the mutation success rate
(successes/(successes + failures)) was recorded and then
the number of successes and failures were reset to zero. Fig-
ure 4 through Figure 11 show how the instantaneous muta-
tion success rate changed with respect to both the number
of evaluations and the current best individual found by the
population.

6. DISCUSSION

6.1 Final Best Fitness
Table 4 shows SuCo achieving statistically better fitness

on Rastrigin N=10, Shifted Rastrigin N=10, and Shifted
Rastrigin N=20. Oddly, the most dramatic improvements
are found on Rastrigin N=10, while on Rastrigin N=20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

M
u

ta
ti
o

n
 S

u
c
c
e

s
s

Evaluations (In Thousands)

SA

SuCo

Figure 4: Mutation success rate with respect to eval-
uations, Rastrigin N=10

SuCo does significantly worse than SA. A likely cause of this
deficiency is the parameter configuration that SuCo used for
this instance.

To discern how SuCo’s configuration for Rastrigin N=20
may have hindered its effectiveness, examine the differences
between how SuCo’s configuration changes with respect to
dimensions on Shifted Rastrigin. By examining Table 2, it
appears that on Shifted Rastrigin, SuCo’s configuration fa-
vors increasing diversity and reducing parallel populations
as the number of dimensions increases. This can be seen in
the increase in population size and offspring size for both the
Primary and Support populations. While the parent tour-
nament size used by the Primary population increases, rela-
tive to the increases in population size, the selective pressure
stays about the same. The Support parent tournament size
drops dramatically, especially when considering the change
in population size.

The configuration differences between RastriginN=10 and
Rastrigin N=20 do not follow this pattern. While the pop-
ulation size does increase, the offspring size shrinks signifi-
cantly, the parent selective pressure increases, and the num-
ber of parallel populations increases. Even though all of this
suggests that SuCo’s configuration for Rastrigin N=20 may
not be the most effective possible, that configuration was
found by REVAC, and further tuning would be unfair to
the other algorithms.

6.2 Rastrigin Mutation Success
On the N=10 version of Rastrigin, SuCo’s mutational suc-

cess is very similar to that of SA. Figure 4 and Figure 5 show
each algorithm’s success in regard to evaluations performed
and the fitness of the current best individual. Initially both
algorithms start at a nearly 50% success rate, which makes
sense as applying a random change to randomly generated
individuals will likely give you an even chance of improve-
ment. More precisely, when an individual exists near a peak
or valley in the fitness landscape, large mutations have a
high probability of pushing that individual off the peak or
valley. When individuals have a fitness near the average of
the landscape, mutations of any size will likely have an equal
chance to improve or reduce fitness. To maintain a high mu-
tation success rate as the population improves, the size of the

63

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

M
u

ta
ti
o

n
 S

u
c
c
e

s
s

Best Individual Fitness

SA

SuCo

Figure 5: Mutation success rate with respect to best
individual fitness, Rastrigin N=10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60 70 80 90 100

M
u

ta
ti
o

n
 S

u
c
c
e

s
s

Evaluations (In Thousands)

SA

SuCo

Figure 6: Mutation success rate with respect to eval-
uations, Rastrigin N=20

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

M
u

ta
ti
o

n
 S

u
c
c
e

s
s

Best Individual Fitness

SA

SuCo

Figure 7: Mutation success rate with respect to best
individual fitness, Rastrigin N=20

mutations made needs to correspond with this improvement.
As such, the expectation for mutation success rate is to de-
crease with both the number of evaluations and the relative
fitness of the current population. Furthermore, both SA and
SuCo rely on evolution to perform mutation, meaning they
both have the potential to suffer from diversity loss. Losing
diversity can prevent the mutation step sizes from adapt-
ing to the shifting target needed by the population. Once
the mutation step size gene pool has specialized, if it cannot
adapt, you would expect to see a monotonic decrease in ef-
fectiveness as less and less individuals that benefit from the
specialized mutation step sizes remain in the population.

When examining the mutation success rate relative to
evaluations for Rastrigin N=10 shown in Figure 4, this pat-
tern of monotonic decrease is apparent. Both methods quickly
loose effectiveness, and begin approaching a zero success
rate. The interesting divergent behavior occurs between 30
thousand and 70 thousand evaluations. Here SuCo is able
to maintain a higher success rate longer, before returning
to free fall again, dropping even lower than SA. To under-
stand this behavior, its necessary to also examine Figure 5.
This graph also shows a great deal of similarity between SA
and SuCo, but the relevant section occurs at the far right of
the graph. While both algorithms appear to lose effective-
ness quickly at higher fitnesses, SuCo is able to sustain a
higher quality near convergence. The likely explanation for
this behavior is SuCo’s increased ability to adapt and the
ability for SuCo to decouple an individual from its mutation
step size. Returning to the previous figure, the likely cause
of SuCo’s higher success rate is this effectiveness on highly
fit individuals. When SuCo drops below SA in Figure 4 the
likely cause is that the quality of individuals in the SuCo Pri-
mary population have improved beyond the quality of the
SA individuals at the same number of evaluations, resulting
in SuCo having individuals that are harder to improve.

Turning to the N=20 version of Rastrigin, Figure 6 and
Figure 7 show that SuCo and SA have similar trends. SuCo
is able to maintain a higher mutation success rate for a
higher number of evaluations than SA, and is more success-
ful at higher individual fitnesses. Table 4 shows that SA
achieved better results than SuCo, which seems counter in-
tuitive to the graphs on mutation success rate. Along with
the explanation given in Section 6.1, possible explanations
for this behavior are that the magnitude of the improve-
ments made by SA are larger than SuCo, and that the types
of mutations made by SA are more beneficial (or less detri-
mental) to the arithmetic crossover used by both algorithms.
In either case, SA is able to achieve statistically better re-
sults while overall having a less successful mutation opera-
tor, suggesting the primary reason for the difference is not
the effectiveness of the mutation method.

6.3 Shifted Rastrigin Mutation Success
The behavior of SuCo on Shifted Rastrigin is significantly

different than both its behavior on normal Rastrigin as well
as all of the observed behaviors of SA. When using N=10,
SuCo breaks from the expected monotonic decrease of muta-
tion success, as shown in Figure 8. From about 5 thousand
to 30 thousand evaluations, SuCo’s mutation success rate
improves, before returning to the more expected shape of
monotonic decrease which asymptotically approaches zero.
Figure 9 shows a similar behavior with respect to fitness.
SuCo appears to have a slower start than SA in both graphs,

64

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 10 20 30 40 50 60 70 80 90 100

M
u

ta
ti
o

n
 S

u
c
c
e

s
s

Evaluations (In Thousands)

SA

SuCo

Figure 8: Mutation success rate with respect to eval-
uations, Shifted Rastrigin N=10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

M
u

ta
ti
o

n
 S

u
c
c
e

s
s

Best Individual Fitness

SA

SuCo

Figure 9: Mutation success rate with respect to best
individual fitness, Shifted Rastrigin N=10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 10 20 30 40 50 60 70 80 90 100

M
u

ta
ti
o

n
 S

u
c
c
e

s
s

Evaluations (In Thousands)

SA

SuCo

Figure 10: Mutation success rate with respect to
evaluations, Shifted Rastrigin N=20

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

M
u

ta
ti
o

n
 S

u
c
c
e

s
s

Best Individual Fitness

SA

SuCo

Figure 11: Mutation success rate with respect to
best individual fitness, Shifted Rastrigin N=20

which is likely caused by it having a larger maximum muta-
tion step size allowed than SA. Yet as evolution progresses,
SuCo is able to achieve success rates greater than or equal
to SA at similar levels of fitness. In respect to evaluations,
SuCo’s apparent collapse after 40 thousand evaluations is
likely caused by a similar jump in population fitness quality,
as discussed in Section 6.2.

The same behavior can also be observed on Shifted Rast-
rigin N=20 in Figure 10 and Figure 11. Again SuCo is able
to improve its mutation success rate as evolution improves,
with high performance maintained far into evolution. This
is in comparison with SA, which does not appear to improve
at all with evolution on this problem.

A likely cause for this change in behavior on Shifted Ras-
trigin is the inherent difference of the problem. Since the
global optima for normal Rastrigin are artificially placed at
the dead center of the search space, the arithmetic crossover
used has a high probability of generating individuals near the
global optima. This makes intuitive sense when you consider
that if you generate two numbers randomly on some range
and then average them, you would expect the result to be
close to the center of the range. When the global optima is
shifted randomly, this property breaks down, making evolu-
tion rely on mutation. As a result, Shifted Rastrigin requires
a more powerful mutation operator than the normal Rastri-
gin problem, and is therefore able to better demonstrate the
capabilities of SuCo.

7. CONCLUSION
Supportive Coevolution (SuCo) utilizes a multiple-species,

multiple-population coevolving system in which Support in-
dividuals evolve better methods for Primary individuals to
evolve problem specific solutions. While the primary focus
of this paper is to introduce the broad concept of SuCo, an
example SuCo was compared against self-adaptation of n
uncorrelated mutation step sizes (SA) on the Rastrigin and
Shifted Rastrigin benchmark problems. In all but one of the
tests performed, SuCo was able to statistically outperform
SA, with the exception likely caused by poor tuning or the
inherent artificial properties of the Rastrigin problem.

To better understand the advantages of SuCo, analysis
was performed of the instantaneous effectiveness of the evolv-

65

ed mutation step sizes. In general, SuCo was able to create
more successful mutation step sizes than SA, especially as
the population begins to converge to higher fitness individ-
uals.

8. FUTURE WORK
While these results are in no way comprehensive, they

suggest that the general concept of SuCo is promising. Fur-
ther work needs to be performed to test the claims made
about SuCo’s ability to evolve multiple Support populations
at once, as well as its ability to handle parameters that are
less commonly evolved such as population sizing and selec-
tive pressure parameters.
The problem of Support population configuration will need

to be addressed. While it is likely that the newly created
configuration parameters for the Support population will
have less of an impact than the mutation size itself, that
analysis needs to be performed. Another interesting ques-
tion is if different Support populations can utilize the same
configurations, or if each will require its own configuration.
In either case, hopefully SuCo’s ability to dynamically con-
figure the Primary population will continue to outweigh the
impact of the Support configuration.
On the topic of configuration, some of the experiments

performed here raised the suspicion that improper config-
uration led to poor results. While REVAC was performed
to try and mitigate this problem, more extensive and effec-
tive tuning may help determine the true potential of each
algorithm.
While the intent of the SuCo testing was to provide a

proof of concept, SuCo needs to be tested on a wider range
of problems to fully understand its properties. There are
an immense number of different problem classes to be tried
and analyzed, and just as many existing techniques to be
compared against. Applying SuCo to a real world problem
and comparing against current best algorithms for dynamic
configuration would help solidify SuCo’s place from a prac-
titioner’s perspective.
Many of the mechanics created for the experiments per-

formed (such as the method for calculating Support individ-
ual fitness for mutation step size) could use further inves-
tigation. These were created ad hoc and with little indi-
vidual analysis. As one of the major advantages of SuCo is
its ability to directly manipulate the fitness of the evolved
genes, determining how much improvement you can receive
by doing this is important. Similarly, methods of intelli-
gently pairing Support individuals with Primary ones may
help improve the success of SuCo. For example, a method
of mate pairing similar to LIMP [5] or Endosymbiotic Evo-
lution [9] may be applicable.

9. REFERENCES
[1] W. de Landgraaf, A. Eiben, and V. Nannen.

Parameter Calibration Using Meta-Algorithms.
Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pages 71–78, 2007.

[2] B. W. Goldman and D. R. Tauritz. Meta-Evolved
Empirical Evidence of the Effectiveness of Dynamic
Parameters. Genetic and Evol. Comp.
Conf.(GECCO-2011), pages 155–156, 2011.

[3] B. W. Goldman and D. R. Tauritz. Self-Configuring
Crossover. Genetic and Evol. Comp.
Conf.(GECCO-2011), pages 575–582, 2011.

[4] J. Gomez. Self Adaptation of Operator Rates in
Evolutionary Algorithms. In Proceedings of GECCO
2010, pages 162–173. Springer Berlin, Heidelberg,
2004.

[5] L. M. Guntly and D. R. Tauritz. Learning Individual
Mating Preferences. Genetic and Evol. Comp.
Conf.(GECCO-2011), pages 1069–1076, 2011.

[6] N. Hansen and A. Ostermeier. Completely
Derandomized Self-Adaptation in Evolution
Strategies. 9(2):159–195, 2001.

[7] W. D. Hillis. Co-evolving Parasites Improve Simulated
Evolution as an Optimization Procedure. Physica D
42, pages 228–234, 1990.

[8] P. Husbands and F. Mill. Simulated Co-evolution as
the Mechanism for Emergent Planning and
Scheduling. Fourth International Conference on
Genetic Algorithms, pages 264–270, 1991.

[9] J. Y. Kim, Y. Kim, and Y. K. Kim. An Endosymbiotic
Evolutionary Algorithm for Optimization. Applied
Intelligence, 15(2):117–130, 2001.

[10] H. Mühlenbein, D. Schomisch, and J. Born. The
Parallel Genetic Algorithm as Function Optimizer.
Parallel Computing, pages 619–632, 1991.

[11] G. Papa. Parameter-less Evolutionary Search. pages
1133–1134. Atlanta, GA, USA, 2008.

[12] P. Posik. Real parameter optimization using mutation
step co-evolution. In IEEE Congress on Evolutionary
Computation, pages 872–880, 2005.

[13] I. Rechenberg. Evolutionstrategie: Optimierung
Technisher Systeme nach Prinzipien des Biolischen
Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.

[14] E. Smorodkina and D. Tauritz. Toward Automating
EA configuration: the Parent Selection Stage. In IEEE
Congress on Evolutionary Computation, pages 63–70,
2007.

[15] F. Vafaee, W. Xiao, P. Nelson, and C. Zhou.
Adaptively Evolving Probabilities of Genetic
Operators. Machine Learning and Applications, pages
292–299, 2008.

66

