
Evolving EFSMs Solving a Path-Planning Problem by
Genetic Programming

Maxim Buzdalov
Saint-Petersburg National Research University

of IT, Mechanics and Optics
49 Kronverkskiy prosp.

Saint-Petersburg, Russia

mbuzdalov@gmail.com

Andrey Sokolov
Saint-Petersburg National Research University

of IT, Mechanics and Optics
49 Kronverkskiy prosp.

Saint-Petersburg, Russia

ansokolmail@gmail.com

ABSTRACT

In this paper, we present an approach to evolving of an al-
gorithm encoded as an extended finite-state machine that
solves a simple path-planning problem — finding a path
in an unknown area filled with obstacles using a constant
amount of memory — by means of genetic programming.
Experiments show that in 100% of cases a reasonably correct
EFSM with behavior similar to one of the BUG algorithms
is evolved.

Categories and Subject Descriptors

D.1.2 [Programming Techniques]: Automatic Program-
ming

General Terms

Algorithms, Experimentation

Keywords

genetic programmming, path-planning problem, bug algo-
rithms, finite-state machine

1. INTRODUCTION
Automata-based programming [7, 8, 4] is a programming

paradigm which proposes to design and implement software
systems as systems of interacting automated controlled ob-
jects. Each automated controlled object consists of a con-
trolling EFSM and a controlled object.

The main idea of automata-based programming is to dis-
tinguish control states and computational states. The num-
ber of control states is relatively small, each of them differs
qualitatively from the others and defines the actions. The
number of computational states can be very large (even in-
finite), they differ from each other quantitatively and define
only results of the actions but not the actions themselves.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

Complex programs can be designed using the automata
decomposition [7]. This idea can be transformed to an ap-
proach of separately evolving strategies represented as EF-
SMs for different situations, then evolving a top-level EFSM
that decides which of these strategies to use. This paper de-
scribes an approach for evolving a relatively low-level EFSM,
which can be seen as a part of complex automata-based nav-
igation system.

1.1 Extended finite-state machine
An EFSM has a set of control states, a transition function

and an action function. A controlled object has computa-
tional states and interfaces with the FSM by commands and
input variables.

The EFSM takes events and input variables as input.
Generally, they can come from other parts of the system
as well as from the controlled object. After receiving an
event and values of the input variables, the FSM transits
to some control state and issues commands (or output ac-
tions) to the controlled object, which, in turn, can change
its computational state.

1.2 Path planning with incomplete informa-
tion

In [6], a family of BUG algorithms, which solve the most
restricted class of path planning problems with incomplete
information, is introduced.

A two-dimensional scene filled with unknown obstacles
with continuous boundaries of finite size is given. An agent
is a point-sized robot which needs to reach a certain target
location. The agent has the knowledge of its own coordi-
nates and the coordinates of the target location. It has a
sensor that tells the agent if it hits an obstacle. The agent
has a constant amount of memory to operate. In particular,
it can not store the part of the scene it has already visited.

It is shown in [6] that a number of algorithms exist which
can drive the agent to the target location if it is possible
and determine if the target location is unreachable otherwise
in finite time. In [5], the ideas of BUG algorithms were
extended to the case of limited distance sensors.

2. PROBLEM DESCRIPTION
In this research we consider a simplified version of the

problem described in [6]. Here, the scene is an infinite square
grid. Each cell of this grid is either free or contains an
obstacle.

The agent occupies an entire cell. The location of the

591

agent is defined by its coordinates and direction, which can
be one of “north”, “west”, “south”, “east”. We denote the
next cell in this direction to be adjacent to the agent. The
externally visible actions of the agent on each turn are lim-
ited to the following:

• move forward to the adjacent cell;

• rotate 90 degrees clockwise;

• rotate 90 degrees counter-clockwise;

• terminate and say it has reached the target location;

• terminate and say the target location is unreachable;

• do nothing.

If an agent tries to move to a cell which contains an ob-
stacle, it is said to be “crashed”, and the process stops. If
agent terminates and says it has reached the target location,
but it is not located there, or it says that the target loca-
tion is unreachable while it is not, it is considered to operate
incorrectly.

The agent knows its own coordinates and direction, and
the coordinates of the target location. It is able to sense if
there is an obstacle in the adjacent cell. In addition, the
agent has an internal memory, where it is able to store its
location (coordinates and direction) at a certain moment in
the past.

The part of the agent described above forms a controlled
object, and the part that actually determines how the agent
behaves is the controlling EFSM. To design this EFSM, we
need to describe the input variables and the output actions
first.

2.1 Input Variables
The input variables may depend only on the information

known to the agent:

• Xt, Yt — the target location;

• Xa, Ya, Da — the agent’s coordinates and direction;

• Xs, Ys, Ds — the saved coordinates and direction;

• Xj , Yj — the coordinates of the adjacent cell (a func-
tion of Xa, Ya, Da);

• O — is there an obstacle in the adjacent cell.

The set of input variables used in this research is described
in the Table 1. The number of input variables is kept rel-
atively small, while the complexity of their computation is
quite low.

2.2 Output actions
The output actions are the same as the possible actions

of the agent visible from the outside except for one action
which is dedicated to saving the current location of the agent
to the memory. All output actions are listed in Table 2.

3. GENETIC PROGRAMMING
In this research, the controlling FSM for the agent is

evolved using genetic programming.

Table 1: Input variables

Label Mnemonic identifier Formula
x1 CAN_MOVE_FORWARD not O

x2 IS_MOVE_FORWARD_COOL dist(Xj , Yj , Xt, Yt) <
dist(Xa, Ya, Xt, Yt)

x3 IS_AT_FINISH Xa = Xt and Ya = Yt

x4 IS_AT_SAVED Xa = Xs and Ya =
Ys and Da = Ds

x5 IS_BETTER_THAN_SAVED dist(Xa, Ya, Xt, Yt) <
dist(Xs, Ys, Xt, Yt)

Note: dist(X1, Y1, X2, Y2) = |X1 −X2|+ |Y1 − Y2|.

Table 2: Output actions

Label Mnemonic identifier Description
z1 DO_NOTHING Do nothing
z2 MOVE_FORWARD Move to the adjacent

cell
z3 ROTATE_POSITIVE Rotate clockwise
z4 ROTATE_NEGATIVE Rotate counter-

clockwise
z5 SAVE_POSITION Save current agent’s

location
z6 REPORT_REACHED Terminate and say

the target is reached
z7 REPORT_UNREACHABLE Terminate and say

the target is unreach-
able

3.1 FSM Representation
In the proposed method, Mealy EFSM is used [8], where

output actions depend on the values of the input variables
and the state of the EFSM. The EFSM is represented as an
array of numbered states. Start state has the number 0.

Each state is represented by a decision tree [3]. Each non-
leaf node of the decision tree holds a reference to an input
variable used to define which of the children subtrees to use.
If the value of the input variable in the node is true, one
proceeds to the “true” subtree, if not, to the “false” one.
Each leaf of the tree holds a description of the transition
(the output action and the number of next state).

The use of decision trees is motivated by the fact that, in
each state, for most of the cases only a few of input variables
is used, so the decision tree representation is more compact
than the full table representation [3].

In this research, two crossover operators are used. The
first one exchanges decision trees for each state with the
probability of 0.2. The second one exchanges two randomly
selected subtrees in corresponding trees for each state with
the probability of 0.2. These two operators are chosen equi-
probably.

Two mutation operators are used. The first one for each
state with the probability of 0.2 replaces the whole decision
tree in it with a randomly generated one. The second one for
each state with the probability of 0.2 replaces a randomly
selected subtree with a randomly generated subtree of the
same size. These two operators are chosen equiprobably.

3.2 Fitness Function
In this research, the fitness function is based on simula-

592

tion. An EFSM is tested by putting an agent controlled by
this FSM on a field — a scene with a finite number of finite
obstacles, and with initial and target locations specified —
and running the agent until it stops or any other reasonable
condition is satisfied.

We propose the following fitness function design. At every
moment of time there are several fields generated in advance.
The fitness function of an EFSM depends on several mea-
sures of a path of an agent which is controlled by that FSM.
These measures include the length of the path, the short-
est distance from a path to the target, and the like. When
the best FSM in the generation correctly passes all these
fields, new fields are generated randomly in such a way that
this FSM works incorrectly on every such field. After that,
these fields are added to the list of fields, individuals are
reevaluated and the evolution continues.

The termination criterion, that is, when the best EFSM
does pass any possible field correctly, is equivalent to the
situation when it is impossible to generate a next set of fields.
To decide it formally is quite hard, so a simpler approach is
used: if after a significantly large number (the order of 104)
of randomly generated fields no is field found that proves the
current EFSM to be wrong, it is considered to be correct.
The actual correctness is to be proved later by a human. In
practice, no EFSMs were found which passed this “torture
test” and appeared to be incorrect.

3.2.1 Possible Run Results on a Single Field

Consider the ways a simulation of a single FSM on a single
field may end in.

An agent may either:

• stop by crashing into an obstacle;

• stop by issuing a REPORT_REACHED output action;

• stop by issuing a REPORT_UNREACHABLE output action;

• run forever.

The first case is self-contained. In the second case, the ac-
tual result, i.e. whether the agent works correctly, depends
on the agent may or may not stand at the target location, so
there are “truly reached” and “wrongly reached” outcomes.

The third case is more difficult to analyse. If the agent
says that the target is unreachable, but in fact it is not,
then it is definitely wrong. However, if the target is really
unreachable, the agent may be wrong as well. Consider the
case illustrated in Fig. 1, where the target is unreachable and
the agent stops using the suitable output action. However, if
we slightly modify this case (Fig. 2) by removing some of the
obstacles which the agent did not test, the target becomes
reachable, so the agent is actually wrong.

To overcome this problem, we introduce the concept of
“mandatory cells”. For a field with an unreachable target
we first compute an area that is accessible by an agent. The
target cell will then be contained inside an unreachable con-
nected component. Each free cell having a common edge
with this component is said to be mandatory for the agent to
visit. If an agent does not visit at least one of the mandatory
cells, its REPORT_UNREACHABLE message is considered wrong.
Strictly speaking, this is a heuristic that may potentially re-
ject some correct agents, but in practice a correct agent with
a constant memory which may miss some of mandatory cells
is too difficult to build, so this heuristic is feasible.

Target

Stop point

Figure 1: Wrong REPORT_UNREACHABLE, case 1

Target

Stop point

Figure 2: Wrong REPORT_UNREACHABLE, case 2

There are quite a number of possible scenarios that either
yield the fourth case or look very similar to it. To avoid com-
plex analysis of trajectories, we use the following heuristic:
the agent is said to be “running away” if it moves further
than five cells away from the rectangular area that contains
start and target locations and all the obstacles. The first
motivation is that nearly all BUG algorithms either follow
a boundary of an obstacle or move in the direction of the
target, so it is unusual for them to move too far from the
described area. The second motivation is that the correct
EFSMs that are able to move too far away seem to be more
complex than the correct ones which do not do that.

All possible run results are listed in Table 3. By applying
heuristics described above, we guarantee that simulation of
any FSM on any field will take finite time.

3.2.2 Fitness Functions for Single and Multiple Fields

In this research, the fitness function of a FSM on a sin-
gle field takes the path of the FSM on this field and the
run result and returns a floating-point value, depending on
a number of indicators of the given path. The code that
evaluates the fitness function is accessible in the code repos-
itory at [1]. The less the function, the better the EFSM. The
fitness function for multiple fields is defined as an average
over fitness functions for each of the fields.

3.3 Algorithm Scheme
To evolve an EFSM using fitness function and genetic op-

erators described above, a genetic algorithm from the frame-
work [2] was used. The number of individuals in generation

593

Table 3: Possible run results on a single field

Mnemonic identifier Description
REACHED Agent stopped in target loca-

tion with REPORT_REACHED

WRONGLY_REACHED Agent stopped outside of
target location with RE-

PORT_REACHED

UNREACHABLE Agent visited all mandatory
cells and stopped with RE-

PORT_UNREACHABLE

WRONGLY_UNREACHABLE Agent stopped with RE-

PORT_UNREACHABLE, but not
all mandatory cells were vis-
ited, or the target is reachable

CRASHED Agent crashed into an obstacle
LOOPED Agent looped
RAN_AWAY Agent moved too far from the

area with obstacles

Figure 3: Performance Histogram

is set to 100. To escape from stagnation, after some prelim-
inary experiments it was decided to restart the algorithm
every 5000 generations, if the EFSM solving the problem
is not found yet. Two selection operators were used, the
roulette selector and the tournament selector, which showed
similar performance.

4. EXPERIMENT AND RESULTS
There were 800 runs of the genetic algorithm conducted.

There were five states in each EFSM. Each run was contin-
ued until an EFSM solving the problem (i.e. the one which
stands a torture test of 104 random fields) had been found.

There were generated 800 FSMs, each solving the prob-
lem. They were classified by similarity of paths on sev-
eral random fields (common for all EFSMs) to find how
much different algorithms there are. If several differences
between these algorithms are ignored (i.e. changes of EFSM
state while not moving or rotating, or extra rotations while
standing at the same cell), then it appeared that there were
404 FSMs that move around the obstacles clockwise, and
396 FSMs moving counter-clockwise, so both versions evolve
equiprobably.

Fig. 3 shows a histogram describing the performance of the
GA, where each bucket corresponds to a range of generation
numbers, and the height of a bucket is the relative number of
runs that evolved a correct EFSM using the corresponding
number of generations.

Trajectory analyses show that the evolved EFSMs gen-

erally follow a strategy which can be described as a “blind
Tangent bug for Manhattan distance”. Initially it heads to-
wards the target until it hits an obstacle. Then the current
point is saved and the agent starts to circumvent the obstacle
until either it is possible to move towards the target again, or
the saved point is reached (which is the evidence of the un-
reachable target). The differences between EFSMs, besides
the direction of the obstacle traversal, is in the initialization
code and in optimality of analysing the neighborhood.

5. CONCLUSIONS
In this paper, a method for evolving controlling EFSMs

using genetic programming to solve a simple path-planning
problem is proposed. This method was tested on a prob-
lem of path planning with incomplete information, and was
shown to successfully evolve different solutions to the prob-
lem. The method can be seen as a part of a framework
for designing hierarchies of EFSMs for control of complex
navigation systems.

6. FUTURE WORK
The future work is planned in the following directions:

• introducing EFSM simplification and invariant proofs
to genetic algorithms;

• using more input variables to see if resulting programs
are more efficient;

• testing EFSM representations other than decision trees;

• searching for similar problems and test the proposed
method on them.

7. REFERENCES
[1] Source code for the fitness function.

http://goo.gl/XGwPq.

[2] Watchmaker framework for evolutionary computation.
http://watchmaker.uncommons.org/.

[3] V. Danilov and A. Shalyto. Genetic programming
method for induction of finite state machines
represented as decision trees. In Proceedings of XI
International Conference on Soft Computations and
Measurements, pages 248–251, 2008.

[4] V. Gurov, M. Mazin, A. Narvsky, and A. Shalyto.
Tools for support of automata-based programming.
Programming and Computer Software, 33(6):343–355,
2007.

[5] I. Kamon, E. Rivlin, and E. Rimon. A new range-sensor
based globally convergent navigation algorithm for
mobile robots. In Proceedings of IEEE International
Conference on Robotics and Automation, number 1,
pages 429–435, 1996.

[6] V. Lumelsky and A. Stepanov. Path planning strategies
for a point mobile automaton moving amidst unknown
obstacles of arbitraty shape. Algorithmica, 2:403–430,
1987.

[7] N. Polikarpova and A. Shalyto. Automata-based
Programming, 2nd Edition (in Russian). Piter, 2011.

[8] A. Shalyto. Logic control and reactive systems:
Algorithmization and programming. Automation and
Remote Control, 62(1):1–29, 2001.

594

