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ABSTRACT

Identifying genes that predict common, complex human dis-
eases is a major goal of human genetics. This is made dif-
ficult by the effect of epistatic interactions and the need
to analyze datasets with high-dimensional feature spaces.
Many classification methods have been applied to this prob-
lem, one of the more recent being Support Vector Machines
(SVM). Selection of which features to include in the SVM
model and what parameters or kernels to use can often be a
difficult task. This work uses Grammatical Evolution (GE)
as a way to choose features and parameters. Initial results
look promising and encourage further development and test-
ing of this new approach.

Categories and Subject Descriptors

I.2.m [Artificial Intelligence]: Miscellaneous—Genetic-

Based Machine Learning and Learning Classifier Systems

General Terms

Algorithms

Keywords
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1. INTRODUCTION
The ability to identify genes that predict common, com-

plex human diseases is an intense area of research. Such
diseases are often caused by the combination of many ge-
netic and environmental factors, each contributing a small
effect [8]. Identification of genetic factors is made difficult by
the interactions between different genes, referred to as epis-
tasis [3]. Traditional parametric statistical methods used
to characterize gene-gene or gene-environment interactions
fail when applied to large datasets [4], which has stimulated
the development of novel computational approaches that are
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able to extract information from data obtained during this
‘omics’ era.

One popular approach for detecting disease association
involves the use of machine-learning classification methods
[1, 2, 9, 14]. A few of the most common methods are Ar-
tificial Neural Networks (ANNs), Decision Trees (DTs) and
Support Vector Machines (SVMs), the later of which has
been steadily gaining popularity. Due to the enormous size
of the datasets that are being analyzed, feature selection is
an extremely important aspect of these classification meth-
ods [11]. In addition, properties innate to the classification
technique also influence performance, e.g. the architecture
of an artificial neural network or the kernel parameter(s) of
a support vector machine.

To address these issues, many techniques are being devel-
oped that combine machine-learning classification methods
with algorithms that select features and classifier architec-
ture [2, 7, 9, 12]. Genetic programming algorithms are of-
ten used for this purpose [2, 7, 12], however, application of
Grammatical Evolution (GE) has been shown to outperform
the genetic programming counterpart for ANNs [9]. Moti-
vated by this result and the increasing use of SMVs, this
work begins the process of combining GE and SVMs for the
purpose of predicting human genetic disease associations.

2. METHODS

2.1 Support Vector Machines
SVMs are non-probabilistic binary classifiers that can be

used to construct a hyperplane to separate data into one
of two classes [13]. Consider a set of n data points, each
consisting of p features, x ∈ R

p, and a class label, y ∈ [−1, 1],
i.e. (xi, yi) for i = 1, . . . , n. A hyperplane can be defined
by a normal vector, w, and offset, b. In addition, slack
variables, ξi, can be introduced to represent the degree of
misclassification when data points are not linearly separable.
The objective function of the SVM is then

min
w,b,ξ

1

2
‖w‖2 + C

n∑

i=1

ξi

subject to yi(w
T
φ(xi) + b) ≥ 1− ξi, (1)

ξi ≥ 0,

where C is a linear misclassification penalty and φ is a non-
linear transformation function that projects x ∈ R

p into
a higher-dimensional feature space. Using the relationship
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w =
∑n

i=1
αiyixi, this problem can be solved in dual form

max
α

n∑

i=1

αi −
1

2

∑

i,j

αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤ C, (2)
n∑

i=1

αiyi = 0,

where k(xi,xj) = φ(xi)·φ(xj) is a nonlinear kernel function.
One of the most popular kernel functions, and the one used
in this paper, is the radial basis function (RBF) k(xi,xj) =

e−γ‖xi−xj‖
2

, for γ > 0 [2].

2.2 Grammatical Evolution
Grammatical Evolution (GE) is a technique similar to ge-

netic programming that is capable of exploring vast search
spaces involving potential features and classification archi-
tectures. Details of GE can be found in O’Neill and Ryan
[10]. GE uses a Backus-Naur Form grammar to convert
a binary string into a computer program in any language
by following the central dogma of biology where a binary
string (genotype) is converted to an integer string (mRNA)
and then mapped to a program (phenotype). The use of a
grammar allows for unconstrained searching via evolution-
ary operations to occur at the genetic level, such as point
mutations and crossover events, while maintaining a valid
phenotypic program. GE has been used successfully in the
creation of ANNs and DTs for identifying disease suscepti-
bility genes [9]. The use of genetic algorithms to optimize the
feature selection and architecture of both ANNs and SVMs
has been investigated [2, 7, 12], however, to our knowledge
GE has not been applied to SVMs.

2.3 Grammatical Evolution Support Vector
Machine (GESVM)

In the current study we have developed a method that
uses GE to select features and parameter values for a SVM
classifier that can be applied to case/control data for human
diseases. We have initially selected the RBF kernel, which
requires a value for the kernel parameter γ in addition to
the misclassification penalty C. We designed the GESVM
for use with datasets where the features consist of Single
Nucleotide Polymorphisms (SNPs). SNPs are point muta-
tions that show variation across a population and can result
in a variety of effects, such as modifying transcription bind-
ing sites or changing a protein’s amino acid composition. A
typical representation of a SNP is to encode the genotype
into integers, for example AA = 0, Aa = 1, aa = 2.
The grammar used to select features and parameter values

for the GESVM can be expressed in Backus-Naur Form as
follows:

N = {C1, γ1, C2, γ2, X, L, E}

T = {1− 50}

S = {< C1 >< γ1 >< X >< L >}

with P defined as

< C1 >,< C2 >::= 5

< γ1 >,< γ2 >::= 2

< X >::= 1− 50

< L >::= < X >< E >

| < X >< L >

| < X >< L >< L >

| < X >< L >< L >< L >

| < E >

< E >::= < C2 >< γ2 >

The grammar begins by selecting values for C1 and γ1, which
are used to determine a proportion of the misclassification
penalty C and kernel parameter γ, respectively. For this pre-
liminary work the parameter values C and γ were fixed at 5
and 2, respectively, and were chosen based on an initial pa-
rameter sweep of a dataset generated using a purely epistatic
model. Next, a value X is chosen, which corresponds to a
specific SNP in the dataset. For now we consider only mod-
els with at most 50 potential SNPs from which to select and
SNPs are not allowed to be selected multiple times for an
individual SVM. After selecting the initial SNP, the gram-
mar will replace L with the appropriate line, allowing the
possibility for additional SNP loci to be selected. Once the
grammar reaches an E, the remaining proportion of C and γ

are selected and the mapping process ends. The distribution
for the expected number of SNPs selected in a randomly ini-
tialized population using this grammar is shown in Figure 1.
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Figure 1: Distribution for the number of SNPs se-

lected by the grammar mapping process for a pop-

ulation of 106 randomly generated binary strings.

The reason we decided to split the values of C and γ

into two proportions is to allow the ‘ripple effect’ to influ-
ence these parameters in future analyses where they will no
longer be constrained to specific values. The ‘ripple effect’
is a property of grammatical evolution that occurs when a
mutation upstream in the binary string genome results in
a different mapping sequence after that point. For exam-
ple, if a mutation caused the grammar to replace L with
< X >< L > rather than < E >, then the codons that
would have been used to choose values for C2 and γ2 are
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Table 1: GE settings

population size 50
max generations 20
crossover rate 0.8
mutation rate 0.05
codon size 8

wrapper count 2
chromosome size 25

selection tournament
fitness classification

Table 2: Multilocus penetrance function, model M1

BB Bb bb
AA 0.11 0.1 0
Aa 0.1 0.11 0
aa 0 0 0

instead used to select an additional SNP and select another
line from L. This ‘ripple effect’ can cause SNPs to be added
or removed from the model and may shift the location in
the genome where the second proportion of C and γ are
obtained.
Many of the GE parameters used in this initial work are

shown in Table 1. Initial populations were randomly gen-
erated, however, the codons used to select the first SNP
value were modified to ensure each SNP was represented
in the first generation of the population. The chromosome
size was fixed at 25 codons and a one-point crossover was
used. Selection was performed by keeping the proportion
of the population that had the best fitness, determined by
classification accuracy. Ten-fold cross-validation was used to
reduce overfitting by splitting the data into different training
and testing sets.

2.4 Data Generation
For the purposes of this initial work, we generated genetic

models that were not purely epistatic. While the eventual
goal of this work is to detect gene-gene interaction, initial
evaluation of this method is made easier by using models
with main effects from single SNPs in addition to epistatic
effects. We used penetrance functions to define the probabil-
ity of disease given a particular genotype. Two models were
tested, both with similar penetrance functions but different
genotype frequencies. The penetrance functions for the two
models are shown in Tables 2 and 3. Minor allele frequen-
cies were adjusted so that the heritability, or proportion of
the trait (disease) variance that is due to genotype, would
be modest and were calculated for both models to be ∼0.05
according to Culverhouse et al. [4] when the genotypes were
generated according to Hardy-Weinberg proportions. The
minor allele frequencies for model M1 were p(a) = 0.5 and
p(b) = 0.5, while for model M2 they were p(a) = 0.15 and
p(b) = 0.32. Twenty-five datasets consisting of 300 cases and
300 controls were generated for each model using the soft-
ware GenomeSIMLA [5, 6] with the disease loci A, a = SNP1

and B, b = SNP2.

2.5 Simulation platform
All code was written in Matlab. Training of the SVM was

computed using the quadratic programming routine with the

Table 3: Multilocus penetrance function, model M2

BB Bb bb
AA 0.3 0.3 0
Aa 0.3 0.3 0
aa 0 0 0

interior-point-convex algorithm. Code is available from
the authors upon request. Computations were performed
using the High Performance Computing hardware at NCSU.

3. RESULTS
GESVM was applied to the case/control datasets gener-

ated from disease model M1. The architectures of the SVMs
for the most fit individuals from each cross-validation step
for all 25 datasets were recorded. In this preliminary work
C and γ were kept constant so only the number of SNPs and
SNP values were different among individual SVM architec-
tures. The accuracy of the best fit individuals ranged from
65.0% to 90.0% with mean 75.6% and standard deviation
4.6%. The expected accuracy of model M1 was 73.3%. A
distribution of which SNP values were included in the SVM
models is shown in Figure 2. Of the best fit individuals, 6.6%
included SNP1 but not SNP2, 7.2% included SNP2 but not
SNP1, and 75.1% included both SNP1 and SNP2. A sec-
ond set of classification was performed using SVM with all
50 SNPs as features. The accuracy when using all features
ranged form 40.0% to 76.7% with mean 60.4% and standard
deviation 6.2%.
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Figure 2: Frequency of SNPs included in top-

performing SVMs for model M1.

This analysis was repeated using the datasets generated
from disease model M2. The accuracy of the best fit indi-
viduals ranged from 61.7% to 78.3% with mean 69.2% and
standard deviation 3.1%. The expected accuracy of model
M2 was 58.3%. A distribution of which SNP values were
included in the SVM models shown in Figure 3. Of the best
fit individuals, 4.5% included SNP1 but not SNP2, 25.1% in-
cluded SNP2 but not SNP1, and 1.7% included both SNP1

and SNP2. A second set of classification was performed us-
ing SVM with all 50 SNPs as features. The accuracy when
using all features ranged form 38.3% to 71.7% with mean
53.3% and standard deviation 6.5%.
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Figure 3: Frequency of SNPs included in top-

performing SVMs for model M2.

4. DISCUSSION AND FUTURE WORK
These preliminary results show promise for using GESVM

as a potential method for identifying human disease suscep-
tibility genes. The results presented in the previous section
were obtained using unoptimized GE and SVM parameters,
yet the best fit SVMs were still able to identify SNP1 and
SNP2 for disease model M1 and SNP2 for disease model
M2. The overall decrease in ability for GESVM to identify
disease associated SNPs in model M2 compared to M1 can
be attributed to the fact that the minor allele frequencies
were lower in model M2. This caused the datasets for dis-
ease model M2 to have a larger proportion of the generated
population with haplotypes where the value of the pene-
trance function is nonzero. Having a larger proportion of the
population consisting of incomplete penetrance haplotypes
reduced the chance of finding effects from either SNP1 or
SNP2. In a similar manner, a smaller minor allele frequency
for SNP1 relative to SNP2 in model M2 further reduced the
ability for GESVM to detect effects from SNP1, which re-
sulted in GESVM only finding SNP2.
The true power of GESVM cannot be determined from

these initial studies. The next step will be to perform pa-
rameter sweeps for both GE and SVM parameters for many
different datasets. These sweeps will include the GE param-
eters population size, number of generations, crossover rate
and mutation rate; and SVM parameters C and γ. Each pa-
rameter sweep will be applied to a variety of datasets, which
will have several different minor allele frequencies, heritabil-
ity and sample sizes. Once this has been accomplished, ap-
plication to real data sets will be studied. Only after such
thorough investigation can the true potential of GESVM be
discussed.
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