
Batting Order Optimization by Genetic Algorithm
Sen Han

525 13th St. S. Apt. 302,
St. Cloud, MN 56301
001-320-339-7110

hase0701@stcloudstate.edu

ABSTRACT
Baseball has been widely studied in various ways, including math
and statistics. In a baseball game, an optimized batting order helps
the team achieves greater number of runs in a season. This paper
introduces a method that combines a genetic algorithm with a
statistical simulation to identify a non-optimal batting order. The
biggest issue is how we evaluate a batting order. There are past
works using dynamic programming to calculate the plate
appearance and using Markov Chain to evaluate a batting order.
These two algorithms summarize all past data to deliver an
optimal batting order. The GA described here applies an
evaluation function using a baseball game simulation. Thus the
GA is more like a helping tool that can be incorporated into the
decision making process rather than a deterministic tool. The
simulation defines the baseball game as a set of events. By using
only a subset of the event set, the decision maker can pursue a
customized batting order.

Categories and Subject Descriptors
J. Computer Applications. J.6 [COMPUTER-AIDED
ENGINEERING] Subjects: Computer-aided design (CAD)

Keywords
Genetic Algorithm, Batting Order, Simulation, Baseball Game

1. INTRODUCTION
In a baseball game, the offensive team has nine players bat in an
order that is specified in advance. This order cannot be changed.
The official baseball rules say the following: “The first batter in
each inning after the first inning shall be the player whose name
follows that of the last player who legally completed his time at
bat in the preceding inning. “ [3].

In what order should the lineup bat? Various methods have been
proposed to solve this problem. Palacios [1] used Markov chains
to model the baseball games and find the best batting order. The
Markov chain modeled the game a sequence of states and defined
transitions between states. Freeze [2] simulated the game by
Monte Carlo Simulation. Batting orders are permutations of a set
of batters. It is the nature of EA to attack this sort of problem. And
it is natural to use the order of nine symbols to represent a batting
order.

Section 2, introduces the baseball simulation program used to
evaluate each batting order. Section 3 presents the design of the
EC. Finally, a discussion of reliability of the system is given on
section 4.

2. BATTING ORDER EVALUATION
The evaluation function is the core of a Genetic Algorithm. Each
chromosome represents a unique batting order. The evaluation of
a batting order can be accomplished in various ways. The optimal
batting order is the one that leads to the max number runs in a
game. Several methods, to predict the number of runs, have been
proposed. In Chen [5], the number of runs achieved is based on
dynamic programming. The mechanism of the method can be
presented by the following.

 1, if bat = 1 and out = 0

PA(bat, out) = 0, if out ≥ 27 or out < 0

 PA(bat-1, out-1)*(1-OBP(bat-1)) + PA(bat-1,out)

 *OBP(bat - 1), else

TBA(batters, outs) = PA(bat, out), where batter ≡ bat (mod 9)

and outs ≡ out (mod 3)

Run(batter, outs) =

 BB(batter) * Runner(batter, 1,z outs, 0) +

 1B(batter) * Runner(batter, 1, outs, 0) +

 2B(batter) * Runner(batter, 2, outs, 0) +

 3B(batter) * Runner(batter, 3, outs 0) +

 HR(batter)

Runner(batter, base, outs, emptybases) =

 0, if outs >= 3

 1, if outs < 3 and base >= 4

Out(nextbatter)*Runner(nextbatter,base,outs+1,emptyba
ses)+BB(nextbatter)*Runner(nextbatter,base,outs,
emptybases1)+1B(nextbatter)*Runner(nextbatter,base+
1,outs, emptybases)+2B(nextbatter)*Runner(nextbatter,
base+2,outs,emptybases)+HR(nextbatter) if emptybases
> 0

Out(nextbatter)*Runner(nextbatter,base,outs+1,emptyba
ses)+BB(nextbatter)*Runner(nextbatter,base+1,outs,em
ptybases)+1B(nextbatter)*Runner(nextbatter,base+1,out
s,emptybases)+2B(nextbatter)*Runner(nextbatter,base+
2,outs,emptybases)+HR(nextbatter) if emptybases = 0

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07...$10.00.

599

Palacios used a Markov chain was used to model the game [1]. To
understand this conceptually, a game can be thought as a sequence
of transitions related with each player’s plate appearance.

There are eight possibilities for the distribution of
runners on base. There either is or isn't a runner
on each of first, second, and third bases (23 = 8).
Furthermore, there are zero, one, or two outs (3 x
8 = 24). The half inning ends with the third out,
which we treat as a twenty-fifth state.

Both of these methods are based on statistical accumulated data.
The accuracy of the program depends on these data. Although the
number of runs achieved in a game is an important measure of a
batting order, we can develop the GA to be more powerful and
practical by extending the evaluation itself. Primarily, the
program should be more like a helping tool, which can be
incorporated into the decision making process before the game,
rather than a deterministic decision maker. We want the program
to produce informational results for different real world cases
rather than just summarize the past data and deliver a single
batting order and claim this is the “best” one. Therefore, we can
summarize our expectations of the GA as following:

(1) Getting More Runs.
(2) Customized Batting Order Searching. The GA should be

able to be directed into various directions. The coach
may want to see batting orders that are best for certain
events or the batting order in which an event does not
happen.

(3) Statistically Oriented. All searching should be based on
past accumulated data.

(4) Consider Season Performance. In the evaluation, the
GA should consider the number of runs over the season.
Indeed, we should separately consider the batting order
that is more likely to perform well in a game or in a
whole season.

(5) Return a set of solutions. The GA should deliver a set
of solutions that can let the coach further consider.

In this GA, we use a game simulation to be the evaluation
function [4]. The evaluation function simulates a season of games
and compares batting orders by both the total number of runs
achieved and runs distribution in the season. In the simulation, 3
outs is an inning; 9 innings is a game; 120 games is a season.

2.1 Events Table
In the simulation, a game is defined by a finite set of events which
form an events table (E). The events table matrix contains 4
columns and a variable number of rows. Each row is an event and
each column represents a base on the diamond in that event. Ei
indicates the event i, the ith row of the event table. The entry E(i,j)

Indicates what happens for event i on base j, if there is a person on
base j. Of course, if there is no runner on base j, the entry does not
mean anything. The following is an example event.

Out 2 3 H

This is a row in the event table. Entry 0 is ‘Out’. It says that if
there is a person on base 0 (home plate), he out. Every time the
program encounters an ‘out’, it checks the total number of outs.

The program will continue if the total number of outs is less than
3. Entry 1 is 2; if there is a person on base 1 he goes to base 2.
Entry 2 is 3; if there is a person on base 2 he goes to base 3. Entry
3 is H. H represents ‘home’ which means a run is scored. The
total number of runs increment 1.

At run time, we generate random numbers to decide which events
happen, thus the game is simulated.

2.2 Batters Table
The events table represents the game. Then the batters table (B)
associates the accumulated data of each batter with each event
defined in events table. If the event table has m rows, then the
events table is an m × 9 matrix. Each column represents a batter in
the game. The entry B(i,j) (ith row, jth column) indicates the
probability of event i for batter j.

The probability is based on accumulated statistical Data. For any
event i and player j, we need to count the total occurrences of i for
both j and all other batters. It also can be represented by the
following formula.

It also can be represented as the following flowchart:

Figure 1: Illustration of Baseball Game Simmulation

The simulation contains 120 games. 9 innings is a game. 3 outs is
an inning. Each bat is like a roulette which using a random
number to determine which event happens. By the event, four
bases, Scores, Outs updates. The goes to the next bat.

600

The simulation algorithm of baseball game as following:

for (i = 0; i <120; i++) // 120 Games is an season

{

 for (j = 0; j < 9; j ++) // 9 inning is a game

 {

 for (k = 0; k < 3; k++) // 3 outs is a game

 {

 for (b = 0; b < 9; b ++) // 9 batters

 u  generating a random number from 0 to 1

 e  getEvent(u, b) // compute which event happen
 based on the batters table

 RcordBases(e) // update bases, count outs and runs
 based on events table.

 }

 }

}

In order to search for a customized batting order, the simulation
can only use a subset of the whole events set. By only allowing
desired events happen, the GA will search for those batting orders
which are more intend to let these events happen. The two tables
used in the testing runs of the GA are given at the Appendix.

3. GENETIC ALGORITHM DESIGN
A batting order contains 9 batters. So the search space contains
9! = 362880 candidate orders. This is small for a GA, but we want
to take advantage of the simulation. The more games we simulate,
the more accurate the GA is.

3.1 Termination and Overall Structure
The EC terminates after a certain number of generations. And this
is determined by an EC parameter. The overall structure of the EC
is given as following pseudo-code:

while(i smaller than NUM_OF_GENERATIONS)

{

Do the following λ times{

 Select parents and produce a child

 Push the chid back to the population pool.

}

Select best μ chromosomes to form next generation’s population.

i++

}

3.2 Candidate Solution Representation
Candidate solutions are permutations of 9 batters. It is nature that
encodes each candidate solution as a permutation of nine symbols.
So we number nine batters and represent each order as a string of
nine numbers.

The GA’s initial population consists of a random permutation of
batters.

3.3 Selection and Survival Mode
Tournament Selection with tournament size 10 has been used in
this EC. The tournament algorithm as following:

 Randomly select 10 chromosomes form the population

 Return the best one out of the 10 chromosomes.

The EC used simple (μ, λ) selection mode. For each generation,
the system generates 50 children chromosomes which are all
pushed back to the population pull. Finally, the system selects best
100 of them to form the population pool for next generation.

3.4 Variation Operators
A Swap mutation operator has been used. EC randomly generate 2
numbers in the range of 0 to 8 and swap the two numbers
corresponding of these 2 numbers as index in the chromosome.
And the number of swaps done for a mutation is determined by
the mutation step size(mutation probability) EC parameter.

Example:

0 1 2 3 4 5 6 7 8 => 0 1 3 2 4 5 6 7 8

C1 Crossover Operator (Reeves [6]) has been used as following:

1. Pick a random number i from 0 to 8

2. Copy all symbols whose index smaller or equal to i from one
parent to child chromosome

3. Scan the other parent and append all symbols, that does not in
child chromosome, to the child chromosome in the order of
appearance in the second parent.

Example:

0 1 2 3 4 | 5 6 7 8

 8 7 6 5 | 4 3 2 1 0

Child Chromosome: 0 1 2 3 4 9 8 7 6 5

3.5 EC Parameters
Children Pool Size: CHILDREN_SIZE (50)

Population Size: POP_SIZE (500)

Mutation Probability: P_M (0.001)

CrossOver Probability P_X (1/7)

Selection Probability: P_S (0.8)

Number of Generations:

NUM_OF_GENERATION 1000

601

4. RESULTS, DISCUSSION AND
CONCLUSION
The significance of the simulation and the GA can be measured
by: (1) the progress of the fitness value. We use the biggest fitness
value of the first and last generation to measure the progress of the
fitness value. We are happy to see a big difference of these two
values. (2) The climbing process. The climbing process is how
fast the fitness value increased as the generation goes.

The first randomly generated order got fitness value 310 which
means 310 runs has been achieved in the simulation. And in the
final generation, about more than 23 percent of chromosomes
have fitness value more 500. This considers being a big progress
as searching. The searching results are strong advice to decision
makers. The final generation of the GA offers a great selecting
pool for decision maker to finally impose human consideration on
selecting the best batting order.

The evaluation function still can be further developed to search
for the best lineup. This expands the searching space dramatically.
We can further apply parallel skills or improve the hardware to
avoid reducing simulation runs.

5. APPENDIX
The following two tables referenced Dr. Robinson’s Probability
Simulation Lecture notes, see reference page. [4] Note that the
purpose of this paper is demonstration of the algorithm. So the
following data are not real data. But still it is good enough to
demonstrate the effectiveness of the algorithm. The following
tables are two subset of events and batters table.

Table 1: Events Table

Home Base 1 Base 2 Base 3

-1 -1 2 3

-1 1 2 3

-1 1 2 0

-1 1 3 0

-1 2 3 0

1 2 3 0

1 2 0 0

1 3 0 0

2 3 0 0

2 0 0 0

3 0 0 0

0 0 0 0

Table 2: Batters Table

6. REFERENCES
[1] Palacios(1994), A markov chain approach to baseball,

Operations Research, Vol. 45, No. 1(Jan. – Feb., 1997), pp.
14-23

[2] Freeze(1974), An Analysis of Baseball Batting Order by
Monte Carlo Simulation, Operations Research, Vol. 22, No.
4(Jul. – Aug., 1974), pp. 728-735

[3] Official Baseball Game Rules

[4] Dr. Robinson’s Probability Simmulation Lecture notes
http://www.stcloudstate.edu/statistics/faculty.asp

[5] Chen, Batting Order Optimization using Evolutionary
 Computation. Not published.
 http://www.csie.nctu.edu.tw/~chenyy/FAAB/Lineup/report.pdf

[6] Reences C. (1996) Hybrid Genetic Algorithm for Bin-Packing
 and Related Problems. Annals of OR 1996; 63:371 – 396.

Bat0 Bat1 Bat2 Bat3 Bat4 Bat5 Bat6 Bat7 Bat8

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.27 0.25 0.23 0.21 0.23 0.27 0.31 0.35 0.39

0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

0.04 0.05 0.06 0.07 0.06 0.05 0.04 0.03 0.02

0.01 0.02 0.03 0.04 0.05 0.04 0.03 0.02 0.01

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

0.08 0.07 0.06 0.05 0.04 0.04 0.04 0.04 0.04

0.08 0.07 0.06 0.05 0.04 0.04 0.04 0.04 0.04

0.02 0.03 0.03 0.04 0.03 0.03 0.02 0.02 0.01

0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.02 0.03 0.04 0.05 0.04 0.03 0.02 0.01

602

