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ABSTRACT
This paper presents initial results of Generalized Compressed
Network Search (GCNS), a method for automatically iden-
tifying the important frequencies for neural networks en-
coded as a set of Fourier-type coefficients (i.e. “compressed”
networks [2]). GCNS achieves better compression than our
previous approach, and promises better generalization capa-
bilities. Results for a high-dimensional Octopus arm control
problem show that a high fitness 3680-weight network can be
encoded using less than 10 coefficients, using the frequencies
identified by GCNS.

Categories and Subject Descriptors
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Algorithms

Keywords
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1. INTRODUCTION
In previous work [2] we showed that encoding neural net-

work weight matrices indirectly as a set of Fourier-type co-
efficients can reduce search space dimensionality and dis-
cover more ‘regular’ networks which are simpler in the Kol-
mogorov sense (the program required to encode them is
much shorter). Such networks are expected to have better
generalization capabilities [3].

However, up to now, this “compressed” network search
has been restricted to band-limited networks where the gen-
ome includes all frequencies up to a specified limit frequency.
This means that more genes must be searched than may
be necessary because only a few, select frequencies may be
needed to represent a good network. In this work, we im-
plement a more general approach which automatically de-
termines the subset of frequencies and their energy using
a genetic algorithm with variable size chromosomes, where
each gene specifies a frequency number as well as value.
Taking inspiration from the messy genetic algorithms [1],
cut and splice operators are used instead of crossover. By
resolving the overspecification and underspecification prob-
lems arising from this less restrictive encoding, we are able
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Figure 1: GCNS coefficient genome.

to find genomes which represent high fitness networks using
very few frequencies. Initial results are very encouraging:
GCNS consistently identifies isolated frequencies which ap-
pear to contribute significantly to high fitness in the high-
dimensional Octopus Arm task [4].

2. DCT NETWORK REPRESENTATION
We consider fully connected recurrent neural networks

(FRNNs) with i inputs and single layer of n neurons where
some of the neurons are treated as output neurons. The
FRNN consists of three weight matrices: an n× i input ma-
trix, I, an n × n recurrent matrix, R, and a bias vector t
of length n. These three matrices are combined into one
n × (n + i + 1) matrix, and encoded indirectly as a set of
Discrete Cosine Transform (DCT) coefficients. To construct
a network, the coefficients in a genome are placed in their
appropriate position in a coefficient matrix (the same size
as the weight matrix), and then the inverse DCT is applied
to generate the weight matrix.

In previous work [2], the approach taken was to search
all frequencies, from the lowest, c1, up to a limit frequency
c`, specified by the user, where ` < N , and N is the total
number of weights in the network. In the present work,
the coefficients are no longer restricted to a band-limited
spectrum; any frequency can appear in the encoding.

3. GENERALIZED CNS
Generalized Compressed Network Search (GCNS) attempts

to simultaneously find the number of coefficients required to
represent a high fitness network, their indices, and their val-
ues. Variable size chromosomes are used where each gene
has two elements: the frequency index and the value (see
Figure 1). The coefficient index determines the position of
the coefficient in the coefficient matrix.

The overspecification problem (some genes can have mul-
tiple copies in the genome) is handled as in messy genetic
algorithms [1]. If a coefficient index appears multiple times
in a genome, only its first value gets expressed in the phe-
notype. This results in an intra-chromosomal dominance
operator. The problem of underspecification (some of the
frequencies do not appear in a particular genome) elegantly
resolves itself due to the nature of the encoding: if a partic-
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Figure 2: Number of unique coefficient indices
(DCT frequencies) in the GCNS population (aver-
age of 30 runs).

ular coefficient number does not appear in the genome, it is
muted in the phenotype i.e. its value is taken to be zero.

GCNS uses ‘cut’ and ‘splice’ operators as in messy ge-
netic algorithms. A ‘cut’ divides the genome into two parts,
each becoming a valid genome. The probability of a cut is
pc ∗(l−1) where l is the length of the genome and pc is a pa-
rameter. With probability ps, the ‘splice’ operator joins two
genomes into a single, valid chromosome. A mutation oper-
ator perturbs the coefficient indices and values with proba-
bility pmi and pmv respectively, by simply adding Gaussian
noise.

GCNS starts with an initial parent population of size
popsize with genomes of variable lengths containing fre-
quency indices and values randomly chosen in a given range.
At each generation, the cut and splice operators are applied
in groups of 2 to randomly chosen members from the par-
ent population (without replacement), and then mutation is
applied to all the children. The best popsize members from
the combined parent and child populations are chosen as the
parents for the next generations. The algorithm terminates
after the specified number of generations.

4. RESULTS: OCTOPUS ARM CONTROL
The octopus arm consists of p compartments floating in

a 2D water environment [4]. Each compartment has a con-
stant volume and contains three controllable muscles (dor-
sal, transverse and ventral). The state of a compartment is
described by the x, y-coordinates of two of its corners plus
their corresponding x and y velocities. Together with the
arm base rotation, the arm has 8p + 2 state variables and
3p + 2 control variables. The goal of the task is to reach a
goal position with the tip of the arm, starting from different
initial positions, by contracting the appropriate muscles at
each 1s step of simulated time. The standard setup uses 3
initial positions; here, only one initial position is used for
training (the arm starts hanging straight down), since it
turns out that successful networks tend to generalize to the
other two initial positions. The fitness function is given by
(1 − (t ∗ d)/(T ∗ D)) where t is the number of time steps
taken to reach the goal, d is final arm tip distance to the
goal, T is the maximum number of time steps in a trial, and
D is the initial arm tip distance to the goal.

GCNS was run 30 times with popsize = 100, ngen = 150,
pc = 0.2, ps = 0.8, pmi = 0.1 and pmv = 0.8. The initial
coefficient indices were chosen at random from [1, 100], and
their values from [−30, 30]. The mean best fitness over 30
runs was 0.95 while the average number of expressed genes
(i.e. non-dominated) in the best genomes was 9.8, one-third
the number required in [2] to achieve similar fitness.

Figure 3: Better coefficient indices required to rep-
resent the network are identified by GCNS as the
search progresses.

Figure 2 shows how the frequency content in the popula-
tion declines over the course of evolution as the search con-
verges to just a few frequencies (see Figure 3 for the behavior
of a typical run). Interestingly, we found that in addition
to the fundamental frequency (index 1, which we expected),
almost all of the most fit networks contained either index
84 or 97, with large values. The 2D cosine functions rep-
resented by these indices seem to capture a basic regularity
inherent in the task, given the network architecture used.
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