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Principles of Multiple Criteria Decision
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Principles of Multiple Criteria Decision

A hypothetical problem: all solutions plotted
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Principles of Multiple Criteria Decision

Observations: @ there is no single optimal solution, but
® some solutions (@) are better than others (Q)
water
supply
°
20 °
Q
better ° incomparable
15 @ o
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° Q0
5 Q worse
Q
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Principles of Multiple Criteria Decision

Observations: @ there is no single optimal solution, but
@® some solutions (@) are better than others (9)

water
supply
i Q
Pareto-optimal front - :
20 < \ ’oonoocoooooo
15 | 0.
?o-noo-o'o-a’ Q
10 : 9 ° £\
o Q0 Vilfredo Pareto: "~
.. ecccoce Manual of Political
5 c 0O Economy Ao Dot
. Q (in French), 1896
—oes — cost

[ l | l | l
500 1000 1500 2000 2500 3000 3500
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Principles of Multiple Criteria Decision

Observations: @ there is no single optimal solution, but
@® some solutions (@) are better than others (9)

water
R0/ decision making

a I .
20 000000000

15 M ..0.2000
° Q optimization
Qecccccccce®
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. oo finding the good
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Qecocons solutions o
54 : Q J];}_ H| ]
: Q -
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Decision Making: Selecting a Solution

Possible
Approach:

water
supply

* supply more important than cost (ranking)

20 °
15 °
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Decision Making: Selecting a Solution

Possible
Approach:

* supply more important than cost (ranking)

» cost must not exceed 2400 (constraint)
water

supply Q

20

&

15
too expensive
10

| l l l l l > cost
500 1000 1500 2000 2500 3000 3500
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When to Make the Decision

Before Optimization:
.}

' rank objectives,

£ define constraints, ..

a
=
-

L=

search for one
(blue) solution
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When to Make the Decision

Before Optimization: After Optimization:

A : :

'_ Vv rank objectives,

l define constraints, ...

' search for a set of
(blue) solutions

)

) .
5

JJ‘_,-E_!-;”\I W .

= ' F select one solution

search for one 4 L
{ (blue) solution l considering

constraints, etc.
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When to Make the Decision

Before Optimization:

A | ]
' rank objectives,

define constraints,...

water
supply

o

too expensive

T T T T T T T—* cost
500 1000 1500 2000 2500 3000 3500

When to Make the Decision

Before Optimization:
-

After Optimization:

(blue) solutions

>

' select one solution

considering
l constraints, etc.

Focus: learning about a problem
» trade-off surface

= interactions among criteria

» structural information




Multiple Criteria Decision Making (MCDM)

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into

the management planning prOCeSS International Society on
" Multiple Criteria Decision Making

)

model '.

min [ (2), pa(2), oy (2] A . uy o
decision making /m ho

s.t

<o —

e (exact) optimization p
Hs

i

trade-off surface

Multiple Criteria Decision Making (MCDM)

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into

the management planning process @ International Society on
M e )
- ultiple Criteria Decision Making

non-linear  MO'SY ' many objectives
uncertain huge
objectives problem search
expensive spaces

non-differentiable (integrated simulations)  many constraints

I

2

Multiobjective Optimization

Definition: MCDM

MCDM can be defined as the study of methods and procedures by which
concerns about multiple conflicting criteria can be formally incorporated into

the management planning process Intornational Saclety on
@M " Multiple Criteria Decision Making
non-linear  NOisY many ob CIVS
uncerti Black box optimization
objectives

expens — L, .
non-differentiable (integrated sir rex f (@), (e)

g(x) <0
h(z)=0 .
m<r<n (e%t) opti

only mild assumptions
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Definition: EMO

EMO = evolutionary algorithms / randomized search algorithms
= applied to multiple criteria decision making (in general)
= used to approximate the Pareto-optimal set (mainly)

water
supply
P by q .
) ) Pareto set approximation
mutation survival
\SJ’. i
A
. 4 teer ¥y
g}.a"x"z’
A q k \k“;‘{f’ ¥
recombination mating e
cost
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Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

4 .
example: TSP - {
[Knowles et al. 2001] - <.

me Sy — f(m) m € Sp = (fi(m, a,b), fo(m,a,b))
Multiobjectivization
by addition of new “helper objectives” [Jensen 2004]
job-shop scheduling [Jensen 2004], frame structural design

[Greiner et al. 2007], theoretical (runtime) analyses [Brockhoff et al.
2009]

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and
Wegener 2006], protein structure prediction [Handl et al. 2008a],
theoretical (runtime) analyses [Handl et al. 2008b]
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Innovization

Often innovative design principles among solutions are found
”,f,' )%.m WSGA-IT  ° 10 7\%%\, o TR0 106 R
example: S e e \. .
L i g wsaazr o | S
clutch brake design £ 7 . e |
[Deb and Srinivasan 2046] ¢ ;\& ©
! L I I WO
1
i \
1 ~
] S o
] ~
] S~
II =< -
"—,,/ RN N
emmmmmmmT 1
't' 1
\ Solution | 1 22 23 x4 x5 | fi fo N
s« "Min. f1 |70 90 1.5 1000 3 | 04704 11.7617 )/
Min. fo [ 80 110 1.5 1000 9 |2.0948 3.3505 <~
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Innovization

Often innovative design principles among solutions are found

Ay
F ¢1‘1 -

example:

clutch brake design
[Deb and Srinivasan 2006]

min. mass +
stopping time
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Innovization

Often innovative design principles among solutions are found

" a%z.z
3 U oo - 7%6-308,106 m'2.s
10~ Toemi x o

Brake Mass (ka)

surface Area (mm"2)

Innovization [Deb and Srinivasan 2006]

= using machine learning techniques to find new and
innovative design principles among solution sets

= learning about a multiobjective optimization problem

Other examples:
=  SOM for supersonic wing design [Obayashi and Sasaki 2003]
= biclustering for processor design and KP [Ulrich et al. 2007]
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The History of EMO At A Glance

1984 first EMO approaches

dominance-based population ranking

1250 dominance-based EMO algorithms with diversity preservation techniques
1998 attainment functions
elitist EMO algorithms  preference articulation convergence proofs
2000 test problem design quantitative performance assessment
multiobjectivization
uncertainty and robustness running time analyses quality measure design
MCDM + EMO quality indicator based EMO algorithms

2010 many-objective optimization statistical performance assessment
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The EMO Communit

The EMO conference series:

EMO2001 EMO2003 EMO2005 EMO2007 EMO2009 EMO2011 EMO2013

Zurich Faro Guanajuato Matsushima Nantes Ouro Peto Sheffield
Switzerland  Portugal Mexico Japan France Brazil UK

45/87 56/100 59/115 65/124 39/72 42 /83

Many further activities:
special sessions, special journal issues, workshops, tutorials, ...
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The History of EMO At A Glance

1984 first EMO of the
2022
2719
dominance-based population ranking
dominance-based EMO algorithms with diversity preservation techniques
attainment functions
elitist EMO algorithms _preference articulation proofs
test problem design it
uncertainty and robustness __running time analyses quality measure design
MCDM + EMO EMO algorithms based on set quality measures -
high-di objective i Joural ke In cnm rence Masters Miscella- pn 0. Techneal unpub.
collections_papers _theses neous thases _reports _lished

EEREERRER

Overall 6842 references by April 25, 2012

220
n< 133
10 | 29
7983 198 1985 Tora o000 |992 19931994 |995 1995 1997 | 1998[1999 [ 2000|2001 [ 2002 [ 2003 [ 2004 [ 2005 | 2006 | 2007 | 20082009 [ 201020112012

http://delta.cs.cinvestav.mx/~ccoello/EMOO/EMOOstatistics.html
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice
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Starting Point

What makes evolutionary multiobjective optimization
different from single-objective optimization?

~~
RS
S
~

performance

+ 7;71![17@E:brmance |

single objective

multiple objectives
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A Single-Objective Optimization Problem

decision space objective space objective function
\ /// total order

X, Z X —>ZrelcZx2)
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A General (Multiobjective) Optimization

A multiobjective optimization problem: (X,7,f,g,<)

X search / parameter / decision space
Z = TR"™ objective space
f = (f 1yeeey f n) vector-valued objective function with
fi: X—=R
g = (91; e agm) vector-valued constraint function with
gi: X—R
<C Z X Z binary relation on objective space

Goal: find decision vector(s) a € X such that
O foralll<i<m:g;(a) <0 and
® forallbe X : f(b) <f(a)= f(a) < f(b)
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le-Objective Optimization Problem

decision space objective space objective function
\\ /// total order

X, Z FX—>ZrelcZx2)

1 — total preorder where

X prefféb a prefrel b < f(a) rel f(b)
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A Single-Objective Optimization Problem Simple Graphical Representation

Example: Leading Ones Problem
Example: > (total order)

X, Z X —>ZrelcZxZ)

RN
\ 50
b a
\Q(l bﬁfrel) Oo—0—=0r Oa 2bO*—C> optimum  totally ordered

(0,17, {0,1, 2, ..., n}, f.0, 2  where f,o(a) = ([l a))
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Preference Relations A Multiobjective Optimization Problem

decision space objective space objective functions Example: Leading Ones Trailing Zeros Problem
/// pal’tlal order trailing Os
b f2
X,Z X —>Zrel cZx2) (X, Z X —>ZrelcZxZ) O[]

preorder where
-——a prefrel b := f(a) rel f(b)

([[T]o[o[0]

X prefr‘éb/ (X, prefrel)

(X7 ?pa’l”) . o leading 1s

weak

@ Spar b1 f (a) Spar f (b) Pareto dominance
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A Multiobjective Optimization Problem

Example: Leading Ones Trailing Zeros Problem

trailing Os

X, Z X —>ZrelcZxZ) f

, re%)*

1
leading 1s

(10,1}, {0,1, 2, ..., n} x {0,1, 2, ..., n}, (f .o, rz), ?)
fLO(a) = Ei(H_;‘Siaj) fTZ(a) = Zi(H_;’gi(l - a))
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Different Notions of Dominance

water
supply
€
K*A_\ Q
20 — Q
e .
e-dominance
15
Q Pareto dominance
10 Q
° Q QO
5 Q :
o cone dominance
< \ I { T | cost
500 1000 1500 2000 2500 3000 3500
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Pareto Dominance

(u1y...,u,) weakly Pareto dominates (v1,...,v,):
(U1y -5 tn) <par (V1,25 0p) & VI<i<n:u; <w;
water (u1,...,uy,) Pareto dominates (vy,...,v,):
supply (ur, ..y un) Spar (V1,2 ,0) A (V1,00 00) Lpar (U1, Un)
Q
20 - dominating o
Q  incomparable
15 — Q QO °
o Q
10 4 Q o
° Q O
5 —| Q .
o dominated
< | | \ | T | > cost
500 1000 1500 2000 2500 3000 3500
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The Pareto-optimal Set

The minimal set of a preordered set (Y, <) is defined as
Min(Y,S) ={acY|WeY:b<Sa=a<b}

Pareto-optimal front
non-optimal objective vector

Pareto-optimal set Min(X, <par)
non-optimal decision vector Q

x2 decision f2 objective
space space
° ..’v.?
Q : °
Q Q « .
° 2
X1 = - fi
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Visualizing Preference Relations

(fwater supply)

(Jeosts fwater supply)
’ pp y
[~ optima

A

(X7 ) par)
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Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified
...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

Solution-Oriented Problem Transformation:
Induce a total order on the decision space, e.g., by
aggregation.

Set-Oriented Problem Transformation:

First transform problem into a set problem and then define
an objective function on sets.

Preferences are needed in any case, but the latter are weaker!

©DN Rrockhoff INRIA L ille — Nord Furone and K _Deh IIT K: Fuolutionary Multiohiactive Ontimization GECCO 2012 _Iulv 7 2012
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Remark: Properties of the Pareto Set

Computational complexity:
multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input length
(e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984])

f, f
Q Q dir voint
Q 7777777 O X naair poin
P o 9%
Q Q 0 ) |
° ° Range
S,%ape O
X"”"""‘:-’Q’?’t”"” WKEE—— Q Q
ideal point
f; f;

Problem Transformations and Set Problems
single solution problem set problem

search space

L

f@) = (fi(e), folx), .o fulx))  fH(A) ={f () |z € A}

objective space R 2R*

IPr

rxy e Vifi(z) > fiy)

(partially) ordered set

A>* B VyepIrear = y

(totally) ordered set

©N Rrockhoff INRIA Lilla — Nard Furone and K_Nah IIT Kannir
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Solution-Oriented Problem Transformations

. parameters
multiple
objectives |

(fy, T, ..., f) —|transformation— f

single
objective

A scalarizing function s is a function s : Z — IR that maps each objective vector
(15, u,) € Z to areal value s(uj, ... u,) € R.

Fvolutionary Multiohiactive Ontimization GECCO 2012 _lulv 72012
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Set-Oriented Problem Transformations

For a multiobjective optimization problem (X, Z,f, g, <),
the associated set problem is given by (U, Q, F, G, <) where

o U = 2% is the space of decision vector sets,
i.e., the powerset of X,

o O =27 is the space of objective vector sets,
i.e., the powerset of Z,

F' is the extension of f to sets, i.e.,
F(A):={f(a) :ac A} for Ac ¥,

G = (G4,...,Gy) is the extension of g to sets,
ie., Gi(A) :=max{g;(a) rac A} for1<i<mand Ac ¥

e Z extends < to sets where
AZB:sVbeBdaeA:a<b.

©N Rrockhoff INRIA 1illa — Nord Furone and K_Nah IIT K:
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Aggregation-Based Approaches

. parameters
multiple
objectives |

(fy, fp, ..., f) —|transformation— f

single
objective

f2 Example: weighting approach

(Wq, Wy, ...y W)

X  ———
f////’
Q ’ Q ///

Q

Other example: Tchebycheff

f1 y= max w;(u; - z)

Fvolutionary Multiohiactive Ontimization GECCO 2012 _lulv 72012
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Pareto Set Approximations

Pareto set approximation (algorithm outcome) =
set of (usually incomparable) solutions

performance

AU weakly dominates U8B
= not worse in all objectives
and sets not equal

@) dominates ID
= better in at least one objective

A strictly dominates iG3
= better in all objectives

@Bl is incomparable to IC)
= neither set weakly better

cheapness
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What Is the Optimization Goal (Total Order)?

= Find all Pareto-optimal solutions?

» Impossible in continuous search spaces

» How should the decision maker handle 10000 solutions?
= Find a representative subset of the Pareto set?

» Many problems are NP-hard

» What does representative actually mean?
= Find a good approximation of the Pareto set?

» What is a good approximation?

» How to formalize intuitive
understanding:

O close to the Pareto front
® well distributed

©DN Rrockhoff INRIA 1 ille — Nord Furone and K _Deh IIT K:

General Remarks on Problem

Idea:
Transform a preorder into a total preorder

Methods:
» Define single-objective function based on the multiple criteria

= Define any total preorder using a relation

Question:

Is any total preorder ok resp. are there any requirements
concerning the resulting preference relation?

= Underlying dominance relation rel should be reflected

©DN Rrockhoff INRIA L ille — Nord Furone and K _Deh IIT K:
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Quality of Pareto Set Approximations

A (unary) quality indicator 1 is a function / : ¥ +— IR that assigns a Pareto set
approximation a real value.

f, % fy
Q
) -
reference sef
Q 78 ,,’Q
X 7 9
‘;/ ,,"I’ €
o R{J
f; fi

hypervolume indicator
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Refinements and Weak Refinements

ref

©® < refines a preference relation < iff

ref ref

ASBABRA=ASBABA A (better = better)

= fulfills requirement
ref . . .
® < weakly refines a preference relation < iff

ref
AXBAr BLA=A<B (better = weakly better)

ref

= does not fulfill requirement, but < does not contradict <

...sought are total refinements...

©D Rrackhoff INRIA 1 illa — Nord Furane and K _Deh IIT K:
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Example: Refinements Using Indicators Example: Weak Refinement / No Refinement

ref ref ref ref
ASB:=1A) 21(B) ASB:sI(AB) <I(BA) A= B:<I(AR) <I(BR) A< B:=I(A) <I(B)
I(A) = volume of the _ _ o L
. I(A,B) = how much needs A to I(A,R) = how much needs A to I(A) = variance of pairwise
weakly dominated area . ) .
) C be moved to weakly dominate B be moved to weakly dominate R distances
in objective space
e\
. B o‘6 ... R . .
- ——- ,@\ e — = weak refinement no refinement
________ 5 : o\o " ¢
: . -1 \(\
B | O
0 X — oM,
______ S A ,
N Q L ‘A
A » Q
I P } |
LA \
Q \
o |
unary hypervolume indicator binary epsilon indicator

Overview

The Big Picture

representation 1 fitness assignment mating selection

Basic Principles of Multiobjective Optimization R
= algorithm design principles and concepts \_/ 1
» performance assessment 0100 @
0011
Selected Advanced Concepts | ’
= indicator-based EMO :
= preference articulation P T
2 environentaI selection 3 variétion operators

A Few Examples From Practice
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Fitness Assignment: Principal Approaches Criterion-Based Selection: VEGA

aggregation-based  criterion-based = dominance-based select shuffle [Schaffer 1985]
according to
i
2 2 o
h . T,
Q // Q f3 T
Y 3
Z///ﬂ N TS e e,
7, o i
) 7 )
Q Q /‘ Q Q
4 fi
Q B Q < Tk-1
y1 y1 fk
Ty
parameter-oriented _ . . .. set-oriented
scaling-dependent scaling-independent population k separate selections mating pool
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Aggregation-Based: Multistart Constraint Method Aggregation-Based: Multistart Constraint Method

Underlying concept: Underlying concept:
= Convert all objectives except of one into constraints = Convert all objectives except of one into constraints
= Adaptively vary constraints = Adaptively vary constraints

y2 maximize f, y2 maximize f,
— —)

“
. ..Q'...IO'.
RRXC)
o .

feasible region

oo e oo
e e

feasible region constraint

constraint

©N Rrackhoff INRIA 1 illa — Nord Fi imization GECCO 2019 lulv 7 9012
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Aggregation-Based: Multistart Constraint Method

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
—

Q
o,
5, ..Q-.

feasible region
constraint

B i
. .O .o B "o B
“ oo

FCCO 2012 lulv 7 2012
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Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.
... iIs based on pairwise comparisons of the individuals only.

f2
= dominance rank: by how
many individuals is an

individual dominated?

dominance

= dominance count: how many
individuals does an individual

dominate?
Q O
. . dominance O,
= dominance depth: at which | count o %,,os
front is an individual located? 5 %y

f1
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General Scheme of Dominance-Based EMO

‘_

‘ mating selection (stochastic) fitness assignment
4 partitioning into

dominance classes

popula;tion (archiv) offspring

rank refinement within
dominance classes

‘ environmental selection (greedy heuristic) ‘—

Note: good in terms of set quality = good in terms of search?
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lllustration of Dominance-based Partitioning

f, dominance rank f,  dominance depth

©N Rrockhoff INRIA Lilla — Nard Furone and K_Nah IIT Kannir
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Refinement of Dominance Rankings Example: SPEA2 Dominance Ranking

Goal: rank incomparable solutions within a dominance class Basic idea: the less dominated, the fitter...
Principle: first assign each solution a weight (strength),
© Density information (good for search, but usually no refinements) then add up weights of dominating solutions
Kernel method k-th nearest neighbor Histogram method
f2
density = density = density =
function of the function of distance number of elements
distances to k-th neighbor within box '60
2 %
Q
° ° "'0(-) .......... 0 o S (strength) =
f f 4 0. #dominated solutions
Of/ ° @ ° 5 o © ° 44,30O o R (raw fitness) =
2+1+4+3+2 2. strengths of
Q4+3+2 % . dominators o
= 1

Fvolutionary Multiohiactive Ontimization GECCO 2012 _lulv 72012
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Example: SPEA2 Diversity Preservation Example: NSGA-Il Diversity Preservation

Density Estimation Density Estimation

k-th nearest neighbor method: f2

crowding distance:

» Fitness=R+1/(2+ Dx) » sort solutions wrt. each
%rf objective
<
= D« = distance to the k-th Q = crowding distance to neighbors: | ()

nearest individual

d@)) = D [fmli—1) = fmli+ 1)

obj. m

= Usually used: k=2

fi

©DN Rrockhoff INRIA L ille — Nord Furone and K _Deh IIT K: Fuolufin
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SPEA2 and NSGA-Il: Cycles in Optimization
Selection in SPEA2 and NSGA-II can result in

deteriorative cycles o [ NsGaer " Parcto s

4200 [ Archive elements after t=5.000,000 ¢
Archive elements after t=10,000,000 o

R
T Bone,
"

L L
3600 3800

non-dominated
solutions already
found can be lost

Decomposition-Based Selection: MOEA/D

MOEA/D: Multiobjective Evolutionary Algorithm Based on
Decomposition [zhang and Li 2007]

Ideas:
» Optimize N scalarizing functions in parallel
= Use only best solutions of “neighbored scalarizing function”

for mating
= keep the best solutions for each f,
scalarizing function 4
. Y 2
= use external archive for non- PR
dominated solutions e
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Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refinement!

. ‘ X reference
Main idea point 7

Delete solutions with Hypervolume of &:

the smallest — (A = [a(Datz

hypervolume loss
d(s) = lu(P)-Iu(P /{s}) - |
iteratively 4
minimize |

But: can also result a()=0 finess ofpoint: |
contribution to

In Cy0|eS [Judt et al. 2011] hypervolume
and is expensive [Bringmann and Friedrich 2009]

Moreover: HypE [Bader and Zitzler 2011]
Sampling + Contribution if more than 1 solution deleted

©D Rrockhoff INRIA Lille — Nord Furane and K _Deh IIT Kannur  Fualufionary Multiohiective Ontimization GECCO 2012 _lulv 7 2012

Variation in EMO

= At first sight not different from single-objective optimization
= Most algorithm design effort on selection until now
= But: convergence to a set # convergence to a point

Open Question:
= how to achieve fast convergence to a set?

Related work:
» multiobjective CMA-ES [igel et al. 2007] [VoR et al. 2010]
= set-based variation [Bader et al. 2009]
» set-based fitness landscapes [Verel et al. 2011]
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice

© D Rrockhoff INRIA Lilla — Nord Furone and K_Deh IIT K:
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Two Approaches for Empirical Studies

Attainment function approach: Quality indicator approach:

= Applies statistical tests directly = First, reduces each
to the samples of approximation approximation set to a single
sets value of quality

= Gives detailed information about = Applies statistical tests to the

how and where performance samples of quality values

differences occur

Aattains Battains

Indicator

A

B

Hypervolume indicator
e-indicator

Ry indicator

Rj indicator

6.3431
1.2090
0.2434
0.6454

7.1924
0.12722
0.1643
0.3475

see e.g. [Zitzler et al. 2003]
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

4.25 -

0.2

Empirical Attainment Functions

three runs of two multiobjective optimizers

: iz 33




Attainment Plots Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)

t hypervolume 432.34 420.13
1.35 - “oe ~ distance 0.3308 0.4532 « »
: e, diversity 0.3637  0.3463 A better
13 T el spread 0.3622 0.3601
' cardinality 6 5
1.25 ° o
£ T
£ R
1.2¢ RN - . .
{A ‘x Comparison method C = quality measure(s) + Boolean function
1.15 - SO
, % ta . quality ?ooltt-.:‘an
' ' ' S : measure unction
1.2 1.4 1.6 1.8 "2 AB—— |F\)n—> statement
latest implementation online at el T G
http://eden.dei.uc.pt/~cmfonsec/software.html selbisde st szl

see [Fonseca et al. 2011]
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Example: Box Plots Statistical Assessment (Kruskal Test

epsilon indicator  hypervolume R indicator
ZDT6 DTLZ2
IBEA NSGA-ISPEA2  IBEA NSGA-ISPEA2  IBEA NSGA-ISPEA2 Epsilon R
o.os§ 0.0087 0.00014 — . is better
: é 0.006" 0.00012 is better Is
DTLZ2 .. =, % = %2885 "= than than
002 0.002" 090008 (‘" IBEA |NSGA2 |SPEA2 (‘" IBEA |NSGA2 |SPEA2

IBEA 0 @ [0 © | BEA 0 @0

0.6 0.8 0.4
Knapsack.. % + + o + i * + + + NSGA2 |1 ~0 @ | NscA2 |1 1
0.3 4 0.2
2 SPEA2 1 1 SPEA2 1 ~0
2_1 0.2 0.1 ®
1 2 3 1 2 3 1 2 3
7076 0525 % 0'25 % o + Overall p-value = 6.22079e-17. Overall p-value = 7.86834e-17.
zéé + Zéé + 0. * Null hypothesis rejected (alpha 0.05) Null hypothesis rejected (alpha 0.05)
o) . %o} % v
0 0 0
1 2 3 1 2 3 1 2 3

Knapsack/Hypervolume: H, = No significance of any differences
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Problems With Non-Compliant Indicators What Are Good Set Quality Measures?

5 T T T T T

There are three aspects [Zitzler et al. 2000]

COMPArTITE TITTETeT OPUIZaton TeCIUeS CXPer Ty aways TVOrves tie TotTor

A A
B +

Indicator A B of performance. In the case of multiobjective optimization, the definition of quality is
% Generational distance 346396 237411 substantially more complex than for single-objective optimization problems, because the
4+ ) ) ! 4 optimization goal itself consists of multiple objectives:
Spacing (Schott) | 026476  0.19989
Max Pareto front error | 3.35489  3.31314 » The distance of the resulting nondominated set to the Pareto-optimal front should be
Extent | 356039 357319 minimized.
3t z i o A good (in most cases uniform) distribution of the solutions found is desirable. The
q[\)] assessment of this criterion might be based on a certain distance metric.
B
g AS + o The extent of the obtained nondominated front should be maximized, i.e., for each
= objective, a wide range of values should be covered by the nondominated solutions.
=}
= - _
2 A -_|—}_ In the literature. some attemnts can be found to formalize the above definition (or parts

A + Wrongq! [Zitzler et al. 2003]
0 ! ! ! ! ! An infinite number of unary set measures is needed to detect
0 0.2 0.4 0.6 0.8 1 in general whether A is better than B
minimize
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Set Quality Indicators

Open Questions:
= how to design a good benchmark suite? The Big Picture
= are there other unary indicators that are (weak)

refinements? Basic Principles of Multiobjective Optimization

how to achieve good indicator values? = algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice
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Indicator-Based EMO: Optimization Goal

When the goal is to maximize a unary indicator...
= we have a single-objective set problem to solve
= but what is the optimum?
= important: population size p plays a role!

Multiobjective Indicator

Problem

Single-objective
Problem

Optimal p-Distribution:
A set of p solutions that maximizes a certain unary
indicator | among all sets of p solutions is called

optimal u-distribution for I. [Auger et al. 2009a]

© D Rrockhoff INRIA Lilla — Nord Furone and K_Deh IIT K:
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice
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Optimal y-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation
—> most results on optimal p-distributions for hypervolume
Optimal p-Distributions (example results)

[Auger et al. 2009a]:
» contain equally spaced points iff front is linear
= density of points « /—f/(z) with f’ the slope of the front

[Friedrich et al. 2011]:

optimal p-distributions for the opr 1y lostwinid/e BRY
hypervolume correspond to HYP 1+ \/ﬁt 4\/BT'b
g-approximations of the front oY 11 ‘/W

! (probably) does not hold for > 2 objectives

©D_Rrockhoff INRIA Lilla — Nord Furone and K_Deb IIT K:
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Articulating User Preferences During Search

What we thought: EMO is preference-less

TIVETT DV TIE 1JIVT
SV U RRE LAV

[Zitzler 1999]

Search before decision making: Optimization is performed without any pref-
erence information given. The result of the search process is a set of
(ideally Pareto-optimal) candidate solutions from which the final choice
is made by the DM.

Decision makine durine search: The DM can articnlate nreferences during

What we learnt: EMO just uses weaker preference
information

environmental Q

preferable?
selection
s o)
" \
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Incorporation of Preferences During Search

Nevertheless...

= the more (known) preferences incorporated the better
» in particular if search space is too large
[Branke 2008], [Rachmawati and Srinivasan 2006], [Coello Coello 2000]

2

©® Refine/modify dominance relation, e.g.:|”

= using goals, priorities, constraints ’
[Fonseca and Fleming 1998a,b] b

= using different types of cones
[Branke and Deb 2004]

@ Use quality indicators, e.g.:

= based on reference points and directions [Deb and Sundar
2006, Deb and Kumar 2007]

= based on binary quality indicators [Zitzler and Kiinzli 2004]
= based on the hypervolume indicator (now) [Zitzler et al. 2007]

© D Rrockhoff INRIA Lilla — Nord Furone and K_Deh IIT K:
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Weighted Hypervolume in Practice

IBEA ‘ IBEA

A

weighted
Hypervolume weighted
Hypervolume two preference
1 _points
/ \

f; o f P fs fs f;
[Auger et al. 2009b]

772

Example: Weighted Hypervolume Indicator

[Zitzler et al. 2007]

7 &F
W - S\H5 \c&\\x
I4(A) ! w(Z)dz f«gS
weighted
hypervolume
general <

weight
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization

= algorithm design principles and concepts
» performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice
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Application: Design Space Exploration

Application: Design Space Exploration

' |

Truss Bridge Design
Specification - Evaluation =~ — Implementation [Bader 2010]

intial bridge: warren truss

— Implementation

 right side mirored

fed nodes

A VAR VAR VAR A VA VAR Y
e AR
/ ‘water level
1
1 - i NLY("
j [ 20° 207
I BUS1 p— ) cxromens [ no robustness HYPE cona A
3 ¢
@
©
T Cost
YO,
G, M G,

problem  mapping  architecrure
graph et graph
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Application: Design Space Exploration

Application: Design Space Exploration

Truss Bridge Design
[Bader 2010]

intial bridge: warren russ

Network Processor Design Truss Bridge Design
[Thiele et al. 2002] [Bader 2010]

intial bridge: warren truss

Network Processor Design
[Thiele et al. 2002]

fixed nodes

T ater evel

207

Water resource
management
[Siegfried et al. 2009]

no robustness

{ min(f)

* v
s
min()
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Application: Trade-Off Analysis Conclusions: EMO as Interactive Decision Support

. . . . . A, modeling
Module identification from biological data [Calonder et al. 2006]
. e v ) adjustment
Find group of genes wrt T e GEfVs.GET,
. . 09" R X GEf,vs.PPIf,
dlffel'ent data types 08k ++ 77777 +  GEf, vs. metabolic f, analysis
5 o7t i
. . . < B B B B
» similarity of gene ‘EOMX( thr e : ‘ : specification optimization
expression profiles ¢ 05% s g ‘ ‘ ‘
. é 04l XX&, H— ,++. : : : visualizationm
* overlap of protein £ | e , ‘
interaction partners | N 1 3 3 preference
; X [ : : articulation
. o1 B AR : : )
= metabolic pathway Ok..‘ ‘ X x X + L
; 0 02 04 06 08 I
map dIStances distanceobjectivef1 (AU.) . .
*= decision making
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The EMO Communit PISA: http:/lwww.tik.ee.ethz.ch/pisal/

Links:

= EMO bibliography: http://www.lania.mx/~ccoello/EMOO/ T sm-

T p—

= EMO conference series: http://www.shef.ac.uk/emo2013/

Download of Selectors, Variators and Performance Assessment

#eisa

e principles and
Docum

This page contains the crrently avaiable variators and selectr (see also rinciles of PISA) as well s performance
25seasment toos (see also EefolTaNCE ASSessmar). The vanators are mainly test and enehark proplems that 4
Zan b usad to assess the parf  dfrerent optimizers. EXPO is 3 complex o i the are of )

P e e .—
Books: {8 5O oo o o e BB, s e 0 vl w
* Multi-Objective Optimization using Evolutionary Algorithms e
Kalyanmoy Deb, Wiley, 2001 PR Optinizaton Prgbems Optinizaten raohis
= Evolutionary Algorithms for Solving Multi Evolutionary Algorithms e
for Solving Multi-Objective Problems Objective Problems, Carlos A. )
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd T FrTT—
Ed. 2007 et
= Multiobjective Optimization—Interactive and Evolutionary source: mc T T T
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors, e o et T

volume 5252 of LNCS. Springer, 2008 [many open questions!]
= and more...
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Additional Slides
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Instructor Biography: Kalyanmoy Deb

Kalyanmoy Deb

Gurmukh and Veena Mehta Endowed Chair Professor
Department of Mechanical Engineering

Indian Institute of Technology Kanpur

Kanpur, PIN 208 016, Uttar Pradesh, India

He holds Deva Raj Chair Professor at Indian Institute of Technology Kanpur in India. He is the
recipient of the prestigious MCDM Edgeworth-Pareto award by the Multiple Criterion Decision
Making (MCDM) Society, one of the highest awards given in the field of multi-criterion
optimization and decision making. He has also received prestigious Shanti Swarup Bhatnagar
Prize in Engineering Sciences for the year 2005 from Govt. of India.

He has also received the "Thomson Citation Laureate Award' from Thompson Scientific for
having highest number of citations in Computer Science during the past ten years in India. He is
a fellow of Indian National Academy of Engineering (INAE), Indian National Academy of
Sciences, and International Society of Genetic and Evolutionary Computation (ISGEC). He has
received Fredrick Wilhelm Bessel Research award from Alexander von Humboldt Foundation in
2003. His main research interests are in the area of computational optimization, modeling and
design, and evolutionary algorithms. He has written two text books on optimization and more
than 240 international journal and conference research papers. He has pioneered and a leader
in the field of evolutionary multi-objective optimization. He is associate editor of two major

international journals and an editorial board members of five major journals.

©D Rrockhoff INRIA Lilla — Nord Furane and K_Deh IIT Kannur  Fualufionary Multiohiactive Ontimization GECCO 2012 _lulv 7 2012

775

In

tructor Biography: Dimo Brockhoff

Dimo Brockhoff

INRIA Lille - Nord Europe

DOLPHIN team

Parc scientifique de la Haute Borne
40, avenue Halley - Bat A - Park Plaza
59650 Villeneuve d'Ascq

France

After obtaining his diploma in computer science (Dipl.-Inform.) from University of
Dortmund, Germany in 2005, Dimo Brockhoff received his PhD (Dr. sc. ETH) from
ETH Zurich, Switzerland in 2009. Between June 2009 and October 2011 he held
postdoctoral research positions---first at INRIA Saclay lle-de-France in Orsay and
then at Ecole Polytechnique in Palaiseau, both in France. Since November 2011 he
has been a junior researcher (CR2) at INRIA Lille - Nord Europe in Villeneuve
d'Ascq, France . His research interests are focused on evolutionary multiobjective
optimization (EMO), in particular on many-objective optimization, benchmarking,
and theoretical aspects of indicator-based search.
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