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Instructor/Presenter 

• Ken Stanley’s connections to 
neuroevolution: 
– Co-inventor of NEAT (with Risto Miikkulainen) 
– Co-inventor of HyperNEAT (with David 

D’Ambrosio and Jason Gauci) 
– Co-inventor of novelty search (with Joel 

Lehman)  
– Co-founder of GECCO GDS Track in 2007 

and Co-chair of track from 2007-2009 
– Over 50 publications in neuroevolution 2 

Course Agenda 

• Neuroevolution basics 
• Fixed-topology evolution 
• Evolving topologies and weights 
• Indirect encoding of neural networks 
• Advanced topics 
• Demonstrations 
• Future prospects and conclusions 
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Objectives of the Tutorial  

• At the end, you will know: 
– What neuroevolution is about 
– Motivation for neuroevolution  
– Historical background 
– Popular approaches 
– Recent approaches 
– Current research directions 
– Major challenges ahead 
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Quiz 
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What is the most complex artifact in 
the known universe? 

Quiz 
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What is the most complex artifact in 
the known universe? 

Quiz 
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What is the most complex artifact in 
the known universe? 

100 trillion  
connections 

Quiz 
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What is the most complex artifact in 
the known universe? 

How did it get here? 

100 trillion  
connections 

806



Quiz 
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What is the most complex artifact in 
the known universe? 

How did it get here? 
 

Evolution 

100 trillion  
connections 

Main Idea: 
Combine EC and Neural Networks 

• “Evolving brains”:  
   Neural networks compete and evolve 
• Idea dates back to the 1980s 40,51,72,73 

• Natural path to AI: Only way that 
intelligence ever really was created 

• Leads to many research challenges 10 

Why Neuroevolution (NE)? 
• If a brain can do it, a neural network can 

be evolved to do it too (many applications) 
– Supervised classification76 
– Autonomous control 

• Robots 5,15,31,42,45,54,56,69 

• Vehicles 34 
• Video game characters 27,59 

– Factory optimization 23 
– Game playing 19,41,64  

• Go, Tic-tac-toe, Othello, Checkers 
– Warning systems 34 
– Visual recognition, roving eyes 33,64 
– Creative applications like art and music 28,29,52 
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Why Neuroevolution (NE)? (2) 

• Neural networks successful in many 
domains where no good theory exists 
– Control, pattern recognition, prediction, 

decision making 
• Early researchers saw NE as a competitor 

for backpropagation (supervised learning) 
– But much more interesting when correct 

outputs are not known (fewer algorithms) 

12 
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Sequential Decision Tasks 

• POMDP: Sequence of decisions creates a sequence of states 
• No targets: Performance evaluated after several decisions 

(sparse reinforcement) 
• Many important real-world domains: 

– Robot/vehicle/traffic control 
– Computer/manufacturing/process optimization 
– Game playing 13 

Front Left Right Back 

Forward Left Right 

Temporal Difference 
Reinforcement Learning 

• Q-learning, SARSA, others (state-action-space search) 65 
– Generate targets through prediction errors 
– Learn when successive predictions differ 

• Predictions represented as a value function 
– Values of alternatives at each state 

• Difficult with large/continuous state and action spaces 
• Difficult with hidden states (partial observability) 
• NE is different… 14 

Neuroevolution (NE) 
Reinforcement Learning 

• Direct nonlinear mapping from sensors to 
actions (policy search) 

• Large/continuous states and actions easy 
– Generalization in neural networks 

• Hidden states disambiguated through memory 
– Recurrence in neural networks 66 
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More than Just RL 

• Big questions: How did evolution discover 
an artifact of such incredible complexity? 
– Can EC do something similar? 
– Why hasn’t it done so yet? 

• Progress means shedding light on deep 
issues in both EC and biology 
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Diverse Applications 

17 

Rocket Control 22 Video Game NPC Control 59 Evolving Pictures 52,53 

Evolving Music 28,29 Real-world Robot Control 34 Video Game Content 
Generation 27 

Typical ANN for NE Control 
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• Input variables describe the state 
• Output variables describe actions 
• Networks between input and 

output: 
– Nonlinear hidden nodes 
– Weighted connections 

 

• Execution: 
– Numerical activation of input 
– Performs nonlinear mapping 
– Memory in recurrent connections 

Inside the ANN 

• Simple Network Activation 
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The Problem of Learning 

• What is the topology that works? 
• What are the weights that work? 

? 
? 

? 

? ? 

? 

? 

? ? 

? 

? 

? ? 
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• Recurrent connections are 
backward connections in 
the network 

• They allow feedback 
• Recurrence is a type of 

memory 

Recurrent Connections 

X1 X2 

H 

out 

w21 w11 

wH-out Wout-H 

Recurrent connection 
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Conventional Neuroevolution 40,51,72,73 

• Genome encodes ANN 
• ANN evaluated in environment for fitness 
• Fitness drives selection and reproduction 
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Earliest NE Methods  
Only evolved Weights 

• Genome is a direct encoding 
• Genes represent a vector of weights 
• Could be a bit string or real valued 
• NE optimizes the weights for the task 
• Maybe a replacement for backprop 

 
? ? 

? 

? ? 

? ? 
? 

? ? 

? ? 
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? ? 

? ? 
? 

? ? 
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The Competing Conventions 
Problem 48,51 

• Also called permutation problem 
• Many permutations of same vector represent 

exactly the same functionality 
• Then how can crossover work? 

A B C A B C A B C A B C A B C A B C 

3!=6 permutations of the same network! 24 
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Competing Conventions Destroys 
Crossover 

• n! permutations of an n-hidden-node 1-layer net 
• [A,B,C] X [C,B,A]  can be [C,B,C] 
• 144 total possible crossovers of size 3 
• 72 are trivial (offspring is a duplicate) 
• 48 of the remaining 72 are defective 
• 66.6% of nontrivial mating is defective! 
• Consider also differing conventions: 

– [A,B,C]X[D,B,E] 
– Loss of coherence in GA is severe 

25 

Problem Dimensionality 

• Each connection (weight) in the network is a 
dimension in a search space 
 
 
 
 

• The space you’re in matters:  Optimization is not 
the only issue! 
– Harder to optimize more dimensions 

• Topology defines the space 

21-dimensional space 3-dimensional space 
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Advanced Fixed-Topology NE 

• Evolving individual neurons to cooperate in networks 2,43,46 
• Example: Enforced Sub-Populations (ESP) 20 

– Each (hidden) neuron in a separate subpopulation 
– Fully connected; weights of each neuron evolved 
– Populations learn compatible subtasks 27 

Evolving Neurons with ESP 

• Evolution encourages diversity automatically 
– Good networks require different kinds of neurons 

• Evolution discourages competing conventions 
– Neurons optimized for compatible roles 

• Large search space divided into subtasks 28 
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• Evolving complete networks with ES (CMA-ES) 32 
• Small populations, no crossover 
• Instead, intelligent mutations 

– Adapt covariance matrix of mutation distribution 
– Take into account correlations between weights 
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Advanced Fixed-Topology NE (2): 
Evolution Strategies 

TWEANNS 

• “Topology and Weight Evolving Artificial Neural 
Networks” 3,14,17,61,75 

• Population contains diverse topologies 
• Why leave anything to humans? 
• Topology can be represented many ways 
• Topology evolution can combine w/ backprop 
• Remember: Topology defines the search space 
• The more connections, the more dimensions 
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“Competing Conventions” with 
Arbitrary Topologies 

• Topology matching problem 
• Life is even worse with mating arbitrary 

topologies 
• How do they match up? 

 
 
 
 

• Radcliffe (1993) : “Holy Grail in this area.” 48 
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More TWEANN Problems 

• Diverse topologies present many problems 
• How should evolution begin? Randomly? 

– Defects in the initial population 
 
 

 
– Searching in unnecessarily large space 

 

32 
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More TWEANN Problems 2 

• Innovative structures have more connections 
• Innovative structure cannot compete with 

simpler ones 
 
 
 

• Yet the money is on innovation in the long run 
• Need some kind of protection for innovation 

33 

Many Early TWEANNs 
• Breeder Genetic Programming 76 

– Network is tree 
– Penalizes complexity in fitness function 

• Parallel Distributed Genetic Programming (PDGP) 47 
– Dual representation: Linear and graph 

• GeNeralized Acquisition of Recurrent Links (GNARL) 4 
– Gave up on crossover (competing conventions too problematic) 

• Most began evolution with random topologies 
• Often tested on supervised learning problems 

– E.g. parity & majority 
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NeuroEvolution of Augmenting 
Topologies (NEAT) 61,63 

• NEAT addressed the major TWEANN 
problems: 
– Topology matching problem 
– Loss of innovative structures 
– Initial population topology randomization  
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Historical Marking in NEAT 

• Addresses topology-matching problem 

36 
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Protecting Innovation in NEAT 

• Addresses loss of innovative structures 
• Achieved through speciation 

– Individuals compete primarily with others of 
similar topology 

37 

Complexification from Minimal 
Structure in NEAT 

• Addresses initialization problem 
• Search begins in minimal-topology space 
• Lower-dimensional structures easily optimized 
• Useful innovations eventually survive 
• So search transitions into good part of higher-dim. space 
• The ticket to high-dimensional space 38 

NEAT Performed Well on Double 
Pole Balancing Without Velocity 

Inputs 61 

• Fewer evaluations than prior methods 
• However, benchmarks can become 

overemphasized, idiosyncrasies emerge 
– Can be exploited in the future 
– Pole balancing flaws: few or no local optima (tiny 

population best 57), no need for hidden nodes 39 

Real Advantages of NEAT 
• Unbounded complexity 
• Potential for near-minimal solutions 
• Diverse topologies and solutions in one run 

Double Pole Balancing Record  61 

Keepaway Record 66 

Vehicle Warnings 34 

NERO: Real-time Neuroevolution  
in a Video Game 59 

Hopper 13 
Go 64 

Robot Duel 63 
40 
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NEAT: Beyond Control and 
Classification 

Interactive Drum Pattern Evolution 28 
Harmonic Accompaniment Evolution 29 

Interactive Picture Evolution 52 

Interactive Particle Effect Evolution 26 Guitar Effect-Pedal Emulation 

41 

Dance 12 

What Makes a Good NE 
Method? 

• Not just about performance 
• Also about conceptual foundation 

– Does it open up new possibilities? 
– Can extensions be built upon it? 
– Does it capture something deep from nature? 

• Overemphasis on benchmark 
comparisons obfuscates these critical 
questions 

42 

After NEAT: Shift Towards 
Indirect Encoding 

 
• 100 trillion connections in the human brain 
• 30,000 genes in the human genome 
• Only possible through highly compressed 

representation (indirect encoding) 

• Also called Generative and Developmental 
Systems (see GECCO track) 3,14,24,39,55,62,75 
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Indirectly-Encoded NE 
(also see GDS Tutorial) 

• L-System-based Encoding (body-brain) 30 
 
 
 
 

• Cellular Encoding (growth program) 24,25 
 

• Analog Genetic Encoding (AGE) 37 
– Implicit encoding of connection weights 

in a network  

44 
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An Interesting Observation 

• NEAT-evolved networks (called CPPNs 58) 
produce nice patterns: Can this ability help 
to evolve brains? 

CPPN = Compositional 
Pattern  
Producing Network 

Mapping 

45 

An Interesting Observation 

• NEAT-evolved networks (called CPPNs 58) 
produce nice patterns: Can this ability help 
to evolve brains? 

46 

CPPN Patterns (Also for brains?) 
From http://picbreeder.org 52,53 

(All are 100% evolved: no retouching) 

47 

CPPN-based Indirect Encoding:  
Hypercube-based NEAT (HyperNEAT)19,60 
• Main insight: 2-D connections isomorphic to 4-D points 

– Nodes situated in 2 spatial dimensions (x,y) 
– Connections expressed with 4 spatial dim. (x1,y1,x2,y2) 

• HyperNEAT extends 2-D CPPNs to 4-D 
– CPPN encodes 4-D patterns (i.e. inside a hypercube) 

• 4-D patterns can express the same regularities as 2d patterns 
• 4-D patterns interpreted as connectvitity patterns 

               CPPN                                      Output                                              CPPN                                          Output 

48 
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HyperNEAT Indirect Encoding 

• Substrate is a geometric arrangement of nodes for 
an ANN which the CPPN can “see”  

• The nodes are arranged to exploit the geometry of 
the problem  49 

Example HyperNEAT Substrates 

Quadruped Gaits 6,7 

Robocup 70 
Checkers 18,19 

50 

New Capabilities with 
HyperNEAT 

• Evolve very large ANNs (encoded by small CPPNs) 60 
 
 
 
 
 
 

• Problem geometry now possible to exploit 18,19 
– e.g. Locality 
– The problem of the torn  

checkers board 

Traditional Input Vector 
51 

New Capabilities with 
HyperNEAT 

• Scalable connectivity patterns 

5x5 7x7 CPPN 

52 
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Discovery through Geometry: 
The Geometry of Generality in 

Checkers 19 

53 

Connectivity of Most General 
Solutions 

54 

Connectivity of Less General 
Solutions 
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Advanced Issues:  
More Brain-like ANNs  

• Encoding plasticity 
– Long history of approaches 16 
– Adaptive HyperNEAT 49 

 
• Evolving node placement in HyperNEAT 

(ES-HyperNEAT) 50 
 

• Locality and modularity in HyperNEAT 
(HyperNEAT-LEO) 71 

56 
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New Insights into Fitness in NE 
• Some behaviors may prohibitive to 

evolve when made objectives 
– (Human intelligence is not a 

traditional objective in nature) 
• Recent research suggests that 

searching for behavioral novelty 
can discover behaviors that fail as 
objectives 
– Novelty search algorithm 35,36 
– Diversity objectives in 

multiobjective NE 44 
• Significant implications for 

research in NE 74 
 

Objective 
World 

Non-objective World 
 

57 

Novelty and Fitness Bipeds 36 

58 

Application Demos 

• Driving and collision warning 
• Video game applications 
• Music 
• Multiagent robot control 
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Driving and Collision Warning 34 

• Goal: evolve a collision warning system 
– Looking over the driver’s shoulder 
– Adapting to drivers and conditions 
– Collaboration with Toyota 

60 
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Driving (Evolved in RARS) 

Evolved Alone Evolved with Obstacles 

61 

Warning System 

In Simulation In Real Robot 

62 

Video Games: NeuroEvolving 
Robotic Operatives 59 

• Robot agents trained for battle by player in 
real time through real-time NEAT (rtNEAT) 
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NERO Inputs and Outputs 

64 
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Enemy/Friend Radars 

65 

Enemy On-Target Sensor 

66 

Object Rangefinder Sensors 

67 

Enemy Line-of-Fire Sensors 

68 
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Learning to Approach an Enemy 

69 

Trained to Solve a Maze 

70 

Learning to Avoid Fire 

71 

Another Video Game: 
Galactic Arms Race (GAR) 27 

• GAR evolves its own weapon systems 
– Based on player behavior 

72 

822



GAR Demo 

73 

Evolving Musical 
Accompaniment 29 

• MaestroGenesis implements Functional Scaffolding for 
Musical Composition approach 

Scarborough Fair 

Scarborough Fair 
with accompaniment 

74 

Multiagent Robot Control 

• Multiagent HyperNEAT 8,9,10 
– Learns a set of brains instead of a single brain 
– Coordinated team behavior entirely invented 

by evolution 
 

75 

Numerous Other Applications 

• Measuring the mass of the top quark 1 
• Art and dance 12,52 
• Theorem proving 11 
• Time-series prediction 38 
• Computer system optimization 21 
• Manufacturing optimization 23 
• Process control optimization 67,68 
• Etc. 

76 
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Big Questions for the Future 
• How complex can evolved ANNs become? 
• Can evolved ANNs approach or resemble 

real brains? 
– How should plasticity play a role? 

• What is the right selection pressure to 
encourage complexity? 
– What is the proper role of explicit objectives? 

• How should NE methods be judged? 
– When are benchmark comparisons useful? 
– The problem of objective assessment 77 

Conclusion 

• Vast potential for further contributions 
– Natural brains are a proof of concept 

• Many promising new directions 
– Indirect encoding 
– Non-objective evolution 

• Diverse application domains 
– Anything a brain can do an ANN can try to do 

• NE is a disruptive AI technology 
– Not only an optimizer 78 

More information 
• My Homepage: 

http://www.cs.ucf.edu/~kstanley  
• NEAT Users Group: 

http://groups.yahoo.com/group/neat 
• Evolutionary Complexity Research Group: 

http://eplex.cs.ucf.edu  
• Picbreeder: http://picbreeder.org  
• HyperNEAT Information: 

http://eplex.cs.ucf.edu/hyperNEATpage/HyperNEAT.html 

• Email: kstanley@eecs.ucf.edu  
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