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ABSTRACT
DEAP (Distributed Evolutionary Algorithms in Python) is
a novel evolutionary computation framework for rapid pro-
totyping and testing of ideas. Its design departs from most
other existing frameworks in that it seeks to make algorithms
explicit and data structures transparent, as opposed to the
more common black box type of frameworks. It also incor-
porates easy parallelism where users need not concern them-
selves with gory implementation details like synchronization
and load balancing, only functional decomposition. Several
examples illustrate the multiple properties of DEAP.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods; D.2.11 [Software]:
Software Architectures—domain-specific architectures

Keywords
Parallel Evolutionary Algorithms, Software Tools

1. INTRODUCTION
Over the years, several object-oriented programming tools

have been developed for Evolutionary Computation (EC),
for example EO [8], ECJ [9], and Open BEAGLE [6], among
many others. Albeit in di↵erent ways, they all implement
somewhat complex low level mechanisms that allow devel-
opment of higher level Evolutionary Algorithm (EA). They
usually provide a fairly large library of common EA compo-
nents, most often in di↵erent flavours, eventually evolving
into what is commonly called a black box framework [10],
that provides high level functionality while trying to hide
implementation detail as much as possible. They may be
very generic in nature, but a user who wishes to implement
a new type of EA, or even a new variation on a common type,
is most often faced with the daunting task of understand-
ing intricate details that in e↵ect hinders his creativeness

and productivity. Of course, framework authors will argue
that “their” framework is better, friendlier, more generic, or
perhaps more powerful than others, but we argue that they
are all way too complex and bloated, and not well enough
documented, including our own Open BEAGLE. Code bloat
and complexity makes documentation all the more painful;
poor documentation emphasizes bloat and complexity.

Developing reusable frameworks usually starts by ana-
lyzing the problem domain and solving a few applications
within this domain [10]. The process then evolves into a
white box framework where common functions are encap-
sulated into classes and applications are built using inher-
itance. With time, higher level functions are added and
internal details are gradually hidden, eventually morphing
the white box into a black box. This is all fine in many
cases: with added functionality, users no longer need to
worry about internal structures and life is made much eas-
ier, that is as long as the needed features are present in the
framework. However, in the context of EC, the opaqueness
of black boxes can become a major hurdle especially when
researching for new algorithms or tackling special problems
that require custom algorithms. Lacking adequate documen-
tation, the programmer needs to look into the gory details
of lower level mechanisms and, depending on his prior ex-
perience, may or may not achieve his goals in a reasonable
amount of time. At this point, it is important to remem-
ber that EAs form quite a diverse field. They are all based
on common principles, but they vary in so many ways that
no black box framework will ever o↵er all of the functions
required by its potential users.

With DEAP (Distributed Evolutionary Algorithms in Py-
thon), our aim is to provide a toolbox that encourages users
to write their own evolutionary algorithms, explicitly con-
trolling every aspect of the evolutionary process: data types,
fitness measures, population initialization, operators, evolu-
tionary loop, etc. In particular, we want the users to write
their own evolutionary loops where every step is explicit, and
we want these loops to be short, easy to read/understand,
and easy to document.

Another fundamental objective behind DEAP is to pro-
vide transparent parallelism, as much as possible. Resear-
chers want to experiment with new EC ideas to solve com-
plex real-world problems. Their foremost worry is to vali-
date in a reasonable amount of time whether or not these
ideas are any good. With the stagnation of processor clock
frequencies and the usual high complexity of real-world prob-
lems, parallelism is thus a fundamental requirement. But
parallel programming is hard! You need to identify oppor-
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tunities for parallelism, which is usually fairly easy for EAs,
but you also have to manage communication and synchro-
nization between processes, to balance loads between proces-
sors, and to squash ugly bugs that inevitably tend to creep
up from every corner of a parallel application. In this con-
text, DEAP’s strategy is to leave the easier task of specifying
what should be run in parallel to the user, but essentially
takes care of all of the rest.

To achieve its goals, DEAP builds on the Python program-
ming language for its coherent syntax and its many powerful
features. Namely, its full support of object-oriented pro-
gramming, its pure dynamical runtime environment, as well
as its good support of the functional programming paradigm,
which makes it close to ideal for EAs that are intrinsically
functional in nature. Of course, there is also a down side:
being interpreted, Python can lead to slow execution com-
pared to other compiled languages. But this limitation can
be mitigated by its rapid prototyping capabilities, and the
fact that Python is easily interfaced to other languages like
C or C++. The strategy is thus to first develop proto-
types in pure Python to test ideas, and later, if these ideas
are shown worthwhile, to recode in C (or any other simi-
lar language) only those parts of the EA that are partic-
ularly compute intensive like, for instance, fitness evalua-
tion or any sophisticated operators like some multi-objective
selection (e.g., domination-based sorting of NSGA-II). It
should be noted that basic operations like sorting elements
of containers are already implemented in Python through
tight integration with C. Also, Python is well known for its
large library of extension modules that link to e�cient C
or FORTRAN libraries. In particular the combination of
the NumPy1, SciPy1, and matplotlib2 Python modules can
advantageously replace commercial rapid prototyping tools
like Matlab for scientific computations.

The rest of this paper is organized as follows. Sec. 2 starts
with an overview of current existing frameworks, their black
box implementation and some of their limitations according
to what we propose with our model. Next, Sec. 3 sum-
marizes the basic concepts underlying the development of
DEAP as a white box optimizer, and Sec. 4 presents the
framework in details with three di↵erent code examples. Fi-
nally, Sec. 5 presents di↵erent tools provided with DEAP to
ease analysis of algorithms and allow a very easy paralleliza-
tion of the computations.

2. RELATED WORK
Robert and Johnson [10] define a good framework as: “[...]

simple enough to be learned, yet must provide enough fea-
tures that it can be used quickly and hooks for the features
that are likely to change.” This definition and our experi-
ence developing the Open BEAGLE framework bring us to
the conclusion that the usual EC framework development
model has some limiting flaws. In the present section, we
identify those limitations in order to demonstrate the valid-
ity of DEAP’s design choices.

Most popular EC frameworks propose a large set of ready
made algorithms. The usefulness of having many imple-
mented algorithms is undeniable. However, the complexity
of the mechanisms that keep genericity in those algorithms
is often overwhelming. Adding or modifying an algorithm of

1http://numpy.scipy.org
2http://matplotlib.sourceforge.net

the framework is therefore not an easy task for a casual user.
The problem is that, nowadays, most real world problems re-
quire some modifications to the original algorithms in order
to achieve the next level of performance. Most users do not
have the time or resources to understand all the mechanisms
included in the algorithms in order to extend them.

To compensate for the opacity of the algorithm implemen-
tations, some frameworks propose alternative higher level
programming language. ECJ proposes to configure the al-
gorithms via a pipeline principle submitted to the frame-
work through a configuration file coded in the INI format.
Open BEAGLE o↵ers the possibility to customize the algo-
rithm workflow and parameters via an XML configuration
file. EASEA and Guide [3] implement a high level program-
ming language for EO and a graphical interface that pro-
duces C++ code compatible with EO. From a software en-
gineering point of view, those solutions are quite interesting
and their design are hard to argue with. They can help users
to adapt the algorithms to better fit their problem’s require-
ments, as long as the needed functions are either present
in the framework or allowed by the abstraction language.
However, from this point of view, developers of black box
frameworks are left with the impossible task of anticipating
every possible extension of the original algorithms.

Parallel evolutionary algorithms (PEAs) is also a bloom-
ing field in itself. Alba and Tomassini [1] divided PEAs in
two categories: structured EAs and global parallelism (also
called master-slave). The former implies the implementa-
tion of specific algorithms that modify the typical canonical
algorithms by either distributing the populations or the in-
dividuals according to the underlying hardware architecture
to achieve better performance. The latter o↵ers to keep the
logic of the algorithm untouched and to distribute the oper-
ations across all computing units. Each method su↵ers from
drawbacks. Structured EAs are not well adapted to mas-
sive parallel architectures, while global parallelism generally
involves more communications that induce bottlenecks and
limit performance [2, 5].

3. DESIGN PRINCIPLES
Because EC is a sophisticated field with very diverse tech-

niques and mechanisms, even well designed evolutionary frame-
works can become very complicated under the hood. And
the more complicated they become, the less likely the com-
moner will ever take a peek under the hood to consider
making modifications. But research in EC, or simply using
EC for solving real-world problems, requires making changes
most of the time. Thus, DEAP’s approach is like removing
the hood altogether, e↵ectively forcing users to look con-
stantly at most of the internal components of the car, help-
ing them become good mechanics, capable of making repairs
themselves, eventually leading them to start thinking about
building custom roadsters!

DEAP is a lightweight framework that focuses on provid-
ing both basic EC operators (parts) and general mechanisms
to easily build custom parts to implement sophisticated EAs.
To achieve this, it uses the powerful Python scripting lan-
guage to provide the essential glue for assembling EA parts
into coherent EC systems. Below are the five founding hy-
potheses of DEAP:

Hypothesis 1. The user knows best. Users should be
able to understand the internal mechanisms of the frame-
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work so that they can extend them easily to better suit their
specific needs.

Hypothesis 2. User needs in terms of algorithms and
operators are so vast that it would be unrealistic to think
of implementing them all in a single framework. However,
it should be possible to build basic tools and generic mech-
anisms that enable easy user implementation of most EA
variant.

Hypothesis 3. Speedy prototyping of ideas is often more
precious than speedy execution of programs. Moreover, code
compactness and clarity are also very precious.

Hypothesis 4. Even though interpreted, Python is fast
enough to execute EAs. Whenever execution time becomes
critical, compute-intensive components can always be recoded
in C. Many e�cient numerical libraries are already available
through Python APIs.

Hypothesis 5. Easy parallelism can alleviate slow exe-
cution.

And these hypotheses lead to the following objectives:

1. Rapid prototyping. Provide an environment allow-
ing users to quickly implement their own algorithms
without compromise.

2. Parallelization made easy. Allow straightforward
parallelization; users should not be forced to specify
more than the granularity level of their functional de-
composition.

3. Preach by examples. Although the aim of DEAP
itself is not to provide ready made solutions, it should
nevertheless come with a substantial set of real-world
examples to guide the users apprenticeship.

4. CORE ARCHITECTURE
The core architecture of DEAP is built around di↵erent

components that define the specific parts of what is an evo-
lutionary algorithm. Fig. 1 shows the principal modules
forming the framework. DEAP’s core is composed of three
modules: base, creator, and tools.

The base module contains objects and data structures fre-
quently used in EC that are not already implemented in the
Python standard library. Python providing most of the data
structures required, this module actually implements only
three classes: a generic fitness, a prefix coded tree and a
toolbox. The toolbox is a container for the tools (operators)
that the user wants to use in his EA. For instance, if the user
needs a mutation in his algorithm, but has access to several
mutation designs, he will choose the one model best suited
for his current problem, say “MutationXYZ”, and register
it into the toolbox with a generic “mutation” alias. In this
way, he will be able to build algorithms that are decoupled
from operator sets. If he later decides that some other mu-
tation is better suited, his algorithm will remain unchanged,
he will only need to update the toolbox used by the algo-
rithm. The concept underlying the toolbox can be found
in most blackbox frameworks. However, DEAP’s toolbox
distinguishes itself on two aspects. First, other frameworks
usually force a specific signature for every type of opera-
tion to allow operator swapability. In DEAP, the signature

DEAP

functionality

core

Base Creator Tools

distribution

DTMAlgorithms

Operators

Variations

extras

GP CMA

Benchmarks

Figure 1: Modules of the core architecture.

is enforced by no means, hence allowing the user to imple-
ment some special operator as he wants without having to
circumvent implementation intricacies. Second, blackboxes
usually provide default values for most of the parameters to
simplify operator calling. This practice contradicts our first
hypothesis, and thus we do not define default value for any
operator parameter. The toolbox performs this simplifica-
tion task by allowing the user to register parameter values
with the operator. This way, the user has to understand ev-
ery operator he uses, and the parameters values are always
explicitly stated before the algorithm definition, therefore
avoiding any possible ambiguity.

The creator module is a meta-factory that allows creation
of classes via both inheritance and composition using a func-
tional programming paradigm, therefore liberating the user
from the burden of class definition. Attributes, both data
and functions, can be dynamically added to create new ob-
ject classes empowered by the user to provide user specific
EA functionalities.

The tools module contains frequently used EA operators.
It also provides objects that ease the di↵erent analysis tasks
of EAs such as checkpointing, statistics computation, and
genealogy. These will be described in detail in Sec. 5.

The core functionalities of DEAP are levered by the al-
gorithms module that contains four commonly used algo-
rithms in EC: generational, (µ ,�), (µ+�), and ask-and-tell
[4]. However, DEAP is not limited in any way to these four.
They are only a starting point for users to develop their own
customized algorithms.

Operators and tools not provided by the core modules
generally have their own module, like Genetic Programming
(GP) operators and data structures can be found in the gp
module, and CMA-ES in the cma module. The benchmarks
module includes di↵erent state-of-the-art benchmark func-
tions that can be used to assess algorithm performances.

The last module of the framework, named dtm for Dis-
tributed Task Manager, handles parallelism. It will be de-
scribed in detail in Sec. 5.3.

To explain how these modules interact, we now present
three examples:

Example 1. The first example illustrates how the one-max
problem can be solved with DEAP. All code lines are in real
order of appearance in the original script and no line has
been omitted.

First, we start by importing the necessary modules.

1 import random
2 from deap import algorithms, base, creator, tools
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Next, the fitness evaluation function is defined as the sum
of ones within an individual using the Python standard sum
function that sums the elements of any iterable object. In
DEAP, evaluation functions always return a tuple of values
even for single-objective problems, because they are treated
as a special case of multi-objective problems.

3 def evalOneMax(individual):
4 return (sum(individual),)

Thereafter, we use the creator to create a FitnessMax class
encapsulating our fitness values and producing fitness max-
imization. To do this, we make this new class inherit from
base.Fitness and we set its weights attribute accordingly.

5 creator.create("FitnessMax", base.Fitness,
,! weights=(1.0,))

The create function of the creator module expects at least
two arguments. The first (FitnessMax) is the name of the
new class, while the second (base.Fitness) is the parent
class. Any additional argument given to this function is
added to the new class as an attribute. In this case, the
weights attribute is a tuple containing a single positive unit
weight achieving fitness maximization. To minimize the fit-
ness, we would use -1 instead of 1. For multi-objective opti-
mization, we would assign a tuple with as many weights as
there are objectives.

The second built class encapsulates our individuals. Here,
for the one-max problem, it inherits from the Python stan-
dard list, and it has a fitness attribute of the just created
FitnessMax type.

6 creator.create("Individual", list, fitness=
,! creator.FitnessMax)

Because it is so simple to create a class using the creator,
DEAP does not propose any basic individual type. Users
are asked to design their own types based on their specific
needs.

Once types are created, we instantiate a new toolbox.

7 toolbox = base.Toolbox()

The registration of functions (tools) in the toolbox works
as follows: the first argument corresponds to the alias of
the registered function, the second argument is the function
itself, and subsequent arguments are automatically passed to
the function when the alias is called. The Individual class
has no initialization method, meaning that any new instance
of this class is an empty list with a FitnessMax attribute.
In order to ease individuals initialization, we register a bit
function as an alias for the standard Python random integer
generator.

8 toolbox.register("bit", random.randint, 0, 1)

When called, this bit function returns a random integer,
either 0 or 1. Next, we register an individual alias that
acts as an initialization operator for the individuals.

9 toolbox.register("individual", tools.initRepeat,
,! creator.Individual, toolbox.bit, n=100)

The function assigned to this alias is tools.initRepeat
which takes three arguments: the first one is a data struc-
ture constructor, in this case it is our individual constructor
creator.Individual, the second one is the function used
to generate the content filling for that data structure, and
the last one is the number of elements to generate. The

registered individual function is then able to generate in-
dividuals composed of 100 random bits. In a similar fashion,
we register an operator named population capable of gen-
erating a list of 300 individuals.

10 toolbox.register("population", tools.initRepeat,
,! list, toolbox.individual, n=300)

Finally, additional operators are registered under mean-
ingful aliases recognized by the algorithms provided by the
algorithms module.

11 toolbox.register("evaluate", evalOneMax)
12 toolbox.register("mate", tools.cxTwoPoints)
13 toolbox.register("mutate", tools.mutFlipBit,

,! indpb=0.05)
14 toolbox.register("select", tools.selTournament,

,! tournsize=3)
15 toolbox.register("map", map)

The one-max evaluation function becomes evaluate, the
two points crossover (cxTwoPoints) aliases to mate, the flip
bit mutation (mutFlipBit) with an independent probabil-
ity (indpb) of application on each element of 5% becomes
mutate, and the tournament selection (selTournament) be-
tween 3 participants (tournsize) turns into select The fi-
nal registered operator map is a place holder. It defaults to
the standard map function of Python which applies a func-
tion to every element of an iterable object and returns a list
of the results. As shown in Sec. 5.3, by replacing this map-
ping tool with dtm.map, the user automatically benefits from
the parallelization and load balancing features of DEAP.

The simple generational algorithm (eaSimple) defined in
DEAP requires a population, a toolbox, and three parame-
ters to run. These parameters are the crossover and muta-
tion probabilities, and the number of generations. The pop-
ulation allocation is done by calling the appropriate toolbox
function. Finally, the algorithm is launched and the final
population is returned after 40 generations.

16 CXPB, MUTPB, NGEN = 0.5, 0.2, 40
17 pop = toolbox.population()
18 pop = algorithms.eaSimple(pop, toolbox, CXPB,

,! MUTPB, NGEN)

Example 2. The first example showed typical initialization
for a DEAP program, but using a canned EA. The second
example keeps the same initialization but shows more details
of the evolutionary loop. The algorithm invocation of Ex. 1
(line 18) is replaced below by explicit calls to operators.

First, the toolbox evaluation function is mapped to every
individual of the population in order to compute their fitness
(new line 18). Then, a loop assigns the returned fitness
values to each individual (lines 19 & 20).

18 fits = toolbox.map(toolbox.evaluate, pop)
19 for ind, fit in zip(pop, fits):
20 ind.fitness.values = fit

The evolutionary algorithm itself is a simple for loop with
a termination criterion based on the user specified maximum
number of generations (line 21).

21 for g in range(NGEN):
22 pop = toolbox.select(pop, k=len(pop))
23 pop = algorithms.varAnd(pop, toolbox, CXPB,

,! MUTPB)
24 fits = toolbox.map(toolbox.evaluate, pop)
25 for ind, fit in zip(pop, fits):
26 ind.fitness.values = fit
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On each cycle of the evolutionary process, the defined selec-
tion operator is applied on the population to select a new
one (line 22). The number of selected individuals (k) cor-
responds to the size of that initial population, as returned
by the standard len Python function. The varAnd function
applies variation operators (those defined in the toolbox),
namely crossover and mutation, and returns an updated
population (line 23). The function signature is similar to
the generational algorithm of Ex. 1, except for the number
of generations which is now explicitly specified in the for
loop. Finally, the resulting individuals are evaluated for the
next iteration (lines 24 to 26).

The variation function (line 23) can also be exploded in a
more explicit form. First, we proceed with the duplication
of the population using the clone function of the toolbox.

pop = [toolbox.clone(ind) for ind in pop]

Then, the crossover exploits the powerful slicing operator of
Python to build consecutive pairs of potential children. A
random number is drawn and if this number is less than the
user specified crossover probability, the children are mated
and their fitness is invalidated by deleting the associated
values.

for child1, child2 in zip(pop[::2], pop[1::2]):
if random.random() < CXPB:

toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values

Finally, a similar logic is applied to mutation. For every
individual a random number is drawn and compared to the
mutation probability, if the individual is mutated, its fitness
is invalidated.

for mutant in pop:
if random.random() < MUTPB:

toolbox.mutate(mutant)
del mutant.fitness.values

Example 3. Now that the foundations of the framework
have been explained and understood, we can move on to a
more ambitious problem, for instance, a modified version of
the co-evolution of sorting networks as described by Hillis
[7]. For this implementation, the hosts are represented by
a list of pairs of wire index (comparators), while the para-
sites are lists of integers (later translated to binary strings).
For example, [(1, 3), (2, 4)] represents a network with two
comparators, the first connecting wires 1 and 3, and the
second connecting wires 2 and 4. For 4 inputs sorting net-
works, a parasite [3, 8] represents two sequences to be sorted:
[0, 0, 1, 1] and [1, 0, 0, 0]. The two-objectives host optimiza-
tion are to minimize the number of errors made by a net-
work and to minimize its number of connectors. The single-
objective parasite optimization is to maximize the number
of errors made by the network it is evaluated against.

After module importation and constant definition, the
evaluation function is defined to assess the fitness of a host
against a parasite.

1 import random
2 from deap import algorithms, base, creator, tools
3 import sortingnetwork as sn
4
5 INIT_SIZE, INPUTS, MAXGEN = 40, 12, 250
6 H_CXPB, H_MUTPB = 0.5, 0.3
7 P_CXPB, P_MUTPB = 0.5, 0.3

8 def evalNetwork(host, parasite, dimension):
9 network = sn.SortingNetwork(dimension, host)

10 cases = [int2bin(case) for case in parasite]
11 return (network.assess(cases), len(host))

The network is created from the individual (line 9), and the
parasite’s test cases are translated from the list of integers
to a sequence of binary strings (line 10) before the network
performance is evaluated (line 11). This evaluation func-
tion has two objectives, the number of errors made by the
network when sorting the test cases and the number of con-
nectors used. Then, a non standard mutation operator is
defined to work directly on the described host type. It re-
places connectors by random ones generated by the function
comparator given as argument.

12 def mutComparator(individual, comparator, indpb):
13 for indx in range(len(individual)):
14 if random.random() < indpb:
15 individual[indx] = comparator()
16 return (individual,)

As in Ex. 1, the creator is used to create the types for the
problem we described.

17 creator.create("FitnessHost", base.Fitness,
,! weights=(-1.0, -1.0))

18 creator.create("FitnessParasite", base.Fitness,
,! weights=(1.0, 0.0))

19 creator.create("Host", list, fitness=creator.
,! FitnessHost)

20 creator.create("Parasite", list, fitness=creator.
,! FitnessParasite)

The host fitness is created in order to minimize both objec-
tives, while the parasite fitness maximizes the first objec-
tive and ignores the second one (because of its null weight).
Then, both the Host and the Parasite classes are created
and associated with their respective fitness attributes.

After types creation, we instantiate two independent tool-
boxes to contain the operator set for each species (lines 21
& 27). The host toolbox (htbx) is set to create a population
that is a list of individuals. The individuals are hosts initial-
ized with INIT_SIZE comparators and the comparators are
connected to 2 random wires. A population in the parasite
toolbox (ptbx) is a list of individuals, which are parasites
made of 200 integers drawn between 0 and 2l � 1, with l the
number of inputs.

21 htbx = base.Toolbox()
22 htbx.register("wire", random.randint, 0,

,! INPUTS - 1)
23 htbx.register("comparator", tools.initRepeat,

,! tuple, htbx.wire, n=2)
24 htbx.register("individual", tools.initRepeat,

,! creator.Host, htbx.comparator, n=INIT_SIZE)
25 htbx.register("population", tools.initRepeat,

,! list, htbx.individual)
26
27 ptbx = base.Toolbox()
28 ptbx.register("integer", random.randint, 0,

,! 2**INPUTS - 1)
29 ptbx.register("individual", tools.initRepeat,

,! creator.Parasite, ptbx.integer, n=200)
30 ptbx.register("population", tools.initRepeat,

,! list, ptbx.individual)

The evaluation function is only registered in the host tool-
box since both species are evaluated at the same time. The
crossover for hosts is an unaligned one point crossover that
can change individuals length, while the mutation is the
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mutComparator defined on line 12. Selection among hosts is
made by NSGA-II. The parasite toolbox mates individuals
using a standard one point crossover, it mutates them by
changing some integers by other integers drawn uniformly
between low and up, and the selection is made using a 3
participants tournament on the first objective.

31 htbx.register("evaluate", evalNetwork,
,! dimension=INPUTS)

32 htbx.register("mate", tools.cxMessyOnePoint)
33 htbx.register("mutate", mutComparator,

,! comparator=htbx.comparator, indpb=0.05)
34 htbx.register("select", tools.selNSGA2)
35
36 ptbx.register("mate", tools.cxOnePoint)
37 ptbx.register("mutate", tools.mutUniformInt,

,! low=0, up=2**INPUTS - 1, indpb=0.05)
38 ptbx.register("select", tools.selTournament,

,! tournsize=3)

The complete algorithm is almost as simple as the one
of Ex. 2 even though we are manipulating two popula-
tions. First we create populations of 300 hosts and 300
parasites, using their respective initialization method reg-
istered in each toolbox.

39 hosts = htbx.population(n=300)
40 parasites = ptbx.population(n=300)

A hall-of-fame (Pareto front type) is also instantiated to
keep track of the best nondominated networks to appear
during the evolution.

41 pareto = tools.ParetoFront()

Before starting the evolution, the populations are evaluated.
Again, the toolbox map function is used to apply the eval-
uation function on host-parasite pairs. In this case, we re-
peatedly match the host population first individual with the
parasite population first individual, then the second with the
second, etc., and use the corresponding tuples as arguments
for the toolbox evaluate function calls. The fitness are then
assigned to each host and parasite in the for loop and the
pareto front is updated with the evaluated hosts.

42 fits = htbx.map(htbx.evaluate, hosts, parasites)
43 for h, p, fit in zip(hosts, parasites, fits):
44 h.fitness.values = p.fitness.values = fit
45
46 pareto.update(hosts)

The evolution loop consists of variating individuals in each
population, evaluating the populations one against the other,
and selecting the next generation individuals until a prede-
fined number of generations is reached.

47 for g in range(1, MAXGEN):
48 hoff = algorithms.varOr(hosts, htbx,

,! len(hosts), H_CXPB, H_MUTPB)
49 parasites = algorithms.varAnd(parasites,

,! ptbx, P_CXPB, P_MUTPB)
50
51 fits = htbx.map(htbx.evaluate, hoff,

,! parasites)
52 for h, p, fit in zip(hoff, parasites, fits):
53 h.fitness.values = p.fitness.values = fit
54
55 pareto.update(hoff)
56
57 hosts = htbx.select(hosts+hoff, k=len(hosts))
58 parasites = ptbx.select(parasites,

,! k=len(parasites))

This complete example illustrates the expressive power of
DEAP, and its coding elegance and simplicity, even for rela-
tively complicated algorithms. With DEAP, it is possible to
remove the hood covering even the most sophisticated EAs,
admire the engine clarity, and customize its parts.

Currently, DEAP bundles more than 30 complete working
examples of ECs ranging from the simple one-max problem
with bit-string GA, to the Artificial Ant with GP, including
real function parameter optimization with CMA-ES, PSO,
and EDA, and multi-objective optimization with NSGA-II
and SPEA-II. We believe that the best way to document our
framework is by showing how to design transparent imple-
mentations of classical problems using well known EAs. An
ever increasing number of public examples also helps spread-
ing variations of EC optimizers in the community, making
them available to practitioners of other domains that would
wish to apply those techniques to their own problems.

5. COMPLEMENTARY TOOLS
The proposed framework also o↵ers tools that ease the

interpretation of the results produced by the evolutionary
algorithms and reduce the execution time by allowing easy
distribution of tasks.

5.1 Best-of-Run
A typical need for the evolutionary practitioner is to keep

the best individuals found along the evolution. DEAP pro-
poses two object classes: the HallOfFame keeps the N best
individuals found for a single-objective problem and the
ParetoFront keeps the individuals along the first Pareto
front of the entire evolution. Both objects have the same
interface that only requires the user to provide a single list
of individuals. Here is the creation and the usage of an hall-
of-fame object in the context of Ex. 1, where we only want
to keep the best individual of the run:

hof = tools.HallOfFame(maxsize=1)
[...]
hof.update(pop)

These objects provide a list interface where every element
is always sorted in descending order, therefore the best indi-
vidual of the previous example can be retrieved with hof[0].

5.2 Checkpointing
Checkpointing is made available in DEAP via a Checkpoint

class. A checkpoint is a snapshot of the evolution environ-
ment that allows to restart the evolution from a particular
state. The user registers the objects that he wants to check-
point and dumps their state when needed. In the following
we add the population of Ex. 1 to a checkpoint object under
the name "population" and dump the checkpoint to a file.
The checkpoint is then reloaded and the stored population
is accessed by its registered name.

cp = tools.Checkpoint()
cp.add("population", pop)
cp.dump(open("checkpoint", "w"))
[...]
cp.load(open("checkpoint", "r"))
pop = cp["population"]

5.3 Distribution
In order to allow easy parallelization of specific parts of

the user’s algorithm, DEAP provides a Distributed Task
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Figure 2: Example of task spawning within DEAP.

Manager (DTM) module that can handle parallel sub-task
creation and execution on both multi-core computers and
clusters of networked nodes by relying on MPI. The DTM
interface is composed of two main functions: submit which
is used to execute another function as a single parallel sub-
task; and map which is used to apply in parallel a given
function to every element of an iterable object (e.g. a list).
Its usage is almost completely transparent. For instance, in
the previous examples, the only required changes in order
to distribute the fitness evaluation tasks are to, somewhere
during the initialization steps, import the dtm module and
replace the map function in the toolbox with the dtm.map
function.

from deap import dtm
toolbox.register("map", dtm.map)

No other change is necessary, DTM takes care of the rest.
The map function call for the fitness evaluation of individu-
als (as seen in Ex. 2 and 3) will spawn parallel sub-tasks dis-
tributed by DTM across the worker nodes. DTM even load-
balances them if they are not of equal duration. Any sub-
task topology is possible, e.g. sub-tasks running on given
worker nodes can spawn new sub-sub-tasks that will also
get distributed and load balanced among all worker nodes,
without any centralized intervention. Fig. 2 illustrates how
a task can spawn sub-tasks which may themselves spawn
sub-sub-tasks. Sub-task spawning can be blocking or non-
blocking. A blocking spawn (continuous line) will halt the
parent task until the child task returns with an answer, while
a non-blocking spawn (dashed line) will return immediately
to allow the parent to continue its execution until it is ready
to process the result of its children.

In DTM, there is no hierarchy between worker nodes.
Each worker manages two queues of tasks: those that are
awaiting execution, and those that are halted, awaiting re-
sults from child tasks. When spawned, a task awaits execu-
tion in the queue of the node where it was created, but it
can also be dynamically pushed to another node by the local
load balancer. No matter where it is executed, the result of
a task always returns to the node where it was originally
spawned. Indeed, this is where the parent task is either
running or halted, awaiting for its children’s results (once
started, a task may no longer migrate).

The load balancing mechanisms in DTM are fully decen-

Figure 3: Genealogy tree of the best individual,
lighter node colour means better individual.

tralized. Every worker caches the load of others through
epidemiological propagation; each time a worker communi-
cates with a co-worker, for example to push a task or to
return a task result, it also transmits its current load esti-
mate. The load of a worker is assumed proportional to the
total running time of all tasks that are currently assigned to
this worker (waiting for execution, executing, or waiting for
child results). The objective of the load balancer is to evenly
distribute the load between worker nodes. The most under-
loaded workers transmit more often their load estimates to
the overloaded ones, so that they inform the later of the
relative under utilization of the former. For their part, the
most overloaded workers transfer some of their tasks to the
underloaded ones in order to reduce their own load.

5.4 History
The History tool helps keeping track of the genealogy of

an evolution. In fact, it gathers the information produced by
variations and compiles the individuals genealogy. Simply
by decorating the registered variation operators, it is possi-
ble to memorize the parents and o↵spring of every solution
produced during an evolution.

history = tools.History()
toolbox.decorate("mate", history.decorator)
toolbox.decorate("mutate", history.decorator)

Then one can trace the evolution of the best individual of the
population as in Figure 3, where individual 525 is the result
of many combinations and mutations of the other individuals
since the begin of the evolution, by simply retrieving the
genealogy associated to the best individual :

import networkx
from matplotlib.pyplot import show

gen_best = history.getGenealogy(hof[0])
graph = networkx.DiGraph(gen_best).reverse()
networkx.draw(graph)
show()

5.5 Statistics
The Statistics object allows the user to register, as in the

toolbox, statistic operations that should be performed at
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Figure 4: One-max gene average values heatmap.

every generation. The statistics are computed on an arbi-
trary attribute of a user designated object, most generally
the individual fitness. A statistics object is associated to an
attribute using a key in the following fashion:

stats = tools.Statistics(key=lambda ind: ind.
,! fitness.values)

Then, statistical operations are registered under a specific
alias. Some basic functions, like mean or standard deviation,
are provided by the tools module.

stats.register("max", max)
stats.register("mean", tools.mean)

Once the operations registered, the statistics can be com-
puted on a list of elements that possess the keyed attribute;
in this case the population of individuals.

stats.update(pop)

Finally, the statistics object presents a two dimensional ma-
trix interface to retrieve the computed statistics. The first
dimension is the index of the list (mostly used when comput-
ing statistics of multiple demes with one statistics object),
and the second dimension is the generation.

To demonstrate that Statistics can serve di↵erent pur-
poses, here is the example of a heatmap for the average
gene value of individuals in Ex. 1:

stats = tools.Statistics()
stats.register("avg", tools.mean)

If no key is provided, the statistics are computed directly
on the elements of the list, therefore in this case on the
individual genes. We use matplotlib to produce a simple
heatmap:

from matplotlib.pyplot import imshow, show
imshow(stats.avg[0], origin="lower")
show()

The result is presented in Fig. 4. The x-axis represents the
index of the gene and the y-axis the generation. White genes
have an average value of 1 and black genes have an average
value of 0. We observe that the evolution makes the average
of all genes converge from 0.5 to 1.

6. CONCLUSION
Current major EC frameworks all do a good job of o↵er-

ing generic tools to solve hard problems using EAs. How-
ever, their implementation intricacies make them hard to
extend for the commoner. Even experts can become over-
whelmed when trying to implement special features. This
paper has described a novel framework named DEAP, that

combines the flexibility and power of the Python program-
ming language with a clean and lean core of transparent EC
components that facilitate rapid prototyping of new EAs,
and promote creativeness by making most everything ex-
plicit. Moreover, with minimal code change, the proposed
framework also includes tools that allow easy parallelism for
distributing the most computationally intensive parts of al-
gorithms over a computer cluster. The distribution model
brought forward has no hierarchy, enabling each worker to
create new tasks and share the total workload of the appli-
cation. The framework has been proven easy to use even for
non trivial algorithms. Furthermore, after only two years
of existence, DEAP is already used by several researchers
from di↵erent domains, studying bloat control in genetic
programming to sensor network placement using genetic al-
gorithms. DEAP is an open source project, freely available
at http://deap.googlecode.com.
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