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Comparing two different 
simulated strategies

-75 0 75

-75 0 75

-75 0 75

Number of Reps = 5

7.9-5.7

5.9-6.2

19.1-5.4

Problem 1

Problem 2

Problem 3

Strategy 1 Avg. Strategy 2 Avg.

Sampling From Two 
Normal Distributions

-75 0 75

-75 0 75

-75 0 75

True Avg. -10 +10

7.9-5.7

5.9-6.2

19.1-5.4

Variation 
Expected:
! = 5

Variation 
Expected:
! = 10

Variation 
Expected:
! = 50

Problem 1

Problem 2

Problem 3

Number of Reps = 5

Sampling From Two 
Normal Distributions

-75 0 75

-75 0 75

-75 0 75

10.5-9.7

9.7-10.7

7.9-2.5

Number of Runs = 100True Avg. -10 +10

Variation 
Expected:
! = 5

Variation 
Expected:
! = 10

Variation 
Expected:
! = 50

Problem 1

Problem 2

Problem 3

What Are We Interested In?

• For most statistical analysis for CS the question is
• Is one way better than another way?
• Statistically this translates into a statement about the 

difference between means:  “Is the difference between ‘my 
mean’ and ‘the other mean’ greater than zero?”

• We will approach this question in 2 steps:
1. What can we say about the true mean of a single distribution?

• Called point estimation
2. How can we compare the true means of two or more 

distributions?
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Confidence Intervals

• Where is the true mean?
• Sample averages bounce around so can’t give exact point

• Can give a range within which it is very likely the true 
mean lies
• Called the confidence interval

• Also should consider the probability that the true mean 
lies with the range
• Called the confidence level

• Example:  
• In 99% of cases, the true mean of the distribution, 

estimated from our 50 samples, 
lies within the interval [ 64 , 79 ] 

Normal (Gaussian) Distribution
• For now we will assume that we are sampling from 

(the results are distributed as) a normal distribution 
• AKA Bell Curve 
• Most common distribution found in nature thanks to the 

Central Limit Theorem

P(X = x;µ,! ) = 1
! 2"

exp(# (x #µ)
2

2! 2 )

Standard Normal Distribution

~X N(µ, ! 2)

~X N(0, 1)

Distribution of the Mean

• Consider the distribution of the average of a set of n 
independent samples
• If n = 1, the distribution of the average is just the distribution 

itself, since we have only the single data point
• If n is larger than one, the distribution of the mean must be 

narrower than the distribution of the population
• i.e. the variance and standard deviation must be smaller

• In fact, the mean & variance of the mean of n samples is

µX = µ

Distribution of the Mean 
(Standard Normal Distribution)

Mean of one sample                           Mean of 5 samples

Mean of 25 samples                          Mean of 100 samples
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Confidence Intervals

• Of course, we don’t know the true mean,    , or true standard 
deviation,   

• We do know the mean of the samples,    , the sample size, n, and 
the sample standard deviation, 

• If the source distribution is normally distributed, the shape and 
size of the “finger” is known exactly!
• We can determine the odds that the true mean lies within a 

specified range of
• First since     is normally distributed, we can turn it into a 

standard normal distribution

Z =
X ! µX

" X

=
X ! µX

" X

n

Confidence Intervals

• First since     is normally distributed, we can turn it into a 
standard normal distribution
• subtract off the mean to zero it
• divide by the std deviation to give it a std deviation of 1

• also gives a variance of 1

Z =
X ! µX

" X

=
X ! µX

" X

n

t Distribution

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - ! is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of ! 

•  But now we have a normally distributed numerator divided by 
a non-normally distributed denominator
• Denominator has a chi distribution
• A normal distribution over a chi distribution 

has a Student’s t distribution

T =
X ! µX

sX
=
X ! µX

sX
n

t Distribution

• The t “distribution” is really a family of distributions – the 
shape of the distribution changes as the number of samples, n, 
changes
• This parameter is called the 

degrees of freedom of the 
distribution

• In the limit of many d.f.,
t distribution approaches 
a standard normal 
distribution

4 d.f.; n = 5
9 d.f.; n = 10

99 d.f.; n = 100
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• Cut off            values can be computed 
using Excel:    =TINV(", n - 1)
• Note: TINV() is already 2 sided

0

95%

2.01-2.01

0 2.68-2.68

99%

Estimating the Mean:
Confidence Intervals Around the Average

If samples taken from a standard normal distribution (µ = 0, ! = 1), 
the sample average has a t distribution. 

99.9%

0 3.50-3.50

• For CI, we can use cutoff t values
• The wider the cutoff values, the more 

likely the true mean lies between them

Based on n = 50 runs

t0.025, 49 = 2.01

t!
2 , n"1

t0.005, 49 = 2.68

t0.0005, 49 = 3.50

• " is the probability of 
seeing values outside the cutoffs
• Confidence Level is 1 – "

! = 0.05
n = 50

! = 0.01
n = 50

! = 0.001
n = 50

Estimating the Mean:
Confidence Intervals Around the Average

• We know that 

which can be rewritten as

cutoff t-values we can form a Confidence Interval

that has a 1 - " C.L with n - 1 degrees of freedom

• Substituting the cutoff values from the C.I. into the above equation produces

• Using the

±t!
2 , n"1

= X " µX

sX
n

µX = X ± t!
2 , n"1

sX
n

± t!
2 , n"1

Estimating the Mean:
Confidence Intervals Around the Average

• Confidence Intervals can be written in 3 equivalent ways

Error Bounds

Confidence Intervals

µX = X ± t!
2 , n"1

sX
n

X ! t"
2 , n!1

sX
n
# µX # X + t"

2 , n!1

sX
n

µX ! X " t#
2 , n"1

sX
n
, X + t#

2 , n"1

sX
n

$
%&

'
()

Estimating the Mean:
Confidence Intervals Around the Average

Example: 
• An experimenter runs a New Search  Algorithm on a TSP
• At the end of each run, the smallest length tour 

that had been found during the run was recorded
• NSA is run 50 times on the same TSP problem
• On average NSA found solutions with a tour length of 272 
• The standard deviation of these tours is 87
• We want to compute a Confidence Interval using a 99% Confidence level
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Estimating the Mean:
Confidence Intervals Around the Average

• From the problem we know that the average NEA run produced tours of

with a 99% C.L.

so the ±t cutoff value is
using Excel we see that TINV(0.01,49) is 2.68

We know that

• Also from the problem n = 50 and " = (1 - 0.99) = 0.01

that had

and so

i.e. there is only a 
1% chance that the true 
mean lies outside the 
confidence interval 
formed around average 

µX = X ± t!
2 , n"1

sX
n

t 0.01
2 , 50!1

= t0.005, 49

µX = X ± 2.68 sX
50

= X ± 0.38sX = X ± 33

Basic Statistical Tests

Part 2 - Comparisons: 
 Non-Overlapping Confidence 
 Intervals and the Student’s T Test

Using Confidence Intervals to 
Determine Whether My Way is Better

If we have two different EC systems how can we tell if one is better 
than the other?

Trivial method:  Find confidence intervals around both means

• If the CIs don't overlap 
• Then it is a rare occurrence when the two systems do have identical means
• The system with the better mean can be said to be better on average with a 

probability better than the Confidence Level
• If the CIs do overlap

• Can't say that the two systems are different with this technique
• Either:

1. The two systems are equivalent
2. We haven't sampled enough to discriminate between the two

Confidence Interval Example

-75 0 7510.5-9.7

µ !
+10 10
-10 10

n X sX Lower Uppe
r100 10.5 10.0 3.3 7.2 13.8

100 -9.7 10.1 3.3 -13.1 -6.4

[ ]
[ ]

95% Confidence Level
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Confidence Interval Example

-75 0 757.9-2.5

µ !
+10 50
-10 50

n X sX Lower Uppe
r100 7.9 47.1 9.2 -1.3 17.1

100 -2.5 52.1 10.2 -12.7 7.7

[ ]
[ ]

95% Confidence Level

The Student t Test

Where the normalized difference falls on the t distribution determines whether 
difference expected if both systems were actually performing the same

99%

0 2.68-2.68

• Normalized difference called the t value

• Distribution again differs for different 
sample sizes

• Degrees of Freedom is now
 = (n – 1) + (n – 1)  = 2n – 2

• t test either succeeds or fails
• t value greater than cutoff for a 

given C.L. or not

Based on 50 runs
" = 0.01

99%

0

99%

0

2.68-2.68

2.68-2.68

• Idea: Gain sensitivity by looking at the difference 
between the means of the two systems

The Student t Test: p-values

0

• The cut-off values produces a binary 
decision: true or false

• loses information
• Better to report the probability that two 

systems are different
• This is the complement of the probability 

that they are the same
• 1 – Pr(T < t score)
• Called the p-value

Based on 50 runs

0.5

0.15

0 2.4

0 1.1

0.01

t Test Step by Step

1. Compute the 2 averages X1 and X2

2. Compute standard deviations s1 and s2

3. Compute degrees of freedom: n1 + n2 – 2 = 2n – 2

4. Calculate T statistic:

5. Compute the p-value
1. p-value = the area under the t distribution outside [-T, T]
2. Use =TDIST(T, n1 + n2 - 2, 2) in Excel

1. The final “2” in Excel means “two-sided”
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Variance Assumptions
and the T Test

!1 = !2 = !  and n1 = n2 = n

!1 = !2 = !  but n1 ! n2

Variance Assumptions
and the T Test

!1  ! !2  and n1 ! n2

called the Welch’s T test

Approximate variance 
not pooled

t.test(): Everything in one 
simple R function

• R comes with a function that produces all of 
the above information in one function
• t.test(X,Y)

• See R help for details

Tests on Non-Normally 
Distributed Random Variables

Non-Parametric Statistics
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When The Normality Fails

• Everything so far has depended on the assumption of normality 
which in turn depends on the Central Limit Theorem holding
• But this is not always true
• In in many areas of CS it rarely holds

• Problems occur when
• …you have a non-zero probability of obtaining infinity

• Mean and standard deviation are infinite!
• …the sample average depends highly on a few scores

• When the mean of your distribution is not measuring what you want, 
consider using the median instead (rank-based statistics)

• …you don’t know how fast your sample series converges to normal
• if your sample average distribution converges very slowly than the number 

of samples may be insufficient to  assume normality

So what should we do?

First test for normality
• Many such tests
• Recommended

• Normal Probability Plot 
(QQ plot: sorted data vs Normal quantiles)

• Lilliefors test (variant of the KS test)

So what should we do?

There are 3 basic remedial measures:
1. Transforming data to make them normally distributed

• also called data re-expression
• traditional approach (required before the advent of fast computers)

2. Resampling techniques
3. Non-parametric statistics

Non-Parametric Statistics

• Basic Idea
• Sort the data and then rank them
• Use Ranks instead of actual values to perform statstics

• Also known as 
• order statistics, 
• ordinal statistics 
• rank statistics

• Measures how interspersed the samples are from the 2 treatments
• If the result is “alternating” it is assumed that there is no difference

• Can’t be affected by outliers (extrememly large or small values)
• Just the highest or lowest rank 
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Non-Parametric Tests

• Reason behind the appropriateness of non-parametric tests
• Both the sum of ranks and average of ranks will be approximately 

normally distributed 
• because of the Central Limit Theorem, 
• as long as we have 5 or more samples 

• result is independent of the underlying distribution
• Ranked T-test

• Perform a t test on the ranks of the values 
• instead of the values themselves

• 2 other techniques with similar results are commonly seen
• Wilcoxon’s Rank-Sum test
• Mann-Whitney U test
• All are effectively equivalent

A 0.03

A 0.91

A 0.64

A 0.99

A 0.64

A 0.16

A 0.16

A 0.91

A 0.16

A 0.27

B 0.64

B 0.08

B 0.16

B 0.27

B 0.02

B 0.01

B 0.16

B 0.03

B 0.03

B 0.64 Ranked Example

Combine the data into a single array

Two sets of Data

A 0.99 1

A 0.91 2

A 0.91 3

A 0.64 4

A 0.64 5

B 0.64 6

B 0.64 7

A 0.27 8

B 0.27 9

A 0.16 10

A 0.16 11

A 0.16 12

B 0.16 13

B 0.16 14

B 0.08 15

A 0.03 16

B 0.03 17

B 0.03 18

B 0.02 19

B 0.01 20 Ranked Example

Give each data element 
its corresponding rank

ranks

Sort the combined data

Ranked Example

Replace tied ranks 
with average tied ranks

ranks

t1 2.5

t2 5.5

t3 8.5

t4 12

t5 17

Average tied ranks
together

A 0.99 1

A 0.91 2.5

A 0.91 2.5

A 0.64 5.5

A 0.64 5.5

B 0.64 5.5

B 0.64 5.5

A 0.27 8.5

B 0.27 8.5

A 0.16 12

A 0.16 12

A 0.16 12

B 0.16 12

B 0.16 12

B 0.08 15

A 0.03 17

B 0.03 17

B 0.03 17

B 0.02 19

B 0.01 20

t1

t1

t2

t2

t2

t2

t3

t3

t4

t4

t4

t4

t4

t5

t5

t5
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Ranked Example

Perform t test on Ranks

ranks

Arank Brank

avg 7.85 13.15

stdDev 5.28 5.33

Ranked t Test

2.37

2.23 
p-value 0.038

n = 10

tR score

A 0.99 1

A 0.91 2.5

A 0.91 2.5

A 0.64 5.5

A 0.64 5.5

A 0.27 8.5

A 0.16 12

A 0.16 12

A 0.16 12

A 0.03 17

B 0.64 5.5

B 0.64 5.5

B 0.27 8.5

B 0.16 12

B 0.16 12

B 0.08 15

B 0.03 17

B 0.03 17

B 0.02 19

B 0.01 20

Resort by treatment
Ranked t Test:  What do we pay?

• t Test is optimized for the normal distribution
• t Test on the ranks is not

• How much do we pay?

Distribution # Samples 
for t Test

# Samples for 
t Test on Ranks

# Samples of tR, 
normalized to 
50 runs of t

Normal 31 32 52

Exponential 29 16 27

Uniform 31 34 55

Bimodal 31 34 54

Chubby Tails 40 12 15

Table created by Steffen Christensen

A Non-Parametric ‘Mean’: 
The Median

• Average of a data set that is not normally distributed 
produces a value that behaves non-intuitively
• Especially if the probability distribution is skewed

• Large values in ‘tail’ can dominate
• Average tends to reflect the typical value of the “worst” data

not the typical value of the data in general

• Instead use the Median
• 50th percentile
• Counting from 1, it is the value in the 

• If n is even, (n+1)/2 will be between 2 positions, 
average the values at that position

A Confidence Interval Around 
the Median: Thompson-Savur

• Find the b the binomial value that has a cumulative upper tail 
probability of !/2

• b will have a value near n/2

The lower percentile l =

The upper percentile u = 1 – l
  

• Confidence Interval is [valuel,valueu]
• i.e. 
• With a confidence level of 

In Excel: 
To calculate b use
CRITBINOM(n,1/2,"/2)
to compute the valueu use the function 
PERCENTILE(dataArray, u)
to compute the valuel use the function 
PERCENTILE(dataArray, l)
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Thompson-Savur: Example
18 3.42

17 2.79

16 1.58

15 1.06

14 1.04

13 1.04

12 0.87

11 0.70

10 0.64

9 0.49

8 0.48

7 0.42

6 0.33

5 0.31

4 0.27

3 0.23

2 0.23

1 0.09

0 0.06

0.27

1.06

0.23

0.70

3.42

0.87

0.42

0.33

0.48

0.23

1.04

0.64

1.04

0.31

0.06

1.58

2.79

0.09

0.49

Sort
Data

n = 19" " CL = 99%
# # # # "  # = 0.01

b = CRITBINOM(n,1/2,"/2)
 = CRITBINOM(19,0.5,0.005)
 = 4

l = b/(n – 1) = 4/(19 – 1) = 2/9 = 0.222
u = 1 - l =0.778

rankl    =b = 4  valueu  = 1.04
rankmed = (n - 1)/2 = 9 median = 0.49
ranku   = (n – 1) – b =14 valuel  = 0.27

Interquartile Range & Box Plots
18 3.42

17 2.79

16 1.58

15 1.06

14 1.04

13 1.04

12 0.87

11 0.70

10 0.64

9 0.49

8 0.48

7 0.42

6 0.33

5 0.31

4 0.27

3 0.23

2 0.23

1 0.09

0 0.06

Sorted
Data

rankuq  = 0.75 * (n – 1) = 13.5
rankmed = 0.5  * (n – 1) =  9
ranklq   = 0.25 * (n – 1) = 4.5

boxuq = (1.04 + 1.04) / 2 = 1.04
median = 0.49
boxlq  = (0.27 + 0.31) / 2 = 0.29

IQR = 1.04 - 0.29 = 0.75

wiskeru = 1.58 <= 1.5 * IQR + boxuq = 2.165
wiskerl = 0.06 >= boxlq  – 1.5 * IQR   = -0.835

Summary
wiskeru  = 1.58 
boxuq  = 1.04
median  = 0.49
boxlq   = 0.29
wiskerl  = 0.06

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

IQR ~ standard deviation
wiskers ~ error bars * !n

ANOVA: Analysis of Variance

Part 1: Multi-Level Analysis
 Basic Concept

More Than 2 Treatments
• Preceding stats to be used for simple experiment designs
• More sophisticated stats needs to be done if:

• Comparing multiple systems instead of just 2 treatments
• E.g. comparing the effect on a Genetic Algorithm of using 

no mutation, low, medium and high levels of mutation

• We say there are 4 levels of the mutation variable

• Need                 possible comparisons to test all pairs of treatments

• Called a ‘multi-level’ analysis

4
2

!
"#

$
%&
= 6
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no xover xover = 1pt xover = 2pt xover = 3pt xover = 4pt
4.3 8.8 5.0 6.3 5.4
3.7 7.7 5.3 6.6 5.9
4.7 8.3 5.1 7.2 5.4
3.7 8.1 5.2 7.4 5.4
4.2 8.1 5.5 7.4 6.2
3.6 8.0 4.9 7.3 6.7

avg fitness 4.02 8.13 5.09 7.02 5.76
std dev 0.451 0.313 0.424 0.478 0.471

Analysis of Variance (ANOVA)

avg fitness 4.02 8.13 5.09 7.02 5.76

Fitness
Values

T test
T test T test

all pairwise T test

Question: Do crossover settings make a difference at all?

Comparing Variances

• Up to now we have been comparing means
• Student’s T test
• Difference between averages (after normalization)

• see if it equals 0

• From here on we will be comparing variances
• Won’t take the difference between variances

• Difference between variances not a nice distribution
• Rather will take the ratio of variances 

•  see if it equals 1
• distribution known: F distribution

The F Distribution

• Remember the sample variance over the true variance has 
a $2 distribution with a n - 1 degrees of freedom

• But what about the ratio of two variances?
• With degrees of freedom of d1 and d2

• Answer: It has a F(d1,d2) distribution
• F distribution is the ratio of two $2 distribution over their degrees 

of freedom

The F test

• H0: V(X1) = V(X2)
• Ha: V(X1) ! V(X2)

• Test Statistic

then F* has a F(n1 – 1, n2 – 1) distribution

F* = V (X1)
V (X2 )

has a F(df1, df2)  
! distribution

If X1 is sampled n1 times and X2 is sampled n2 times, 
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The F Test

From Wikipedia: http://en.wikipedia.org/wiki/F_distribution

p-valueF*

F Distributions

ANOVA: Graphical Intuition

Model: Y = 1.0x + 0.25 + !

= MStotal

X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3

SStotal
n !1

SSerror
n ! 2

= MSerror

No Model (Y = Yavg)

 !1F* =
MStotal
MSerror

ANOVA: Graphical Intuition

Linear regression can be solved by means of  least squared error

b1 =
(xi ! x )(Yi !Y )

i=1

n

"

(xi ! x )
2

i=1

n

"
= cov(x,Y )

var(x)
=
Sxy
Sx
2

b0 =Y !b1xŶi = b0 ! b1xi

Y = !0 " !1x + #Model

Estimate

ANOVA: Graphical Intuition

Linear regression can be solved by means of  least squared error

b1 =
(xi ! x )(Yi !Y )

i=1

n

"

(xi ! x )
2

i=1

n

"
= cov(x,Y )

var(x)
=
Sxy
Sx
2

b0 =Y !b1xŶi = b0 ! b1xi

Y = !0 " !1x + #Model

Estimate

Note: 

b0 and b1 vary depending on your samples
So they have computable variance 
and an unknown true mean

Consequently you must compute 
confidence intervals for each 
T tests to see if they are statistically different than 0
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is not independent of the scatter of the residuals

ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3

Scatter within Y 

So F test cannot be applied as is

ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3

To achieve independence of the numerator (total variance) 
from the denominator (error variance)

subtract the error variance from the total variance

General Linear Model

F* =
(SSreduced ! SSfull ) / (dfreduced ! df full )

SSfull / df full
= MSmodel
MSerror

ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3

For a regression model (error variance) = full model
vs x not considered (total variance) = reduced model

F* = (SStotal ! SSerror ) / (dftotal ! dferror )
SSerror / dferror

= (SStotal ! SSerror ) /1
SSerror / (n ! 2)

dftotal = n !1

dftotal = n !1

dferror = n ! 2

ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3 F* =
MSregr
MSerror

Mean Square Model    = var(Model) + var(Noice)

F* = MSmodel
MSerror

has a F(df1, df2)   
distribution

• H0: variance added by model  is small 
" wrt variance around model 
" (model can’t be seen above the noise)

• Ha: variance (effect) of model is 
" much larger than variance around model

• Test Statistic

F Test
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ANOVA: Graphical Intuition

Model: Ŷi = 1.0xi + 0.25 X0.25 0.50 0.75 1.00

Y

0.6

1.5

1.2

0.9

0.3 F* =
MSregr
MSerror

Mean Square Model    = var(Model) + var(Noice)

F* =
MSregr
MSerror

• H0: variance added by the regression model  is small 
" wrt variance around model 
" (model can’t be seen above the noise)

• Ha: variance (effect) of the regr. model is 
" much larger than variance around the regr. line

• Test Statistic

F Test

has a F(1, n - 2)   
distribution

R squared = 70.2%     R squared (adjusted) = 70.2%
s =  0.1465  with  1000 - 4 = 996  degrees of freedom 

Source! ! Sum of Squares! df! Mean Square! F-ratio! p-value
Regression! 50.4684! ! 3! 16.8228! ! 784! " 0.0001
Residual! 21.3807! ! 996! 0.021467!
! ! ! !
Variable!! Coefficient! s.e. of Coeff! t-ratio! p-value
Constant!  0.510755! 0.0190! !  26.9!  " 0.0001
X! ! -2.17801!! 0.1636! ! -13.3!  " 0.0001
X^2! !  8.45358!! 0.3813! !  22.2!  " 0.0001
X^3! ! -6.28741!! 0.2515! ! -25.0!  " 0.0001

Polynomial Regression E.g.

Regression model is statistically significant
F-ratio = 784 >> 1

no xover xover = 1pt xover = 2pt xover = 3pt xover = 4pt
4.3 8.8 5.0 6.3 5.4
3.7 7.7 5.3 6.6 5.9
4.7 8.3 5.1 7.2 5.4
3.7 8.1 5.2 7.4 5.4
4.2 8.1 5.5 7.4 6.2
3.6 8.0 4.9 7.3 6.7

avg fitness 4.02 8.13 5.09 7.02 5.76
std dev 0.451 0.313 0.424 0.478 0.471

ANOVA: Back to Discrete Levels

avg fitness 4.02 8.13 5.09 7.02 5.76

Fitness
Values

T test
T test T test

all pairwise T test

Question: Do crossover settings make a difference at all?

ANOVA: Discrete Levelsfitness xover
4.3 no
3.7 no
4.7 no
3.7 no
4.2 no
3.6 no
8.8 1pt
7.7 1pt
8.3 1pt
8.1 1pt
8.1 1pt
8.0 1pt
5.0 2pt
5.3 2pt
5.1 2pt
5.2 2pt
5.5 2pt
4.9 2pt

no xover xover = 1pt xover = 2pt
4.3 8.8 5.0
3.7 7.7 5.3
4.7 8.3 5.1
3.7 8.1 5.2
4.2 8.1 5.5
3.6 8.0 4.9

f
i
t
n
e
s
s

Most statistic packages work with tables 
formatted as the chart to the right

each column is a variable
(fitness is a response variable, xover is a factor)
each row is a treatment 
(i.e the settings and results of a single run)
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ANOVA Notation

Generalizes to higher dimensions

i subscript: levels " - there are r levels
j subscript: repetitions"- there are ni repetitions for level i

SSM
r !1
SSM
5 !1

0

2.0

4.0

6.0

8.0

10.0

0

2.0

4.0

6.0

8.0

10.0

ANOVA: Discrete Levels

SSE
n ! 5
SSE
n ! r

0

2.0

4.0

6.0

8.0

10.0

no 1pt 2pt 3pt 4pt

Perform the F test

no 1pt 2pt 3pt 4pt

F* =
( (Yij !Y•• )

2

j=1

ni

"
i=1

r

" ! (Yij !Yi• )
2

j=1

ni

"
i=1

r

" ) / ((n !1)! (n ! r))

(Yij !Yi• )
2

j=1

ni

"
i=1

r

" / (n !1)
F* = (SStotal ! SSerror ) / (dftotal ! dferror )

SStotal / dftotal
F* =

ni (Yi• !Y•• )
2

i=1

r

" / (r !1)

(Yij !Yi• )
2

j=1

ni

"
i=1

r

" / (n !1)
F* =

n (Yi• !Y•• )
2

i=1

r

" / (r !1)

(Yij !Yi• )
2

j=1

ni

"
i=1

r

" / (n !1)
F* = MSmodel

MSerror
= n !V (levelAvg)

MSerror

 !1

0

2.0

4.0

6.0

8.0

10.0

ANOVA: Discrete Levels

no 1pt 2pt 3pt 4pt

F* = MSmodel
MSerror

= n !V (levelAvg)
MSerror

F* = MSmodel
MSerror

= 20 !V (levelAvg)
MSerror

E(MSmodel )
E(MSerror )

=
! 2 + 1

r "1
ni (µi " µ)2

i=1

r

#
! 2

E(MSmodel )
E(MSerror )

=
! 2 + n

r "1
(µi " µ)2

i=1

r

#
! 2

E(MSmodel )
E(MSerror )

=
! 2 + 4 (µi " µ)2

i=1

r

#
! 2

If test fail: (advanced technique)
use weighted least squares regression using
- indicator variables for the different levels 

         as the weight as the weight for the ith level
- Generalized ANOVA using regression

Assumption: 
variance for every level is the same and equals

Test for equivalent variances:
modified Levene’s test (more powerful F test)

! 2

If all levels are sampled equally

ANOVA table for example

Source df SS  MS F-ratio Prob
const 1 3592.9 3592.9 13967  ! 0.0001
xover 4 210.9 52.7 204.94  ! 0.0001
Error 95 24.4 0.257  
Total 99 235.3   

F test (From Excel)
F* = MSmodel

MSerror
= 52.7
0.257

= 204.94 fdist(204.94, 4, 95) = 8.19E-46

from DataDesk
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Non-parametric ANOVA

• Again, what happens if Y (or actually %) is not normally 
distributed?

• Various non-parametric techniques
• Kruskal-Wallis first such test

• However, even simpler technique
• Like Spearman’s correlation coefficient and non-parametric regression, 

replace the Yi values with their corresponding ranks
• Perform ANOVA on ranked values as usual

• A slightly more accurate version is called the Friedman test
• Same as above, except 

• the F distribution is replaced by the Chi-Squared distribution 
(DofF = r – 1) for large n or r (n > 15 or r > 4) 

•  a special purpose distribution for small n or r

ANOVA: Analysis of Variance

Part 2: Multi-Level Analysis
 Pairwise Comparisons
 Post-Hoc Analysis

Pairwise Comparisons 
between Factor-Level Means

• What if we want to know more detailed information?
• Which of the means is the significantly different one?
• Are there more than one significantly different mean?
• If so, what are the pair-wise differences and are they 

statistically significant?

Pairwise Comparisons 
between Factor-Level Means

• This is determined by a series of pair-wise T tests

• However, commonly uses pooled information from the 
model for the variance to provide greater accuracy

• Called standard error

t value = X1 ! X2
sX1
2

n1
+
sX2
2

n2

Xi ! Xj

2 "MSE
n

when ni = nj = n

comparing level i with level j 
across the ANOVA modeloriginal T test comparison

t value =

Assumption: variances for each factor level is the same (     )  
                     which is best estimated  by the MSE 

! 2
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Multiple Levels: 
Post-hoc Analysis

• For 4 levels of mutation there are 6 comparisons possible
• Each one of the comparison holds at a 95% C.L. independent 

of the other comparisons
• If all comparisons are to hold at once the odds are 

0.95 x 0.95 x 0.95 x … x 0.95 = (0.95)6 = 0.735
• So in practice we only have 73.5% C.L

• Wrong 1/4 of the time

• For 7 levels of mutation there are 21 comparisons 
possible
• C.L. =  (0.95)21 = 0.341

• Chances are better than half that at least one of the decisions may be 
wrong!

The Bonferroni Correction
• To correct, choose a smaller "

• Where m is the number of comparisons
• So for 95% CL use " = 0.025/6 = 0.004167
• For a Z test the critical value changes from 1.96 to 2.64

• You should apply the Bonferroni (etc.) correction:
• To t tests (t tests and ranked t tests)
• To Confidence Intervals and Error Bounds
• Whenever you mean "all the significant results we found hold at once"

Pairwise Comparisons 
between Factor-Level Means

 Diff std. err. t-value df p-value
n - 1 -4.04 0.15 -27.5 18 3.6E-15
n - 3 -3.18 0.16 -20.5 18 6.3E-13
2 - 1 -3.04 0.16 -20.2 18 8.4E-13
3 - 2 2.16 0.17 13.7 18 5.5E-10
4 - 1 -2.09 0.17 -12.7 18 2.0E-09
n - 4 -1.95 0.17 -11.4 18 1.1E-08
4 - 3 -1.22 0.18 -7.1 18 1.3E-05
n - 2 -1.00 0.16 -6.3 18 5.8E-05
4 - 2 0.95 0.16 5.6 18 2.6E-04
3 - 1 -0.86 0.15 -5.6 18 2.6E-04

Regular Pair-wise T test (with Bonf. Correction)

Pairwise Comparisons 
between Factor-Level Means

 Diff std. err. t-value df p-value
n - 1 -4.04 0.15 -27.5 18 3.6E-15
n - 3 -3.18 0.16 -20.5 18 6.3E-13
2 - 1 -3.04 0.16 -20.2 18 8.4E-13
3 - 2 2.16 0.17 13.7 18 5.5E-10
4 - 1 -2.09 0.17 -12.7 18 2.0E-09
n - 4 -1.95 0.17 -11.4 18 1.1E-08
4 - 3 -1.22 0.18 -7.1 18 1.3E-05
n - 2 -1.00 0.16 -6.3 18 5.8E-05
4 - 2 0.95 0.16 5.6 18 2.6E-04
3 - 1 -0.86 0.15 -5.6 18 2.6E-04

Regular Pair-wise T test (with Bonf. Correction)
 Diff std. err. t-value df p-value
n - 1 -4.04 0.16 -25.2 95 7.7E-43
n - 3 -3.18 0.16 -19.8 95 1.7E-34
2 - 1 -3.04 0.16 -19.0 95 4.8E-33
3 - 2 2.16 0.16 13.6 95 6.0E-23
4 - 1 -2.09 0.16 -13.0 95 7.5E-22
n - 4 -1.95 0.16 -12.2 95 4.4E-20
4 - 3 -1.22 0.16 -7.6 95 1.8E-10
n - 2 -1.00 0.16 -6.2 95 1.2E-07
4 - 2 0.95 0.16 5.9 95 4.8E-07
3 - 1 -0.86 0.16 -5.4 95 5.1E-06

ANOVA Pair-wise T test (with Bonf. Correction)
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Pairwise Comparisons 
between Factor-Level Means

stdError = MSerror
ni

+ MSerror
nj

= 2 !MSerror
n

= 2*0.257
20

= 0.1604

df = nT ! r = rn ! r = 5*20 ! 5
= 95

t - value = Diff
stdError

Diff = Yi• !Yj•

p-value = m * tdist(t-value, df, two-sided)
= 10 * tdist(t-value, 95, 2)

Student-T with Bonf. Correction

Other Post-Hoc Corrections

• Holm -Sidak (really Bonferroni done “right”)
• Order the p-values from smallest to largest
• Compare the smallest p-value to !/k (regular Bonferroni)
• If that p-value is less than !/k, then accept that alternative hypothesis 
• Now look at the next smallest p-value at  ! / (k " 1)
• Continue until the p-value is not smaller than the modified value
• At that point, stop and accept all the rest as null hypotheses

Other Post-Hoc Corrections

• Tukey 
• Used when comparing all pair-wise differences 

• produces narrower confidence intervals 
than Bonferonni in this situation 

• usual situation when trying to order results
• e.g. comparing 5 different EC systems
• Found out that EC3 > EC2 | EC5 > EC1 > EC4

• Note: Although there are 4 comparison symbols above, 
there are really 6 comparisons (3v2, 3v5, 2v5, 2v1, 5v1, 1v4)

• actually there are 5C2 = 10 implicit comparisons 
• because we did not know 

how many comparisons there would be a priori

Other Post-Hoc Corrections

• Tukey 
• Used when comparing all pair-wise differences 

• produces narrower confidence intervals 
than Bonferonni in this situation 

• usual situation when trying to order results
• e.g. comparing 5 different EC systems
• Found out that EC3 > EC2 | EC5 > EC1 > EC4

• Note: Although there are 4 comparison symbols above, 
there are really 6 comparisons 

• actually there are 5C2 = 10 implicit comparisons 
• because we did not know 

how many comparisons there would be apriori

Note: 
" Pair-wise statistical comparisons form a partial order
" Consequently best represented as a DAG not a list

E.g.: " EC3 | EC2 | EC5 | EC1 | EC4

 Yet (EC3 > EC5 , EC1 , EC4), (EC2 > EC1 , EC4) and (EC5 > EC4)

EC3

EC2

EC1

EC4

EC5
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Other Post-Hoc Corrections

• Tukey
• Same as T test except uses the q distribution instead of the t distribution

• q(1 - ", r, nT - r) value is the cut off value 
where the difference observed would be less than this value 
 with a probability of 1 - " 
if r values are sampled from a normal distribution N(0,1) 

• DofF = nT - r 
• q distribution is called the studentized range distribution

• q “broader” than t, 
• q is not as “broad” as t after Bonferroni correction

• q distribution is not in Excel, 
but it is in most other stats packages including R

Other Post-Hoc Corrections

• Tukey
• Same as T test except uses the q distribution instead of the t distribution

• q(1 - ", r, nT - r) value is the cut off value 
where the difference observed would be less than this value 
 with a probability of 1 - " 
if r values are sampled from a normal distribution N(0,1) 

• DofF = nT - r 
• q distribution is called the studentized range distribution

• q “broader” than t, 
• q is not as “broad” as t after Bonferroni correction

• q distribution is not in Excel, 
but it is in most other stats packages including R

If the computed standardized difference is larger than q, 
where q is the largest distance one would expect from a normal distribution, 
then the difference is statistically real (with confidence level 1 - ")

Other Post-Hoc Corrections

• Many others
• Scheffé 

• used when comparing pairs, and triples and quadruples etc., not just 
pairs

• many many others
• Duncan's multiple range test
• The Nemenyi test
• The Bonferroni–Dunn test 
• Newman-Keuls post-hoc analysis

Important Topics Not Covered 

   No time
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Important Topics Not Covered 

• Multifactor ANOVA (MANOVA)
• Main Effects vs Interaction Terms
• F tests to determine which factors are statistically significant 

(validating the model
• T tests to compare treatments

• Regression
• Multivariate regression, Polynomial Regression
• Confidence Intervals around model parameters
• Statistical Testing for factor relevance
• Correlation Coefficients: r, r2, adjusted r2

• How to perform ANOVA as a multivariate regression
• Indicator Variables

Important Topics Not Covered 

• Testing for equality (homogeneity)  of variance 
across different factor-levels / treatments
• Levene’s Test

• Correcting for inequality of variance 
• Convert to multivariate regression using indicator variables
• Perform Weighted Least Squares

• How to perform ANOVA when using different test functions
• Test functions as blocking variables
• Non-parametric blocking

• What if one EC system has parameters the other EC system 
doesn’t?
• Nesting factor analysis

References: Books

• Mathematical statistics with applications
• Dennis D. Wackerly, William Mendenhall, Richard L. Scheaffer.
• Boston : Duxbury Press, (6th Ed.)
• Introductory material - probability distributions, simple sample statistics 
• Easy to understand concrete proofs and examples - good exercises

• Applied linear statistical models
• Michael H. Kutner, Christopher J. Nachtsheim, John Neter, William Li
• Boston: McGraw-Hill Irwin, 2005. (5th Ed.)
• Advanced Regression techniques, ANOVA, and GLM

• Nonparametric statistical methods 
• Myles Hollander and Douglas A. Wolfe.
• New York: Wiley, 1973
• Classic nonparametric statistics textbook (very practical)

Online Resources

• Websites
• Wikipedia (various pages)

• http://en.wikipedia.com 
• HyperStat Online

• http://davidmlane.com/hyperstat
• Mathworld

• http://mathworld.wolfram.com/
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