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Basic Statistical Tests
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é « Part 1 - Point Estimation:

Finding the Mean using
Confidence Intervals
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@S  Comparing two different * S Sampling From Two
@ simulated strategies @ Normal Distributions
Pr -75 | 0 | 75 ) -75 | 0+J* 75 Variation
roblem 1 | | Problem 1 . |+ Expected:
+% 6=5
57 79 57 79
-75 | 0 l 75 -75 | 0 l 75 Variation
Problem 2 Problem 2 4 i Expected:
|| o G =10
62 59 62 59
-75 0 75 -75 0 75 Variation
Problem 3 | Problem 3 hd ¥ | * I * Expected:
* wr * 6=350
54 191 54 19.1
Strategy 1 Avg. | Strategy 2 Avg. Number of Reps = 5 True Avg. |-10 |+10 Number of Reps =5
." ."
@ \~",‘ . ‘ @ \~",‘
O\ Sampling From Two /5 o
. . What Are We Interested In?
Normal Distributions
Problem 1 75 ’ Q% 75 enation *  For most statistical analysis for CS the question is
L b%» : \ 6=5 + Is one way better than another way?
10797 « Statistically this translates into a statement about the
75 0o h g 75 Variation 1fference between means: “Is the difterence between ‘m
| ‘{ﬂ,_ . diff b “Is the diff b ‘my
— — 4( N et EX”“I‘S"“: mean’ and ‘the other mean’ greater than zero?”
o 6= . . . .
07 105 *  We will approach this question in 2 steps:
e e e e el e e 2 Variation 1. What can we say about the true mean of a single distribution?
Problem 3 A °.:, - o i" SAMLAS SN *Expetted: Called point estimation
°°°°° R R 9= 2. How can we compare the true means of fwo or more
2579 distributions?
True Avg. |-10 |+10 Number of Runs = 100
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* Where is the true mean?
« Sample averages bounce around so can’t give exact point
* Can give a range within which it is very likely the true
mean lies
« Called the confidence interval
¢ Also should consider the probability that the true mean
lies with the range
« Called the confidence level

« Example:
* In 99% of cases, the true mean of the distribution,

Confidence Intervals
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9@ Normal (Gaussian) Distribution

* For now we will assume that we are sampling from
(the results are distributed as) a normal distribution

+ AKA Bell Curve

¢ Most common distribution found in nature thanks to the
Central Limit Theorem

1 x—p?. 1
exXp(———"5—) ~ =
oN2m B 20° e

P(X=x;u,0)=
X ~ N, 6%

Standard Normal Distribution

(Standard Normal Distribution)

estimated from our 50 samples, ~
lies within the interval [ 64 , 79 | X ~ NO.D
...' ; .... / . . .
& %ﬁ F %ﬁ Distribution of the Mean

Distribution of the Mean

®

 Consider the distribution of the average of a set of n
independent samples

« If n =1, the distribution of the average is just the distribution
itself, since we have only the single data point
« If n is larger than one, the distribution of the mean must be
narrower than the distribution of the population
* i.e. the variance and standard deviation must be smaller

+ In fact, the mean & variance of the mean of n samples is

o
He=H o=/
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Mean of one sample Mean of 5 samples

Mean of 25 samples Mean of 100 samples
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* Of course, we don’t know the true mean, 1, or true standard
deviation, O

* We do know the mean of the samples, /\7, the sample size, n, and
the sample standard deviation, Sy

« If the source distribution is normally distributed, the shape and
size of the “finger” is known exactly!

+ We can determine the odds that the true mean lies within a

Confidence Intervals
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* First since X is normally distributed, we can turn it into a
standard normal distribution

+ subtract off the mean to zero it
+ divide by the std deviation to give it a std deviation of 1
- also gives a variance of 1

Confidence Intervals

specified range of X 5 X—py X—p,
* First since X is normally distributed, we can turn it into a o oy
standard normal distribution Jn
Z — )_( — IJX — X — :uX
O Ox
©
t Distribution t Distribution

* Want to find | the true mean in terms of the average
* But we have not one but two unknowns - G is also unknown
+ One equation - two unknowns - not good!!!
+ Trick - divide by the known sample standard deviation s instead of
*  But now we have a normally distributed numerator divided by
a non-normally distributed denominator
» Denominator has a chi distribution

» A normal distribution over a chi distribution
has a Student’s ¢ distribution

T=)_(_#)?=)?_NX

Sz S%/;
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* The ¢ “distribution” is really a family of distributions — the
shape of the distribution changes as the number of samples, 7,
changes

+ This parameter is called the
degrees of freedom of the
distribution

+ In the limit of many d.f.,
t distribution approaches
a standard normal
distribution

99 df.; n=100

9df;n=10




Estimating the Mean:
= Confidence Intervals Around the Average

If samples taken from a standard normal distribution (L =0,6=1),
Based on n =50 runs the sample average has a ¢ distribution.

e For CI, we can use cutoff ¢ values
e The wider the cutoff values, the more
likely the true mean lies between them

a=005
n=>50

Toos, 49 = 201

-2.01 0 201

e o is the probability of
seeing values outside the cutoffs

Estimating the Mean:
= Confidence Intervals Around the Average

* We know that T_()?—LLX)

* Using the t t, 41 cutoff t-values we can form a Confidence Interval
<,
that hasa 1 - oo C.L with - 1 degrees of freedom

* Substituting the cutoff values from the C.I. into the above equation produces

_)_(_.ux

* Confidence Level is 1 — o *t, -1 g
2 X
e Cutoff £, values can be computed =0.001 t0.0005 49 — 3.50 A;

ing Excel: | =TINV(0y n- 1 n=30 ’ 7 Sx
using Excel = (@,n-1) 99.9% which can be rewritten as Uy = X X1, el T

* Note: TINV() is already 2 sided | 2 \/;

3.50 0 3.50
<7 <7
“ . . “ . .
T S Estimating the Mean: P Estimating the Mean:

= Confidence Intervals Around the Average

* Confidence Intervals can be written in 3 equivalent ways
Error Bounds

2° n

Confidence Intervals

|

Sy =
~t, =S Uy <X+,
2 n

Sx
7,n—1 /n

Y_ Sx 5 Sx
‘LLX€|:X t%’nfl\/;, X+tg,n1\/;:|
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= Confidence Intervals Around the Average

Example:
+ An experimenter runs a New Search Algorithm on a TSP

+ At the end of each run, the smallest length tour
that had been found during the run was recorded

» NSA is run 50 times on the same TSP problem
+ On average NSA found solutions with a tour length of 272
+ The standard deviation of these tours is 87

+ We want to compute a Confidence Interval using a 99% Confidence level
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3% Estimating the Mean:
@ % Confidence Intervals Around the Average

»  From the problem we know that the average NEA run produced tours of

X =272 thathad s y =87

Sy
ly pmi In

*  Also from the problem » = 50 and o. = (1 - 0.99) = 0.01

We know that Uy = X *

so the %7 cutoff value is £ 201 50-1 =14005.49
using Excel we see that TINV(0.01,49) is 2.68

SXO =X+038s, = X £33

i.e. there is only a

1% chance that the true
mean lies outside the
confidence interval
formed around average

1, =X +2.68

andso 239< Uy <305 witha99% C.L.

Basic Statistical Tests
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Part 2 - Comparisons:
Non-Overlapping Confidence
Intervals and the Student’s T Test
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@ 35 %ﬁ Using Confidence Intervals to
% Determine Whether My Way is Better

If we have two different EC systems how can we tell if one is better
than the other?

Trivial method: Find confidence intervals around both means

If the CIs don't overlap
Then it is a rare occurrence when the two systems do have identical means
The system with the better mean can be said to be better on average with a
probability better than the Confidence Level

If the CIs do overlap
Can't say that the two systems are different with this technique
Either:

1. The two systems are equivalent
We haven't sampled enough to discriminate between the two
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-75 97 0 10.5 75
PEET
AR
[]
[]

95% Confidence Level
i o n X Sy 196 | Lower | Uppe
+10 10 100 10.5 10.0 3.3 7.2 13.8
-10 10 100 -9.7 10.1 33 -13.1 -6.4




L
L
..'
- ras

@ X 45

. Confidence Interval Example

The Student ¢ Test

-« Idea: Gain sensitivity by looking at the difference
between the means of the two systems

Where the normalized difference falls on the ¢ distribution determines whether

75 25% 79 75 difference expected if both systems were actually performing the same
R - - " . Based on 50 runs * Normalized difference called the ¢ value
: oo ¢ =001 o
.. ol - X -X
RETE TR R S 99% t value =——2
[ ] T a6 fm
[ ] n
999 - Distribution again differs for different
95% Confidence Level o sample sizes
5 268 + Degrees of Freedom is now
1962
u c n X Sy + | Lower | Uppe 1)t (1) =202
r10 50 100 791 47.1 9.2 13| 171 * ¢t test either succeeds or fails
-10 50 100 2.5 521 102 | -12.7 7.7 0 : * ¢ value greater than cutoff for a
— ! ; ésg— given C.L. or not
L L
o .‘ 3 < .. ’
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@-_ The Student ¢ Test: p-values

Based on 50 runs .
* The cut-off values produces a binary

05 decision: true or false

* loses information
Better to report the probability that two
systems are different

This is the complement of the probability
that they are the same

« 1 —Pr(T<tscore)
+ Called the p-value
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: t Test Step by Step

Compute the 2 averages X, and X,
Compute standard deviations s, and s,

Compute degrees of freedom: n;, +n,—-2=2n-2

T = XI_XZ

, 2 2
SX, -I-SX2
n

1. p-value = the area under the ¢ distribution outside [-7, T]
2. Use =TDIST(T, n, + n, - 2, 2) in Excel

1. The final “2” in Excel means “two-sided”

Calculate 7 statistic:

Compute the p-value




* QU Variance Assumptions
@ and the T Test
6,=0,=0 anan:nZ:n T = )_(;_}_(i
SX| +SX2

n

XI_XZ

0,=0,=0 butn, #n, T=\/

(n, —1)5)2(I +(n, —1)5)2(2 i_’_i
(n,+n,-2) n, n,

3% Variance Assumptions
@ and the T Test
6, #0, andn, #n, T=%
Sy Sy . .
24+ %2 <«— Approximate variance
n, n, not pooled

F = (si/n+s3/n,)
(sl2 /n])2 /(n, —1)+(s§ /n2)2 /(n,=1)

called the Welch’s T test
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* R comes with a function that produces all of
the above information in one function
* ttest(X,Y)
* See R help for details

t.test(): Everything in one
simple R function
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Tests on Non-Normally
Distributed Random Variables
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Non-Parametric Statistics




When The Normality Fails

o
e

* Everything so far has depended on the assumﬁtion of normality
which in turn depends on the Central Limit Theorem holding
+ But this is not always true
« In in many areas of CS it rarely holds

* Problems occur when
+ ...you have a non-zero probability of obtaining infinity
+ Mean and standard deviation are infinite!
« ...the sample average depends highly on a few scores
+ When the mean of your distribution is not measuring what you want,
consider using the median instead (rank-based statistics)
+ ...you don’t know how fast your sample series converges to normal

- if your sample average distribution converges very slowly than the number
of samples may be insufficient to assume normality

: So what should we do?

First test for normality
e Many such tests

e Recommended

*  Normal Probability Plot
(QQ plot: sorted data vs Normal quantiles)

e Lilliefors test (variant of the KS test)

&
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@; So what should we do?

There are 3 basic remedial measures:
1. Transforming data to make them normally distributed
+ also called data re-expression
- traditional approach (required before the advent of fast computers)

2. Resampling techniques
3. Non-parametric statistics

903

&

L
L
..'
* ras

@; Non-Parametric Statistics

* Basic Idea
+ Sort the data and then rank them
+ Use Ranks instead of actual values to perform statstics
* Also known as
order statistics,
* ordinal statistics
rank statistics
* Measures how interspersed the samples are from the 2 treatments
« Ifthe result is “alternating” it is assumed that there is no difference
* Can’t be affected by outliers (extrememly large or small values)
+ Just the highest or lowest rank




A | 0.03
Non-P ic T N
on-Parametric lests A lo.cs
A | 0.99
A | 0.64
* Reason behind the appropriateness of non-parametric tests A | 0.16
+ Both the sum of ranks and average of ranks will be approximately A 016
normally distributed A | 0.91 Two sets of Data
- because of the Central Limit Theorem, A |0.16
* as long as we have 5 or more samples £ 027 Combine the data into a single array
+ result is independent of the underlying distribution | 064
= 0.08
* Ranked T-test 2 0.16
+ Perform a ¢ test on the ranks of the values S 0.27
+ instead of the values themselves s 0.02
+ 2 other techniques with similar results are commonly seen = | 0.0
+ Wilcoxon’s Rank-Sum test - | 016
+ Mann-Whitney U test oL 0.03
. . = 0.03
+ All are effectively equivalent T 06s Ranked Example
L L
- ank .y ank
& e % A [099] 1 : A [099] 1
A1091| 2 A 1091] 2.5/t Average tied ranks
s . 91| 2.
* A |091| 3 A |09 5|t together
A |064| 4 A |0.64| 55|t
Al064| 5 A |0.64 | 5.5|t2 2.5
5064 6 . 2] 0.64 | 55|t 5.5
ool - Sort the combined data “o6a 55l 8.5
027 8 027] 85| t3 12
So027] 9 2] 0.27] 8.5]t3 17
A |0.16| 10 . A |0.16| 12| t4 .
Give each data element Replace tied ranks
A |0.16| 11 ) . A |0.16]| 12|ta . .
A lotel 12 its corresponding rank A lo1e| 12/ts With average tied ranks
S o6 13 2016 12| t4
2 0.16 | 14 2016 | 12| t4
2 o.08] 15 2 0.08] 15
0.03] 16 0.03] 17|ts
2 0.03] 17 2003 17]t5
= ]0.03] 18 2003 17|t5
S 0.02] 19 2 0.02] 19
= PYTEET Ranked Example = EYTETS Ranked Example

904




’ ® 4
& TS % A1099| 1 Resort by treatment & TS %
A | 009125
@ = Taloo1i|2s Perform ¢ test on Ranks @ - Ranked ¢ Test: What do we pay‘7

A | 06455

A 064155 it « ¢ Test is optimized for th | distributi

A 02785 avg 7.851 13.15 €St 1S optimize Oor th€ normal distrioution

A |o0.16] 12 stdDev | 5.28| 5.33 ¢ Test on the ranks is not

A 1016 12 * How much do we pay? Table created by Steffen Christensen

A |0.16] 12 Ranked # Test

A | 003 17 3 3 Distribution # Samples | # Samples for # Samples of #,
0.64 | 5.5 S4 . Sp for ¢ Test t Test on Ranks normalized to

Sy =, |—+— 2.37 n=10
0.64 | 5.5 n, ng 50 runs of ¢
0.27 | 8.5 Normal 31 32 52
0.16 | 12 (avg 4 —avgg)/sy 2.23 f, score
0.16 | 12 p-value 0.038 Exponential 29 16 27
0081 1> Uniform 31 34 55
0.03 | 17
0.03| 17 Bimodal 31 34 54
0.02 | 19
0.01] 20 Ranked Example Chubby Tails 40 12 15
.' L2 °

A Non-Parametric ‘Mean’:
The Median

* Average of a data set that is not normally distributed
produces a value that behaves non-intuitively

+ Especially if the probability distribution is skewed
+ Large values in ‘tail’ can dominate

* Average tends to reflect the typical value of the “worst” data
not the typical value of the data in general

* Instead use the Median
+ 50t percentile ntl
+ Counting from 1, it is the value in the - position
+ If nis even, (n+1)/2 will be between 2 positions,

average the values at that position

905

@ 38 4@ A Confidence Interval Around
*  the Median: Thompson-Savur

* Find the b the binomial value that has a cumulative upper tail
probability of a/2

» b will have a value near n/2 In Excel:

To calculate b use

CRITBINOM (n, 1/2, 0/2)

to compute the value, use the function
PERCENTILE (dataArray, u)

to compute the value, use the function
PERCENTILE (dataArray, /)

The lower percentile / = Ll
n—
The upper percentile u=1—1

« Confidence Interval is [value,value, ]

* ie.value, < median <value,
- With a confidence level of 1—0t




ANOVA: Analysis of Variance

<Part 1: Multi-Level Analysis
Basic Concept
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Thompson-Savur: Example @ 3 bn Inter Juartile Range & Box Plots
18 | 3.42 RA | 18] 3.42 o rank,, =0.75% (n—1)=13.5
o &
17 ] 2.79 _ _ Ny | 17 ] 2.79 mnkme =05 *n-1)=9
o] vss| =1 CL=99% gl K ] o rank, =025%(n—1)=4.5
— o ! . .
0.70 15 | 1.06 o =001 15| 1.06 o 1
3.42 14 1.04 14 1.04 boxuq = (104 + 104) /2=1.04
0.87 B 1104 5 — CRITBINOM (1, 1/2, 0/2) Bl soaf & 7 median =043
0.42 12 | 0.87 ’ ’ 12 | 0.87 box,, =(0.27+0.31)/2=0.29
033 00| =CRITBINOM(19,0.5,0.005) i 00| o
_ ol oa] S IQR = 1.04- 029 =0.75
048] ¢opr |10 064 4 Sorted :
0.23 9 | 0.49 Data 121040 wisker, =1.58 <= 1.5 * IQR + box,,, = 2.165
1os| D18 [0 [=bi(n—1)=4/(19—1)=2/9 = 0.222 8 |o4g| 2 | T wisker, = 0.06 >= box,, — 1.5 * IQR = -0.835
0.64 7 | 042 —1-1=0.778 ) 7 | 0.42 !
1.04 6 | 0.33 u B ’ 6 | 0.33 5 ! Sum—mary
0.31 5| 031 5 [ 031 = wisker, = 1.58
k, =b=4 / =1.04 b =1.04
9.06 4| o27f A va u?“ :f027 Ox”? B IQR ~ standard deviation
1.58 3 | 023 rank,,,=(n-1)/2=9 median =0.49 z g-;: 9 Z’;j’“” - %‘;99 e~ e s @
2.79 2 | 0.23 1Y — _ . w =0
0.09 1 [ 0090 rank, =(n—1)=b=I14 value, =027 1 [ 0.00 | wisker, =0.06
0.49 0 | 0.06 0 [oos] 2 4
...' 3

& -  More Than 2 Treatments

+ Preceding stats to be used for simple experiment designs

More sophisticated stats needs to be done if:

+ Comparing multiple systems instead of just 2 treatments

- E.g. comparing the effect on a Genetic Algorithm of using
no mutation, low, medium and high levels of mutation

- We say there are 4 levels of the mutation variable

4
+ Need (ZJ =6 possible comparisons to test all pairs of treatments

+ Called a ‘multi-level” analysis
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) :n’: =
4.3 8.8 5.0 6.3 5.4

Analysis of Variance (ANOVA)

“| noxover | xover=l1pt | xover=_2pt | xover =3pt | xover = 4pt
3.7 7.7 5.3 6.6 5.9
4.7 8.3 5.1 7.2 5.4
) 3.7 8.1 5.2 7.4 5.4
Fitness 4.2 8.1 5.5 7.4 6.2
Values 3.6 8.0 4.9 7.3 6.7
avg fitness 4.02 8.13 5.09 7.02 5.76
std dev 0.451 0.313 0.424 0.478 0.471
1 P al » 77
T test .~ N T tost
T test - s

all pairwise T test

Question: Do crossover settings make a difference at all?

Comparing Variances

» Up to now we have been comparing means
¢ Student’s T test
* Difference between averages (after normalization)
+ see if it equals O
* From here on we will be comparing variances

* Won’t take the difference between variances

- Difference between variances not a nice distribution
+ Rather will take the ratio of variances

+ see if it equals 1

- distribution known: F distribution

The F Distribution

Remember the sample variance over the true variance has
a y? distribution with a n - 1 degrees of freedom

But what about the ratio of two variances?
- With degrees of freedom of d, and d,
Answer: It has a F(d,,d,) distribution

+ F distribution is the ratio of two 2 distribution over their degrees
of freedom
2
X ,
d _dyy,

@/ dy;
dZ

F(d,.d,)=

907

P - The F test

o Hy: V(X)) = V(X2)

o H_:V(X1)#V(X2)

V)
V(X,)

has a F(df;, df;)
distribution

o Test Statistic F~

If X; is sampled n; times and X2 is sampled n; times,

then F* has a F(n; — 1, n, — 1) distribution
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‘6,; The F Test

S ]

Al

0 | F Distributions
: — di=1, d2=1

o — d1=2, d2=1

- —— d1=5,d2=2
d1=100, d2=1

o | d1=100, d2=100

o \' —_— ,

o T I I I I

0 1 k 3 4 5

F p-value

From Wikipedia: http://en.wikipedia.org/wiki/F_distribution

“é‘ﬁ_ ANOVA: Graphical Intuition

No Model (Y = Yay,)
15Y /“ g

SSEV ror

n—2
= MSerror

0.25 0.50 0.75 1.00

“é‘ﬁ_ ANOVA: Graphical Intuition

Linear regression can be solved by means of least squared error

Y=0,-Bx+e

Estimate Y, = b, —b,x, b,=Y -bX

Model

3 (x, ~ 5, - 7)

bl = = n
Y (x, - %)
i=1

_cov(x,Y) S,
var(x) Sf

908

“é‘ﬁ_ ANOVA: Graphical Intuition

Linear regression can be solved by means of least squared error

Mo

Est
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ANOVA: Graphical Intuition

Scatter within Y
15 is not independent of the scatter of the residuals
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ANOVA: Graphical Intuition

To achieve independence of the numerator (total variance)
from the denominator (error variance)
subtract the error variance from the total variance

So o" o;.' ooo °

g 3

General Linear Model
(SSreduced - SSfull ) / (d‘freduced - dffull) _ MS

F" — model
SSfu[l /dffull MSerror
A 0.55 0.'50 0.'l75 1.:)0
Model: ¥, =1.0x,+0.25 X

Jfotal
.. ®
® 4

“ ol

ANOVA: Graphical Intuition

For a regression model (error variance) = full model

X 5Y vs x not considered (total variance) = reduced model

df;otal =n-— 1
dferror =n-2

1.2

0.9 So o o6
°ge %Y

-

0.6

03 — (SStutal — S Serrur) / (df;utal _ df;’rmr) — (SSmtal _ SSerror) / 1
SSermr / dferror SSermr / (l’l - 2)
> 0.'50 0.'l75 1.:)0

~ 0.25
Model: ¥,=10x,+0.25 X

<«
L)
.
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@’ﬁ ANOVA: Graphical Intuition

4 I\
Y F Test
15
 H,: variance added by model is small
12 wrt variance around model
(model can’t be seen above the noise)
0o e H variance (effect) of model is
— I much larger than variance around model
0.6 IS¢
. . « MS
o Tost Statistic =~ F' = —ome  has a F(df,, df,)
MS, . distribution
03
o J
IWDC‘VI‘()V
N 025 0.50 X 0.75 1.00
Model: ¥, =10x,+0.25

909




ANOVA: Graphical Intuition

~

F Test

 H,: variance added by the regression model is small

Polynomial Regression E.g.

R squared = 70.2% R squared (adjusted) = 70.2%
s = 0.1465 with 1000 - 4 = 996 degrees of freedom

12 wrt variance around model Source Sum of Squares  df Mean Square F-ratio p-value
(model can’t be seen above the noise) Regression 504684 3 16.8228 784 <0.0001
, : Residual 21.3807 996 0.021467

09 » H : variance (effect) of the regr. model is

—> much larger than variance around the regr. line Variable Coefficient s.e. of Coeff t-ratio  p-value

06 Constant 0.510755 0.0190 26.9 <0.0001

. Test Statistic  F" = MS,,,, has a F(1,n - 2) X -2.17801 0.1636 133 <0.0001

MS e X2 845358 0.3813 222 <0.0001

03 ) X3 -6.28741 0.2515 250 =0.0001
Iw'berror

T T T T Regression model is statistically significant
R 025 0.50 075 1.00 .
Model: Yy, =1.0x,+0.25 X F-ratio = 784 >> 1
...' .'.' A

@ 3 ANOVA: Back to Discrete Levels

" no xover | xover = 1pt | xover =2pt | xover = 3pt | xover = 4pt

4.3 8.8 5.0 6.3 5.4

3.7 7.7 5.3 6.6 5.9

4.7 8.3 5.1 7.2 5.4

) 3.7 8.1 5.2 7.4 5.4

Fitness 4.2 8.1 5.5 7.4 6.2

Values 3.6 8.0 4.9 7.3 6.7
avg fitness 4.02 8.13 5.09 7.02 5.76
std dev 0.451 0.313 0.424 0.478 0.471

1 P “l » 77
T test .~ D < -
T test

T test - -
all pairwise T test

Question: Do crossover settings make a difference at all?

ANOVA. DlSCI‘Cte Yfitness !

no xover | xover = 1pt | xover = 2pt
f 4.3 8.8 5.0
i 3.7 7.7 5.3
IFI 4.7 8.3 5.1
e 3.7 8.1 5.2
S 4.2 8.1 5.5
S|_36 8.0 4.9

Most statistic packages work with tables
formatted as the chart to the right

each column is a variable

(fitness is a response variable, xover is a factor)

each row is a treatment
(i.e the settings and results of a single run)

xover
4.3 no
3.7 no
4.7 no
3.7 no
4.2 no
» 3.6 no
8.8 1pt
7.7 1pt
8.3 1pt
8.1 1pt
8.1 1pt
8.0 1pt
5.0 2pt
5.3 2pt
5.1 2pt
5.2 2pt
5.5 2pt
4.9 2pt
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i subscript: levels - there are r levels
J subscript: repetitions - there are n, repetitions for level i

ANOVA Notation

ANOVA: Discrete Levels

Perform the F test

10.0_=
e

I@"&@%&%}%&? —)Z.fw((n—l)—(n—r))
F = Baint] 2%y VUG
35w, S5, 7. 1(n-1)

i=1 j=1

~

@

[}

i=1 j=1

ron _ 1 rot

Y.=22%; r.=—>23Y, - . J
g‘% ! Ny iy jm ’ " n—b SS_M
20 o 5—1

Generalizes to higher dimensions 0 . . . . . . >

no Ipt  2pt  3pt  4pt
L L

e, S

@ I o
¥ ANOVA: Discrete Levels

If all levels are sampled equally

10.0 2 < 2 2V )2
] EMS,,.,) ° +¢£(EW#)&) _

e
8.0

Assumption:
6.0 variance for every level is the same and equals ¢

Test for equivalent variances:
modified Levene’s test (more powerful F test)
If test fail: (advanced technique)

4.

o

2.0

| =2

use weighted least squares regression using
- indicator variables for the different levels
as the weight as the weight for the i level

- Generalized ANOVA using regression

911
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ANOVA table for example

from DataDesk
Source df SS MS F-ratio Prob
const 1 3592.9 35929 13967 <0.0001
xover 4 210.9 52.7 204.94 <0.0001
Error 95 244 0.257
Total 99 2353
MS 527 F test (From Excel)
F = ﬁ = m =204.94 fdist(204.94, 4,95) = 8.19E-46

error
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Non-parametric ANOVA

* Again, what happens if Y (or actually €) is not normally
distributed?

* Various non-parametric techniques
+ Kruskal-Wallis first such test

* However, even simpler technique

» Like Spearman’s correlation coefficient and non-parametric regression,

replace the Y, values with their corresponding ranks
+ Perform ANOVA on ranked values as usual
* A slightly more accurate version is called the Friedman test

+ Same as above, except

+ the F distribution is replaced by the Chi-Squared distribution
(DofF =r—1) for large n or  (n > 15 or r > 4)

+ aspecial purpose distribution for small n or r

ANOVA: Analysis of Variance

L
L
..,

& o ;@
<Part 2: Multi-Level Analysis
Pairwise Comparisons
Post-Hoc Analysis
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Pairwise Comparisons
between Factor-Level Means

« What if we want to know more detailed information?
« Which of the means is the significantly different one?
+ Are there more than one significantly different mean?

+ If so, what are the pair-wise differences and are they
statistically significant?

912
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Pairwise Comparisons
between Factor-Level Means

 This is determined by a series of pair-wise T tests

* However, commonly uses pooled information from the
model for the variance to provide greater accuracy

- Called standard error

.. . comparing level i with level j
original T test comparison parimng J

across the ANOVA model
X -X, X-X,
tvalue=————= — tvalue= ———
Sy Sy 2-MSE
1 2
i + i’ 2
n.n n

when nij=nj=n

Assumption: variances for each factor level is the same (o)
which is best estimated by the MSE
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Post-hoc Analysis

* For 4 levels of mutation there are 6 comparisons possible

« Each one of the comparison holds at a 95% C.L. independent
of the other comparisons

« If all comparisons are to hold at once the odds are
0.95x0.95x0.95x ... x0.95=(0.95)=0.735

+ So in practice we only have 73.5% C.L
* Wrong 1/4 of the time
* For 7 levels of mutation there are 21 comparisons
possible
< C.L.= (0.95)1 =0.341

+ Chances are better than half that at least one of the decisions may be
wrong!
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* To correct, choose a smaller o
, o
o'==
m
+ Where m is the number of comparisons
+ So for 95% CL use o. = 0.025/6 = 0.004167

+ For a Z test the critical value changes from 1.96 to 2.64

The Bonferroni Correction

* You should apply the Bonferroni (etc.) correction:
+ To t tests (¢ tests and ranked ¢ tests)
+ To Confidence Intervals and Error Bounds

» Whenever you mean "all the significant results we found hold at once"

@ S i Pairwise Comparisons @

= between Factor-Level Means
Regular Pair-wise T test (with Bonf. Correction)

Diff  std. err. t-value df p-value
n-1 -4.04 0.15 -275 18 3.6E-15
n-3 -3.18 0.16 -20.5 18 6.3E-13
2-1 -3.04 0.16 -20.2 18 8.4E-13
3-2 216 0.17 13.7 18 5.5E-10
4-1 -2.09 0.17  -12.7 18 2.0E-09
n-4 -195 0.17 -11.4 18 1.1E-08
4-3 -1.22 0.18 -7.1 18 1.3E-05
n-2 -1.00 0.16 -6.3 18 5.8E-05
4-2 0095 0.16 5.6 18 2.6E-04
3-1 -0.86 0.15 -5.6 18 2.6E-04
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@ 3 e Pairwise Comparisons

q « between Factor-Level Means

Diff  std. err. t-value df p-value
n-1 -4.04 0.16 -252 95 7.7E-43
n-3 -3.18 0.16 -19.8 95 1.7E-34
2-1 -3.04 0.16 -19.0 95 4.8E-33
3-2 216 0.16 13.6 95 6.0E-23
4-1 -2.09 0.16 -13.0 95 7.5E-22
n-4 -195 0.16 -12.2 95 4.4E-20
4-3 -1.22 0.16 -7.6 95 1.8E-10
n-2 -1.00 0.16 -6.2 95 1.2E-07
4-2 0095 0.16 59 95 4.8E-07
3-1 -0.86 0.16 -5.4 95 5.1E-06




Pairwise Comparisons @
« between Factor-Level Means

~
=Yi°_fj~ df =n,—r=rn—-r=5%20-5
=95
MS MS, 2-MS 2%0.257
stdError = error | " error error _
i " n 20
=0.1604
Student-T with Bonf. Correction

t-value = _Diff p-value = m * tdist(t-value, df, two-sided)

~ stdError = 10 * tdist(t-value, 95, 2) )

Other Post-Hoc Corrections

+ Holm -Sidak (really Bonferroni done “right”)

+ Order the p-values from smallest to largest

+ Compare the smallest p-value to a/k (regular Bonferroni)

+ If that p-value is less than o/k, then accept that alternative hypothesis

+ Now look at the next smallest p-value at o/ (k— 1)

+ Continue until the p-value is not smaller than the modified value

At that point, stop and accept all the rest as null hypotheses

. Other Post-Hoc Corrections

+ Tukey
+ Used when comparing all pair-wise differences

+ produces narrower confidence intervals
than Bonferonni in this situation

+ usual situation when trying to order results
e.g. comparing 5 different EC systems
+ Found out that EC3 > EC; | ECs > EC; > EC4

» Note: Although there are 4 comparison symbols above,
there are really 6 comparisons (3v2, 3v5, 2v5, 2vl, 5vl, 1v4)

actually there are 5C2 = 10 implicit comparisons

+ because we did not know
how many comparisons there would be a priori

914

. 1 Eg:

EC; | EC2 | ECs | EC; | EC4
Yet (EC3 > ECs, ECy, ECy), (EC2> EC;, ECy) and (ECs > ECy)

()

(zc)
&

)
&




Other Post-Hoc Corrections

 Tukey
+ Same as T test except uses the ¢ distribution instead of the ¢ distribution
* ¢q(1 - o, r, nr-r) value is the cut off value
where the difference observed would be less than this value
with a probability of 1 - o0
if 7 values are sampled from a normal distribution N(0,1)
DofF =nr-r
g distribution is called the studentized range distribution

+ ¢ “broader” than ¢,
+ g isnot as “broad” as ¢ after Bonferroni correction

+ g distribution is not in Excel,
but it is in most other stats packages including R

Other Post-Hoc Corrections

libution

prob = alpha

If the computed standardized difference is larger than ¢,
where ¢ is the largest distance one would expect from a normal distribution,
then the difference is statistically real (with confidence level 1 - o)

Other Post-Hoc Corrections

+ Many others

+ Scheffé

+ used when comparing pairs, and triples and quadruples etc., not just
pairs

* many many others
+ Duncan's multiple range test
+ The Nemenyi test
+ The Bonferroni—-Dunn test

Newman-Keuls post-hoc analysis

915

Important Topics Not Covered

No time
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Important Topics Not Covered

* Multifactor ANOVA (MANOVA)

« Main Effects vs Interaction Terms

 F tests to determine which factors are statistically significant
(validating the model

» T tests to compare treatments
* Regression
+  Multivariate regression, Polynomial Regression
+ Confidence Intervals around model parameters
- Statistical Testing for factor relevance
« Correlation Coefficients: r, 72, adjusted 2
* How to perform ANOVA as a multivariate regression
+ Indicator Variables
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Important Topics Not Covered

» Testing for equality (homogeneity) of variance
across different factor-levels / treatments

» Levene’s Test
* Correcting for inequality of variance
+ Convert to multivariate regression using indicator variables
+ Perform Weighted Least Squares
* How to perform ANOVA when using different test functions
+ Test functions as blocking variables

» Non-parametric blocking

* What if one EC system has parameters the other EC system
doesn’t?

+ Nesting factor analysis
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» Mathematical statistics with applications
» Dennis D. Wackerly, William Mendenhall, Richard L. Scheaffer.
* Boston : Duxbury Press, (6th Ed.)
+ Introductory material - probability distributions, simple sample statistics
- Easy to understand concrete proofs and examples - good exercises
* Applied linear statistical models
» Michael H. Kutner, Christopher J. Nachtsheim, John Neter, William Li
* Boston: McGraw-Hill Irwin, 2005. (5" Ed.)
+ Advanced Regression techniques, ANOVA, and GLM
* Nonparametric statistical methods
* Myles Hollander and Douglas A. Wolfe.
* New York: Wiley, 1973
+ Classic nonparametric statistics textbook (very practical)

. References: Books
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Online Resources

* Websites
+ Wikipedia (various pages)
* http://en.wikipedia.com
 HyperStat Online
+ http://davidmlane.com/hyperstat

- Mathworld

+ http://mathworld.wolfram.com/






