Expressive Genetic
Programming

Tutorial
2012 Genetic and Evolutionary Computation Conference
(GECCO-2012)

Lee Spector
School of Cognitive Science
Hampshire College
Ambherst, MA 01002 USA
Ispector@hampshire.edu

http://hampshire.edu/lspector

Copyright is held by the author/owner(s).
GECCO’12 Companion, July 7-11, 2012, Philadelphia, PA, USA.
ACM 978-1-4503-1178-6/12/07.

Tutorial Description (1)

The language in which evolving programs are expressed can have significant
impacts on the problem-solving capabilities of a genetic programming
system. These impacts stem both from the absolute computational power
of the languages that are used, as elucidated by formal language theory, and
from the ease with which various computational structures can be
produced by random code generation and by the action of genetic
operators. Highly expressive languages can facilitate the evolution of
programs for any computable function using, when appropriate, multiple
data types, evolved subroutines, evolved control structures, evolved

data structures, and evolved modular program and data architectures. In
some cases expressive languages can even support the evolution of
programs that express methods for their own reproduction and variation
(and hence for the evolution of their offspring).
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Instructor

Lee Spector is a Professor of Computer Science in the School of
Cognitive Science at Hampshire College in Amherst, Massachusetts, and an
adjunct professor in the Department of Computer Science at the
University of Massachusetts, Amherst. He received a B.A. in Philosophy from
Oberlin College in 1984 and a Ph.D. from the Department of Computer
Science at the University of Maryland in 1992. His areas of teaching and
research include genetic and evolutionary computation, quantum
computation, and a variety of intersections between computer science,
cognitive science, evolutionary biology, and the arts. He is the Editor-in-
Chief of the journal Genetic Programming and Evolvable Machines (published
by Springer) and a member of the editorial board of Evolutionary
Computation (published by MIT Press). He is also a member of the SIGEVO
executive committee and he was named a Fellow of the International
Society for Genetic and Evolutionary Computation.

Tutorial Description (2)

This tutorial will begin with a comparative survey of approaches to the
evolution of programs in expressive programming languages ranging from
machine code to graphical and grammatical representations. Within this
context it will then provide a detailed introduction to the Push
programming language, which was designed specifically for expressiveness
and specifically for use in genetic programming systems. Push programs are
syntactically unconstrained but can nonetheless make use of multiple data
types and express arbitrary control structures, supporting the evolution of
complex, modular programs in a particularly simple and flexible way. The
Push language will be described and ten years of Push-based research,
including the production of human-competitive results, will be briefly
surveyed. The tutorial will conclude with a discussion of recent
enhancements to Push that are intended to support the evolution of
complex and robust software systems.



Course Agenda

Genetic Programming refresher

Why evolve programs in expressive languages?
Expressivity and evolvability

Expressive trees, bits, graphs, grammars, stacks

Push

Expressing the future

Evolution, the Designer

“Darwinian evolution is itself a designer
worthy of significant respect, if not religious
devotion.” Boston Globe OpEd, Aug 29,2005

WHAT WOULD DARWIN SAY? | LEE SPECTOR

And now, digital evolution

By Lee Spector | August 29, 2005

The Boston Globe

RECENT developments in computer science provide new perspective on
“intelligent design," the view that life's complexity could only have arisen
through the hand of an intelligent designer. These developments show that
complex and useful designs can indeed emerge from random Darwinian
processes.
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Evolutionary Computation

Random Generation

Assessment —~ Solution

7N\

Selection —____» Variation

Genetic Programming (GP)

® Evolutionary computing to produce
executable computer programs

® Programs are assessed by executing them
® Automatic programming; producing software

® Potential (?): evolve software at all scales,
including and surpassing the most ambitious
and successful products of human software
engineering



Program Representations

® |isp-style symbolic expressions (Koza, ...).

® Purely functional/lambda expressions (Walsh,Yu, ...).

® |inear sequences of machine/byte code (Nordin et al,, ...).
® Artificial assembly-like languages (Ray,Adami, ...).

® Stack-based languages (Perkis, Spector, Stoffel, Tcherney, ...).
® Graph-structured programs (Teller, Globus, ...).

® Object hierarchies (Bruce, Abbott, Schmutter, Lucas, ...)

® Fuzzy rule systems (Tunstel, Jamshidi, ...)

® | ogic programs (Osborn, Charif, Lamas, Dubossarsky, ...).

® Strings, grammar-mapped to arbitrary languages (O’Neill, Ryan, ...).

Recombining Lisp

Parent 1: (+ (* X Y)
(+ 4 (- 2 23)))
Parent2: (- (* 17 (+ 2 X))
(* (- (*22) 1)
(+ 14 (/ Y X))))

Child1: (+ (- (* 2 2z) 1)
(+ 4 (- Z 23)))
Child2: (- (* 17 (+ 2 X))
(* (* X YY)
(+ 14 (/ ¥ X))))
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Mutating Lisp

(+ (* X¥Y)
(+ 4 (- 2 23)))

(+ (*XY)
(+ 4 (- 2 23)))

(+ (- (+ 2 2) 2)
(+ 4 (- 2 23)))

Symbolic Regression

A simple example

Given a set of data points, evolve a program
that produces y from x.

Primordial ooze: +, -, *, %, x, 0.1

Fitness = error (smaller is better)



GP Parameters

Maximum number of Generations: 5|

Size of Population: 1000

Maximum depth of new individuals: 6

Maximum depth of new subtrees for mutants: 4
Maximum depth of individuals after crossover: |7
Fitness-proportionate reproduction fraction: 0.1
Crossover at any point fraction: 0.3

Crossover at function points fraction: 0.5
Selection method: FITNESS-PROPORTIONATE
Generation method: RAMPED-HALF-AND-HALF
Randomizer seed: 1.2

Best Program, Gen 0

—o— Target

0.75 - < Generation 0

(- (% (* 0.1
(* X X)) 051

(- (2 0.1 0.1)

(* X X))) 0251

0.1)
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Best Program, Gen 12 Best Program, Gen 22
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(+ i)u (- X 0.1) 04 0
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(+ 0.1 (+ 0.1 X)))))
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025 1 025 P~ :
(=} — = e} n vy —
s ° S
Expressiveness Pragmatics
® Turing machine tables
e Lambda calculus expressions The fact that a computation can be expressed
P in a formalism does not imply that a correct
® Register machine programs expression can be produced in that formalism
e Partial recursive functions by a human programmer or by an evolutionary
process.
® etc.
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Tricks

® Cars, airplanes, and other complex engineered
artifacts...

® Evolved biological organisms...
® Large-scale software systems...

...are each composed of millions of specialized
parts, chosen, in each case, from a portfolio of

domain-specialized components and processes.

Tricks via GP (1)

® Specialize GP techniques to directly support
“code trick” syntax of human programming
languages

e Strongly typed genetic programming
e Automatically defined functions
e Automatically defined macros

® Architecture altering operations
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Code Tricks

Data abstraction and organization

Data types, variables, name spaces, data
structures, ...

Control abstraction and organization

Conditionals, loops, modules, threads, ...

Tricks via GP (2)

Specialize GP techniques to indirectly
support “code trick” syntax from human
programming languages

Repair
Genotype/phenotype mapping

Grammars



Tricks via GP (3)

® Develop new program encodings,
represented most generally as graphs

® Develop analogs of code tricks for these
representations

® Specialize GP techniques to directly or
indirectly support “code trick” syntax for
these new program encodings

Tricks via GP (4)

® Evolve programs in a minimal-syntax
language that nonetheless supports a full
range of “code tricks”

® For example: orchestrate data flows via
stacks, not via syntax

® Push

Modularity is Everywhere
| | | |

A A A A
/ / / /

| I l’I/I/(’\I

A A A

/

A

\ v
Effectors Sensors

Modularity in Software

® Pervasive and widely acknowledged to be
essential

® Modules may be functions, procedures,
methods, classes, data structures, interfaces, etc.

® Modularity measures include coupling,
cohesion, encapsulation, composability, etc.



Modules via GP

Automatically-defined functions
Automatically-defined macros
Architecture-altering operations

Module acquisition/encapsulation systems
Grammars for languages with modules

Instructions that build/execute modules

ADMs

Macros implement control structures

ADMs can be implemented via small tweaks
to any system that supports ADFs

Similar pros and cons to ADFs, but provide
additional expressive power
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Evolving Modular Programs

With “automatically defined functions”

® All programs in the population have the same,
pre-specified architecture

® Genetic operators respect that architecture
® Significant implementation costs
® Significant pre-specification

® Architecture-altering operations: more power
and higher costs

Control Structures (1)

Multiple evaluation

(defmacro do-twice (code)
" (progn ,code ,code))

(do-twice (incf x))



Control Structures (2)

Conditional evaluation

(defmacro numeric-if (exp neg zero pos)
T(if (< ,exp 0)
(Neg
(if (< 0 ,exp) ,pos ,zero)))

(numeric-if (foo) (bar) (baz) (bix))

Why Push?

® Highly expressive: data types, data
structures, variables, conditionals, loops,
recursion, modules, ...

® Elegant: minimal syntax and a simple, stack-
based execution architecture

® Evolvable
® Extensible

® Supports several forms of meta-evolution
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Push

Stack-based postfix language with one stack per type

Types include: integer, float, Boolean, name, code,
exec, vector, matrix, quantum gate, [add more as
needed]

Missing argument? NOOP

Minimal syntax:
program — instruction | literal | ( program* )

Sample Push Instructions

Stack manipulation
instructions DUP, STACKDEPTH,
(all types) SHOVE, FLUSH, =
Math +, = x> <
(INTEGER and FLOAT) MIN, MAX

Logic (BOOLEAN) AND, OR, NOT,
FROMINTEGER

POP, SWAP, YANK,

Code manipulation
(CODE)

QUOTE, CAR, CDR, CONS,
INSERT, LENGTH, LIST,
MEMBER, NTH, EXTRACT

Control manipulation
(CODE and EXEC)

DO*, DO*COUNT, DO*RANGE,
DO*TIMES, IF




Push(3) Semantics

e To execute program P:

1. Push P onto the EXEC stack.
2. While the EXEC stack is not empty, pop and pro-
cess the top element of the EXEC stack, E:
(a) If F is an instruction: execute E (accessing
whatever stacks are required).
(b) If E is a literal: push E onto the appropriate
stack.
(c) If E is a list: push each element of E onto
the EXEC stack, in reverse order.
2
3
INTEGER *
4.
52
FLOAT.+
TRUE
FALSE
(2 3INTEGER* 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE
BOOLEAN.OR )
exec code bool int float
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( 2 3 INTEGER.* 4.1 5.2 FLOAT.+

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

TRUE FALSE BOOLEAN.OR )

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

exec

code

bool

int

float

3

INTEGER *

4.1

52

FLOAT.+

TRUE

FALSE

BOOLEAN.OR

(2 3INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

exec

code

bool

int

float




INTEGER *

4.1

52

FLOAT.+

TRUE

FALSE

BOOLEAN.OR

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

exec

code

bool

int

float

52

FLOAT.+

TRUE

FALSE

BOOLEAN.OR

(2 3INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

4.1

exec

code

bool

int

float
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4.1

52

FLOAT.+

TRUE

FALSE

BOOLEAN.OR

(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

exec

code

bool

int

float

FLOAT.+

TRUE

FALSE

BOOLEAN.OR

(2 3INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE
BOOLEAN.OR )

52

4.1

exec

code

bool

int

float




TRUE

FALSE
(23 INTEGER* 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE 6 9.3
BOOLEAN.OR )
exec code bool int float
FALSE
(23 INTEGER* 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR )
exec code bool int float
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FALSE
(23 INTEGER* 4.1 5.2
BOOLEAN.OR FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR )
exec code bool int float
(23 INTEGER* 4.1 5.2
FLOAT.+ TRUE FALSE TRUE 6 9.3
BOOLEAN.OR )
exec code bool int float




Same Results

( 2 3 INTEGER.* 4.1 5.2 FLOAT.+

( 2 BOOLEAN.AND 4.1 TRUE INTEGER./ FALSE

TRUE FALSE BOOLEAN.OR )

3 5.2 BOOLEAN.OR INTEGER.* FLOAT.+ )

3.14
CODEREVERSE
CODE.CDR
IN
IN
5.0
FLOAT.>
(CODEQUOTE FLOAT#)

CODE.IF

(3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

( 3.14 CODE.REVERSE CODE.CDR IN IN 5.0
FLOAT.> (CODE.QUOTE FLOAT.*) CODE.IF )

(3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT>

(3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

IN=4.0

exec

code

bool

int

float

exec

code

bool

int

float

CODEREVERSE
CODE.CDR
IN
IN
5.0
FLOAT.>
(CODEQUOTE FLOAT)

CODE.IF

(3.14 CODE.REVERSE
CODE.CDR IN IN
5.0 FLOAT.>

3.14

exec

code

bool

int

float




CODE.CDR
IN
IN
5.0
FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF

(CODE.IF (CODE.QUOTE
FLOAT*) FLOAT> 5.0 IN
IN CODE.CDR

3.14

exec

code

bool

int

float

IN
5.0

FLOAT.>

(CODE.QUOTE FLOAT)

CODE.IF

((CODE.QUOTE FLOAT.*)
FLOAT> 5.0 ININ
CODE.CDR

4.0
3.14

exec

code

bool

int

float
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IN

IN

5.0
FLOAT.>

(CODE.QUOTE FLOAT.*)

CODE.IF

((CODE.QUOTE FLOAT)
FLOAT.> 5.0 IN IN
CODE.CDR

3.14

exec

code

bool

int

float

5.0

FLOAT.>

(CODE.QUOTE FLOAT)

CODE.IF

((CODE.QUOTE FLOAT.*)
FLOAT> 5.0 IN IN
CODE.CDR

4.0
4.0
3.14

exec

code

bool

int

float




FLOAT.>

5.0

40
(CODEQUOTE FLOATS) 40
CODEJIF | “Fomssonm 3.14
SR

exec code bool int float
e

FLOAT.* 4.0
CODEIF [J“%oaSonn |  FALSE 3.14

CODE.CDR

exec

code

bool

int

float
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(CODEQUOTE FLOATS) 40
CODEIF  [recsavorenom FALSE 3.14
CoER
exec code bool int float
FLOAT* 40
CODEIF [J“%oaSonn |  FALSE 3.14

CODE.CDR

exec

code

bool

int

float




4.0
FLOAT.* 3.14

exec code bool int float

(IN EXEC.DUP (3.13 FLOAT.*)
10.0 FLOAT./)

IN=4.0

(IN EXEC.DUP (3.13 (IN EXEC.DUP (3.13
FLOAT#) 10.0 FLOAT.) FLOAT#) 10.0 FLOAT/)

exec code bool int float
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12.56
exec code bool int float
IN
EXEC.DUP
(3.13 FLOAT)
10.0
FLOAT./ FLORTS 100 FLOAT)
exec code bool int float




EXEC.DUP

(3.13 FLOAT*)

10.0
FLOAT./ FLORTS 10 FLOAT) 4.0
exec code bool int float
3.13
FLOAT.*
(3.13 FLOAT)
10.0
FLOAT/ [ .heecoron 4.0
exec code bool int float
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(3.13 FLOAT)

(3.13 FLOAT*)

10.0
FLOAT/ | 5257088, 40
exec code bool int float
FLOAT.*
(3.13 FLOAT)

10.0 3.13
FLOAT/ [ .hescoron 4.0
exec code bool int float




(3.13 FLOAT*)

10.0
FLOAT./ FLORTS 10 FLOAT) 12.52
exec code bool int float
FLOAT.*

10.0 3.13
FLOAT/ FLORTS T FLoAT) 12.52
exec code bool int float
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3.13

FLOAT.*
10.0
FLOAT./ FL 0T 10 FLOAT) 12.52
exec code bool int float
10.0
FLOAT/ FLORTS Tb FLoAT) 39.1876
exec code bool int float




10.0
FLoAT/ | messansy, 1876

exec code bool int float

The Odd Problem

® |nteger input
® Boolean output
® Was the input odd?

® ((code.nth) code.atom)
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(IN EXEC.DUP (3.13
FLOAT.*) 10.0 FLOAT/) 3.9 I 876

exec code bool int float

Combinators

e Standard K, S, and Y combinators:
® EXEC.K removes the second item from the EXEC stack.

® EXEC.S pops three items (call them A, B,and C) and
then pushes (B C), C,and then A.

® EXEC.Y inserts (EXEC.Y T) under the top item (T).

® A Y-based “while” loop:
( EXEC.Y
( <BODY/CONDITION> EXEC.IF
( ) EXEC.POP ) )




Iterators

CODE.DO*TIMES, CODE.DO*COUNT,
CODE . DO*RANGE

EXEC.DO*TIMES, EXEC.DO*COUNT,
EXEC.DO*RANGE

Additional forms of iteration are supported
through code manipulation (e.g. via
CODE.DUP CODE.APPEND CODE.DO)

Auto-simplification

Loop:
Make it randomly simpler
If it’s as good or better: keep it

Otherwise: revert
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Named Subroutines

( TIMES2 EXEC.DEFINE ( 2 INTEGER.* )

)

Problems Solved by PushGP in the
GECCO-2005 Paper on Push3

Reversing a list

Factorial (many algorithms)
Fibonacci (many algorithms)
Parity (any size input)
Exponentiation

Sorting



Genetic Programming for Finite Algebras

David M. Clark
Mathematics

lan Lindsay
Hampshire College
. Amherst, MA 01002
iml04@hampshire.edu

Lee Spector
Cognitive Science
Hampshire College SUNY New Paltz
Amherst, MA 01002 New Paltz, NY 12561

Ispector@hampshire.edu clarkd@newpaltz.edu

[

Figure 8.7. A gate
algorithm for a it
and M, standing for the sm
through a gate symbol indicates that the matrix for the gate is transposed. The “"
gate is the oracle.

Humies 2004
GOLD MEDAL

Autoconstructive
Evolution

Bradford Barr Jon Klein
Hampshire College Hampshire College
Amherst, MA 01002 Amherst, MA 01002

bradford.barr@gmail.com jk@artificial.com

Humies 2008
GOLD MEDAL

Related Work

MetaGP: but (1) programs and reproductive
strategies dissociated and (2) generally restricted

® Individuals make their own children reproductive strategies
® Agents thereby control their own mutation rates, ALife systems such as Tierra, Avida, SeMar: but (1)
sexuality, and reproductive timing hand-crafted ancestors, (2) reliance on cosmic ray
® The machinery of reproduction and diversification mutation, and (3) weak problem solving
(i-e., the machinery of evolution) evolves Evolved self-reproduction: but generally exact
e Radical self-adaptation reproduction, non-improving (exception: Koza,
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but very limited tools for problem solving and for
construction of offspring)



Pushpop

® A soup of evolving Push programs

® Reproductive procedures emerge ex nihilo:

® No hand-designed “ancestor”

® Children constructed by any computable process

® No externally applied mutation procedure or rate

® Exact clones are prohibited, but near-clones are

permitted.

® Selection for problem-solving performance

# Species vs. Mother/Child Differences

Note distribution of “+” points: adaptive populations have many species and mother/daughter
differences in a relatively high, narrow range (above near-clone levels).

<
solved phases

e mother/chi ld difference

age g

o 0 +|

[ 18 2] £ 4 58
average count, of digneter-16 species

Runs including
sexual instructions

.
xX *
2
x . é
+ = « X
%
% x8 - 3 i
=
XX X o * *

18 28 ] 4 Ed 68
average count of dianeter-16 species

Runs without
sexual instructions
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Population of randomly
generated organisms

- Test problem-solving fitness
and produce children

Evaluated, pregnant
organisms

Fitness tournaments

ae

Add random organisms
if too few

Child population

)

Pushpop Results

® |n adaptive populations:

® Species are more numerous

e Diversification processes are more reliable
® Selection can promote diversity

® Provides a possible explanation for the evolution
of diversifying reproductive systems



SwarmEvolve 2.0

® Behavior (including reproduction) controlled
by evolved Push programs

® Color, color-based agent discrimination
controlled by agents

® Energy conservation
® Facilities for communication, energy sharing

® Ample user feedback (e.g. diversity metrics,
agent energy determines size)

SwarmEvolve 2.0

Winner, Best Paper Award, AAAA Track, GECCO-2003
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Instruction(s)

Description

DUP, POP, SWAP, REP, =, NOOP,
PULL, PULLDUP, CONVERT, CAR,
CDR, QUOTE, ATOM, NULL, NTH,
+, %, /, >, <, NOT, AND, NAND
OR, NOR, DO*, IF

Standard Push instructions
(See [11])

VectorX, VectorY, VectorZ,
VPlus, VMinus, VTimes, VDivide,
VectorLength, Make-Vector

Vector access, construction,
and manipulation

Randl, RandF, RandV, RandC

Random number, vector, and
code generators

SetServoSetpoint, SetServoGain,
Servo

Servo-based persistent
memory

Mutate, Crossover

Stochastic list manipulation
(parameters from stacks)

Spawn Produce a child with code
from code stack

ToFood Vector to energy source

FoodIntensity Energy of energy source

MyAge, MyEnergy, MyHue,
My Velocity, MyLocation,
MyProgram

Information about self

ToFriend, FriendAge, FriendEnergy,
FriendHue, FriendVelocity,
FriendLocation, FriendProgram

Information about closest
agent of similar hue

ToOther, OtherAge, OtherEnergy,
OtherHue, OtherVelocity,
OtherLocation, OtherProgram

Information about closest
agent of non-similar hue

FeedFriend, FeedOther

Transfer energy to closest
agent of indicated category

AutoPush

Goals:

® Superior problem-solving performance

® Tractable analysis
Push3
Asexual

Children produced on demand (not during

fitness testing)

Constraints on selection and birth

Still work in progress



Evolving Modular Programs
With Code Manipulation

Transform code as data on “code” stack

Execute transformed code with code.do, etc.

Simple uses of modules can be evolved easily

® Does not scale well to large/complex systems

Evolving Modular Programs
With Named Modules

® Uses Push’s “name” stack

® Example:

(plusl exec.define (1 integer.+))
plusl

® Coordinating definitions/references is tricky
and this never arises in evolution!
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Evolving Modular Programs

With Execution Stack Manipulation

® Code queued for execution is stored on an
“execution stack”

® Allow programs to duplicate and manipulate
code that on the stack

L4 Exanuﬂe:(3 exec.dup (1l integer.+))

® More parsimonious, but same scaling issue

Module ldentity

® How are modules recognized by other
components of a system?

® Where do module identities come from?

® How can module identity co-evolve with
modular architecture?



Holland’s Tags Tag-Based Altruism

® |Initially arbitrary identifiers that come to
have meaning over time ® Individuals have tags and tag-difference

® Matches may be inexact tolerances

. , ° <
® Appear to be present in some form in many Donate when Atags < tolerance

different kinds of complex adaptive systems e Riolo et al. (Nature, 2001) showed that tag-
based altruism can evolve; Roberts &
Sherratt (Nature, 2002) claimed it would not
evolve under more realistic conditions

® Examples range from immune systems to
armies on a battlefield

® A general tool for the support of emergent
complexity

Evolving Modular Programs
With tags

® Include instructions that tag code (modules)

® |nclude instructions that recall and execute
modules by closest matching tag

® [f a single module has been tagged then all tag

01 05 @ references will recall modules
Mutation rate W

® The number of tagged modules can grow

Spector, L., and Klein, ]. Genetic stability and territorial structure facilitate incrementally over evolutionary time
the evolution of tag-mediated altruism. In Artificial Life.

Expressive and evolvable
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Tags in Push

® Tags are integers embedded in instruction names
® Instructions like tag.exec.123 tag values

® [nstructions like tagged. 456 recall values by
closest matching tag

® [f a single value has been tagged then all tag
references will recall (and execute) values

® The number of tagged values can grow
incrementally over evolutionary time

Lawnmower Instructions

| Condition | Instructions |

Basic | left, mow, v8a, frog, R.s

Tag | left, mow, v8a, frog, Rus,
tag.exec.[1000], tagged.[1000]
Exec | left, mow, v8a, frog, Rus,
exec.dup, exec.pop, exec.rot,
exec.swap, exec.k, exec.s, exec.y
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Lawnmower Problem

® Used by Koza to demonstrate utility of ADFs
for scaling GP up to larger problems

Computational Effort

Lawnmower Effort

600000 f
500000 |
400000 f
300000 f
200000 f

100000 |

o L
= RS T R PRI T [SS [ S S|
8x4 8x6 8x8 8x10 8x12

Problem Size




Dirt-Sensing, Obstacle-
Avoiding Robot Problem

Like the lawnmower problem but harder and
less uniform

Lawnmower Effort

problem size

8x4 8x6 8x8 8x10 8x12
instr set
basic 10000 30000 114000 320000 630000
tag 7000 2000 29000 <1000 5000
exec 12000 5000 28000 5000 17000

DSOAR Instructions DSOAR Effort

| Condition | Instructions | Me:

Basic | if-dirty, if-obstacle, left, mop, v8a, frog, R.s
Tag | if-dirty, if-obstacle, left, mop, v8a, frog, R.s,

tag.exec.[1000], tagged.[1000]

Exec | if-dirty, if-obstacle, left, mop, v8a, frog, R.s,

exec.dup, exec.pop, exec.rot,

exec.swap, exec.k, exec.s, exec.y

)

X

o
»

n
o
@

Computational Effort

1x108

0 NI S —
N S S
8x8 8x10 8x12

Problem Size
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DSOAR Effort

problem size

8x4 8x6 8x8 8x10 8x12
instr set
basic 1584000 430083000 inf inf inf
tag 216000 864000 3420000 2599000 3051000

exec 450000 2125000 4332000 16644000 7524000

Evolved DSOAR
Architecture (in another environment)

Mod
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Evolved DSOAR
Architecture (in one environment)

Module0 ! Module4 ) D38
15

Module6

Tags in Trees

Example:
(progn (tag.123 (+ a b))
(+ tagged.034 tagged.108))
Must do something about endless recursion

Must do something about return values of tagging
operations and references prior to tagging

Non-trivial to support arguments in a general way

Utility not clear from experiments conducted to date



Expressiveness and
Assessment

® Expressive languages ease representation of
programs that over-fit training sets

® Expressive languages ease representation of
programs that work only on subsets of training
sets

® Lexicase selection may help: Select parents by
starting with a pool of candidates and then
filtering by performance on individual fitness
cases, considered one at a time

Conclusions

® GP in expressive languages may allow for the
evolution of complex software

® Minimal-syntax languages can be expressive, and
GP systems that evolve programs in such
languages can be simple

® Push is expressive, evolvable, successful, and
extensible

® Tags appear to allow for the evolvable expression
of program modularity
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Future Work

® Expression of variable scope and local
environments

® Expression of concurrency, parallelism, and time-
based structures

® Applications for which expressiveness is likely to
be essential, e.g. complete software applications
and programs for agents in complex, dynamic,
heterogeneous environments
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