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ABSTRACT
Brain computer interfaces (BCIs) allow the direct human-
computer interaction without the need of motor interven-
tion. To properly and efficiently decode brain signals into
computer commands the application of machine-learning tech-
niques is required. Evolutionary algorithms have been in-
creasingly applied in different steps of BCI implementations.
In this paper we introduce the use of the covariance matrix
adaptation evolution strategy (CMA-ES) for BCI systems
based on motor imagery. The optimization algorithm is used
to evolve linear classifiers able to outperform other tradi-
tional classifiers. We also analyze the role of modeling vari-
ables interactions for additional insight in the understanding
of the BCI paradigms.

Categories and Subject Descriptors
H.1 [Information Systems]: Models and Principles—User-
Machine Systems; I.2.8 [Computing Methodologies]: Ar-
tificial Intelligence—Problem Solving, Control Methods, and
Search; I.5.4 [Computing Methodologies]: Pattern Recog-
nition—Signal processing

General Terms
Heuristic methods
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1. INTRODUCTION
Brain computer interfaces (BCIs) [15, 28] are used to

translate electrical signals into commands without the need
for motor intervention. They are particularly useful for im-
plementing assistive technologies providing communication
and control to people with severe muscular or neural disabil-
ities [11]. More recently BCIs have also found application
in domains such as gaming [18], virtual reality environments
[22], and space applications [23].

BCIs require a decoding component in which brain sig-
nals are translated into commands. Usually, classification
algorithms are applied to predict the human intention from
the analysis of the signals. The choice of the classifica-
tion algorithm depends on many factors such as the BCI
paradigm and type of recorded data (e.g. electroencephalog-
raphy (EEG), magnetoencelography (MEG), etc.). Several
classification algorithms have been used to analyze brain
data in the context of BCI applications [16]. They include
linear discriminant classifiers (LDA) [6], support vector ma-
chines (SVMs) [21], neural networks (NNs) [10], and other
classification methods [16]. The use of machine learning in
BCI techniques is not constrained to the use of classifica-
tion methods because several other tasks such as channel
selection, human and BCI adaptation, etc., require the im-
plementation of efficient and adaptive procedures.

Evolutionary algorithms (EAs) have been increasingly ap-
plied within different BCI frameworks [4, 5, 9, 20, 25]. They
have been mainly used for supporting different stages of the
classification process (e.g. feature selection, classifier train-
ing and evaluation, etc.) and have been shown to improve
the classification accuracy for a variety of BCI paradigms.

One of the limitations of classical evolutionary algorithms
and other optimization methods is that they do not provide
a model of the search space or fitness function being op-
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timized. Usually in EAs, genetic operators can effectively
move the search to an area where optimal solutions are but
nothing is learned from the, potentially relevant, relation-
ships between the problem variables. In some real-world
optimization problems, the patterns shared by the optimal
solutions and the relationships between the problem vari-
ables can be highly relevant for understanding the problem
being solved. In BCI, the relationships between the different
brain areas from which signals are collected or between the
different frequencies in which information is contained can
be useful for understanding the neural processes involved in
the given BCI paradigm.

There is a class of evolutionary algorithms that models the
relationships between the variables and exploit the modeled
relationships to orient the search to more promising areas
of the search space. Examples of these methods are estima-
tion of distribution algorithms (EDAs) [14, 17, 19] and the
covariance matrix adaptation evolution strategy (CMA-ES)
[7]. Both classes of algorithms use probabilistic modeling of
the solutions to implement a more efficient search.

In this paper we investigate the performance of CMA-ES
as a classification component of a BCI based on the Graz
protocol. In the Graz protocol, EEG signals are recorded
from sensorimotor areas during mental imagination of spe-
cific movements. In particular, we address an off-line BCI
scheme in which recorded data from left hand and right hand
imagery movements was used and the classifier task was to
predict one of these two conditions from the signals. The
CMA-ES algorithm was adapted to work within OpenViBE
[22], a highly modular and portable software platform for
BCI implementation. Then, two different scenarios that im-
plement the Graz protocol were evaluated and the perfor-
mance of different classifiers were compared.

The purpose of this paper is threefold. First, we compare
the ability of CMA-ES as classification method to other clas-
sifiers usually applied for BCI. Second, we evaluate the feasi-
bility of incorporating model-based evolutionary algorithms
as independent modules of modular software platforms such
as OpenViBE. Finally, we analyze the models produced by
CMA-ES in order to unveil the potentially informative in-
teractions captured by the algorithm.

The paper is organized as follows: The next section dis-
cuses related work on the application of evolutionary algo-
rithms to BCIs. Section 3 briefly describes the BCI paradigm
used in our experiment and the main steps for data acquisi-
tion and signal processing. Section 4 presents a formulation
of the optimization problem and introduces the optimization
algorithms. Section 5 describes the experimental framework
to evaluate our proposal and presents the numerical results.
The main contributions of the paper are summarized in Sec-
tion 6 where some lines for future research are also discussed.

2. RELATED WORK
Early work on the application of EAs to BCIs was pre-

sented in [4] where a genetic algorithm (GA) was simultane-
ously applied to feature selection and classifier optimization.
The task goal was brain-activity based dictation of char-
acters and the used BCI paradigm was P300. The fitness
function was the average difference between the polynomial
classifier output and the correct output. Authors achieved
classification accuracies up to 87%. More recently, Poli et
al. [20] describe the use of an EA for the design of an ana-
logue BCI mouse. The BCI is based on the P300 paradigm

and the EA is used for feature selection and for training an
adaptive system using them. Although the system needs to
be adapted and optimized by an EA before a user can use it,
the authors claim that the evolution system makes it possi-
ble to control the pointer for a person having undergone no
previous training.

GAs have been also applied to asynchronous BCI where
brain signals are continuously monitored and the system is
activated only when the user intends control. In [5], a hy-
brid GA (simple GA combined with a local search method)
is used for customization of the system for a specific user.
Significant improvements in the classification accuracy for
the two subjects considered were reported. In [25] differ-
ent variants of evolutionary classifiers were applied to the
identification of the P300 component from EEG data. The
optimizers were used to evolve sets of solutions that improve
the accuracy of single classifiers. The introduced approaches
were able to achieve a classification rate over 80% on test
data.

Multi-objective algorithms have been also applied to BCI.
In [9], two EAs were applied to solve the problem of chan-
nel selection in the classification of continuous EEG without
trial structure. The use of multi-objective optimization con-
tributed to improve the classification accuracy by selecting
an informative set of channels. In [24], a multi-objective
GA and a multi-objective EDA are used to simultaneously
maximize classifier accuracy in multiple subjects in the clas-
sification of task-related mental activity from MEG data.
The evolutionary algorithms were able to improve the clas-
sification accuracy compared to approaches whose classifiers
use only one type of MEG information or for which the set
of channels is fixed a priori.

3. MOTOR IMAGERY DATA
A BCI based on ”motor imagery”makes use of changes in

oscillatory EEG activity induced by various motor imageries
performed by the user, e.g. related to the imagination of
right hand, left hand or feet motion. These changes are de-
tected in the signals and transformed into control signals for
external devices. In this paper we addressed a classification
problem that arises in the use of this paradigm.

The data used in our experiments was collected from a 25-
year-old male subject using two different experimental con-
ditions. The first experimental setting (motor-imagery) cor-
responded to imagery movement of the right vs. left hand.
In the second setting (motor-movement), the subject was
instructed to actually execute the movement of the right vs.
left hand given a stimulus presentation. One session con-
sisted of 40 left trials and 40 right trials (order randomly
chosen) with 8 minutes per session.

Each trial consisted of the following steps1: At time t = 0
a cross was shown on screen. At time t = 1s the subject re-
ceived the instruction (right or left arrow). Feedback was on
at time t = 2.25s and disappeared at time t = 6s. The inter-
trial duration was randomly selected between 1.5 and 3.5
seconds. Stimulus was presented on a desktop computer, 19′

screen and EEG signal was recorded with a g.Tec g.USBAmp
amplifier (512 Hz).

3.1 Signal analysis
1Images of the instruction and feedback are available at:
http://openvibe.inria.fr/motor-imagery-bci/
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The signal analysis relied on the common spatial pattern
(CSP) [3] to compute spatial filters over different selected
bands. The goal of CSP is to improve the discrimination of
two types of signals. The spatial filters are constructed in a
way that they maximize the variance for signals of the first
condition while at the same time they minimize it for the
second condition. The different stages of the signal analysis
procedure follows:

• Ten active electrodes were located over the motor cor-
tex of the hands: C3;C4;FC3;FC4;C5;C1;C2;C6;CP3;CP4.

• All channels were re-referenced to a single channel (which
was located on the ear).

• A spatial filter (surface laplacian filter) was applied to
the ten channels producing two outputs (one for left
and one for the right).

• Each of the two output signals was filtered in one of
six following frequency ranges:
{[8, 12], [12, 16], [16, 20], [20, 24], [24, 28], [28, 32]}.

• Four seconds of signals, half a second after the instruc-
tion was shown to the user, were selected.

• The signal is then splitted in blocks of 1 second every
16th second.

• The logarithmic band power was computed and the
matrices were converted into feature vectors.

• For each trial, the feature vector comprises 12 compo-
nents, 6 corresponding to each output signal.

The classifier task is to infer the correct answer from the
feature vector associated to each condition.

4. USING OPTIMIZATION FOR CLASSIFI-
CATION

Let X = (X1, . . . , Xn) be a set of n continuous variables.
Each variable Xi represents a different problem feature. x =
(x1, . . . , xn) is a possible assignment to the variables and
c ∈ {1, 2} is the class assigned to a given set of features x.
The problem of predicting the class of x can be posed as the
problem of finding a hyperplane H , as linear combination of
the features, that allows to predict the class.

H : a0 +
n∑

i=1

aixi = 0 (1)

where ai are the coefficients or parameters of the hyperplane.
The way to use the hyperplane for classification is straight-

forward: A vector x is classified as class 1 if a0+
∑n

i=1 aixi >
0 otherwise it is classified as class 2.

An approach to compute the set of parameters ai that
maximizes the accuracy of the classification is to use linear
discriminant analysis (LDA). In LDA, the solutions of the
coefficients are found as:

a0 = log(
π1

π2
)− 1

2
(μ1 + μ2)

T
−1∑

(μ1 − μ2) (2)

and

(a1, . . . , an)
T =

−1∑
(μ1 − μ2) (3)

where π1 = N1
N

, π2 = N2
N

, μ1 + μ2 are the vectors of means
and

∑
is the covariance matrix. LDA assumes that the

independent variables are normally distributed.
In some cases the data distribution does not satisfy the

normality assumptions of LDA. In these cases other types
of models, like logistic regression, could be used to find a
combination of features that separate the classes. Here we
investigate a different alternative, in which the linear coeffi-
cients are found by direct optimization of the classification
accuracy.

The optimization problem is then formalized as the search
of the optimal parameters (a0, a1, . . . , an) that maximize
the accuracy function f(a0, a1, . . . , an+1) where f(a) is com-
puted as the percentage of cases correctly classified as pre-
dicted by the hyperplane H(a) defined by a.

Basically, the optimization algorithm should be able to
find a combination of parameters that maximizes the classi-
fication accuracy.

4.1 Optimization algorithms
We have used two different optimization methods that

differ in their complexity and the principles they employ to
organize the search of the optimal solution.

The first algorithm corresponds to a simple random hill
climbing method (RHC) previously used in [25] in the con-
text of P300 speller classification [12]. The RHC algorithm’s
pseudocode is described in Algorithm 1. RHC works by
modifying a single variable of the current solution within an
interval specified by a parameter L. If the change to the
variable improves the function value, then the new solution
is taken as the best. The algorithm stops when a maximum
number of trials, corresponding the number of evaluations,
have been found. We use a RHC with restarts. In this ver-
sion of the algorithm, ntrials calls to the RHC are done and
the algorithms outputs the best solution out of the ntrials
RHC runs.

Algorithm 1: Random Hill Climbing

1 Randomly generate an initial solution y.

2 do {
3 Randomly select a variable Yi

4 Generate a random value α ∈ (yi − L, yi + L)

5 Create a new solution ŷ such that ŷi = α and ŷj = yj , ∀j �=
i.

6 If f(ŷ) ≥ f(y) then y = ŷ

7 } until Maximum number of changes is achieved

8 Return y.

CMA-ES [7, 8, 1] is a model-based EA conceived for non-
linear non-convex optimization problems in continuous do-
mains. The information about the optimization process is
modeled using a multivariate normal distribution. New can-
didate solutions are sampled according to this distribution.
Pairwise dependencies between the variables in this distribu-
tion are represented by a covariance matrix. The covariance
matrix adaptation (CMA) is a method to update the covari-
ance matrix of this distribution. This is particularly useful,
if the fitness function is ill-conditioned. The modeling steps
contribute to accelerate the convergence of the algorithm to
promising areas of the search space.

There are two fundamental steps that serve to explain
the rationale of the algorithm. First, the mean of the dis-
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tribution is updated such that the likelihood of previously
successful candidate solutions is maximized. Second, the
covariance matrix of the distribution is updated (incremen-
tally) such that the likelihood of previously successful search
steps is increased. Both updates can be interpreted as a nat-
ural gradient descent. Algorithm 2 presents a pseudocode of
the basic CMA-ES steps as described in [2]. We use an ad-
vanced implementation of CMA-ES2 that incorporates the
use of a restart mechanism to avoid convergence to local
solutions [1].

Algorithm 2: CMA-ES

1 Generate an initial random solution.

2 The λ offspring at g+1 generation are sampled from a Gaus-
sian distribution using covariance matrix and global step size
computed at generation g.

xg+1
k = zk, zk = N

(
〈x〉(g)μ , σ(g)2

C
(g)

)
, k = 1, . . . , λ (4)

where 〈x〉(g)μ =
∑μ

i=1 x
(g)
i with μ being the selected best in-

dividuals from the population.

3 The evolution path P
(g+1)
c is computed as follows:

P
(g+1)
c = (1 − cc).P

(g)
c +

√
cc(2 − cc).

√
μ

σ(g)
G (5)

C
(g+1) = (1−ccov).C

(g)+ccov.

(
1

μ
F + (1 − 1

μ
)
1

μ

μ∑
i=1

1

σ(g)2
HI

)

(6)

where G =
(
〈x〉(g+1)

μ − 〈x〉(g)μ

)
, F = (Pg+1

c )(Pg+1
c )T , H =

(x
(g+1)
i − 〈x〉(g)μ ), and I = (x

(g+1)
i − 〈x〉(g)μ )T The strategy

parameter ccov ∈ [0, 1] determines the rate of change of the
covariance matrix C.

4 Adaptation of global step size σ(g+1) is based on a conjugate

evolution path P
(g+1)
c .

P
(g+1)
c = (1 − cσ).P

g
σ +

√
cσ(2 − cc).B

(g)(B(g))−1
B
(g)

√
μ

σ(g)
G

(7)

the matrices B
(g) and D

(g) are obtained through a principal
component analysis:

C
(g) = B

(g)(D(g))2(B(g))T (8)

where the columns of B
(g) are the normalized eigen vectors

of C
(g), and D

(g) is the diagonal matrix of the square roots

of the eigen values of C
(g) . The global step size σ(g+1) is

determined by

σ(g+1) = σ(g)exp

(
cσ

d

(
||P(g+1)

c ||
E(||N(0, I||))

)
− 1

)
(9)

5 Repeat Steps 2−4 until a maximum number of function eval-
uations are reached.

4.2 Factors that influence the optimization ap-
proach to classification

There are a number of factors that influence the perfor-
mance of the optimization algorithms as classifiers. These
factors include issues related to the characteristics of the
classification problem, such as the number of features and
the number of cases, and issues related to the characteristics

2http://www.lri.fr/$\tilde$hansen/cmaes$\
_$inmatlab.html#C

of the optimization algorithm such as the maximum number
of allowed objective function evaluations.

The number of variables is an important factor in the
scalability of optimization algorithms. Some optimizations
methods may be efficient for a small number of variables
and deteriorate their performance when more variables are
added. The choice of the optimization-based classification
method may thus consider which is the number of features
involved in the problem. Similarly, the number of cases of
the classification problem influences the time spent in the
evaluation of the fitness function.

Choosing an initial solution closer to the basin of attrac-
tion of optimal solutions can accelerate the convergence of
certain optimization algorithms. This facts opens the pos-
sibility of using the set of linear coefficients output by LDA
and other methods as an initial point of the optimization
algorithm. In Section 5 we investigate this possibility by
evaluating the results of the CMA-ES-LDA method.

The type of optimization algorithm used to find the so-
lution will also influence the quality of the final classifier.
Since the classifiers will be applied to very diverse sets of
data (depending on the characteristics of the experiments
the classification features have been extracted from), the
optimization algorithms should be robust in different fitness
landscapes. Efficiency is another important factor because
k-folding strategies, usually applied to assess the quality of
the classifiers, determine that the search for the optimal so-
lution will be repeated k times. This implies to solve k
different optimization problems to obtain a k-folded based
prediction of the classifier accuracy.

The maximum number of evaluations allowed to the opti-
mization algorithm also affects the quality of the final clas-
sifier. On one hand, a very small number of evaluations may
determine that the solutions are far from giving a high clas-
sification accuracy. On the other hand, allowing too many
function evaluations may contribute to improve the quality
of the solution on the training data but at the expense of
obtaining an overfitted classifier.

5. EVALUATION
In this section, we compare the results of the optimization-

based classifiers to the results achieved using classical and
most-common used classifiers in the BCI community [16].
The classifiers we proposed are based on the direct opti-
mization of the hyperplane parameters and the method that
uses CMA-ES is able to build a model of the variables in-
teractions to guarantee a more efficient search. We evaluate
the behavior of RHC, CMA-ES and CMA-ES-LDA for the
motor-movement and motor-imagery scenarios described in
Section 3 using different parameters. We later analyze the
covariance matrices produced by CMA-ES and identify the
differences in the interactions between the variables for the
two scenarios.

5.1 Experimental apparatus and parameters
of the algorithms

There are many software tools for off-line and online anal-
ysis of EEG and biomedical signals that can be used for
designing and implementing BCIs [26]. For the acquisition,
signal processing and visual application study we used Open-
ViBE [22], a software platform which enables researchers to
design, test, and use BCIs. OpenViBE is portable, indepen-
dent of the hardware or software, and is based on free and
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open source software. Modularity is a particularly impor-
tant OpenViBE’s feature since it helps to easily integrate
and test different methods for signal analysis and classifica-
tion. Particularly relevant for the application presented in
this paper is the classification module.

In principle, optimization could be conceived as an inde-
pendent OpenViBE module that could be attached to dif-
ferent processes involved in the BCI scenarios (e.g. channel
selection, feature selection, etc.). However, such a general
module should be able to handle with a number of con-
straints since the objective functions and problem represen-
tations change between problem domains. Therefore, we fo-
cused on the implementation of optimization strategies for
the classification module.

In OpenViBE’s classification module the feature vector
is fed into a (user selected) classifier that assigns a class to
each feature vector, this class being an identifier of the brain
signal that has been recognized. In general, the classifier is
trained before-hand using a set of feature vectors from each
class. It is during this training phase that our optimization
approach will be applied.

For comparison, we used the LDA and SVM implemen-
tations included in the classification module of OpenViBE.
The C language CMA-ES implementation3 was adapted to
the OpenViBE platform. The parameters used for the SVM
implementation were those proposed by default in Open-
ViBE.

The range of values for generating the initial solutions was
[Li − L,Li + L] were L ∈ {50, 100}. For RHC and CMA-
ES, Li = 0 ∀i ∈ {0, . . . , n}. For CMA-ES-LDA, Li was
the ith component of the solution given by the application
of LDA. Different numbers of restarts Ts ∈ {3, 5, 10} were
allowed. Restarts were used as a way to scape from local
optima. Following the setting recommended [1], after each
restart of CMA-ES the population size is increased by a
factor 2. The same increased is applied to restarts of RHC
and CMA-ES-LDA. We did not tune the parameters of any
of the classification methods used in our comparisons.

For all algorithms and parameters configuration, five trials
were run and the maximum, mean, and minimum accura-
cies were computed. Notice that each trial corresponds to a
5-fold-cross validation of the found accuracy. Since to com-
pute the classifier in each fold the optimization algorithm is
applied, there are 25 optimization runs for each parameter
configuration of the algorithms.

5.2 Classification results
The first objective of our analysis is to compare the per-

formance of the classifiers for the data obtained from the
subject for the motor-movement scenario. Results are shown
in Table 1. In the table, L and Ts are respectively the pa-
rameters for the number of restarts and the range of the
variables. Max, Mean, Min, and std respectively refer to
the maximum, mean, minimum and standard deviations of
the accuracies as computed from the five different repeti-
tions.

It can be seen in Table 1 that the accuracies are in gen-
eral over 90% for all the classifiers except SVM. The highest
accuracies are obtained by CMA-ES when the initial range
of parameters is L = 50 (these values appear in bold in the
table). In addition, CMA-ES and CMA-ES-LDA seem to

3Available from the author’s website http://www.lri.fr/
~hansen/cmaes_inmatlab.html

Alg L Ts Max Mean Min std
LDA 93.16 92.92 92.75 0.17

SVM 89.95 89.81 89.69 0.10

CMA-ES 50 3 94.08 93.80 93.41 0.27
5 93.67 93.22 92.81 0.36

100 3 93.88 93.09 92.40 0.56
5 93.92 93.49 93.01 0.33

RHC 50 3 92.95 91.70 89.23 1.43
5 91.63 91.14 90.46 0.58

10 92.65 91.94 91.17 0.64
100 3 92.35 90.86 87.19 2.17

5 92.70 91.98 91.07 0.66
10 93.16 91.24 89.80 1.56

CMA-ES-LDA 50 3 93.83 93.38 92.91 0.38
5 93.42 93.12 92.91 0.20

Table 1: Results of the different classifiers for the
motor-movement scenario.
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Figure 1: Improvement of the classification algo-
rithms over LDA for the motor-movement scenario.

achieve better parameters than all the other classifiers for
every possible configuration of parameters. The improve-
ments over the results achieved by LDA are represented in
Figure 1. Two aspects can be highlighted from the analysis
of this figure. The first is that the RHC algorithm is not able
to reach the accuracy results of LDA. A simple optimization
procedure that does not take into account the regularities of
the search space is not expected to produce consistent high
accuracy results for this problem, at least for the brain data
obtained from this single subject. The other observation is
that CMA-ES-LDA does not improve the results of CMA-
ES. Therefore, at least for this example, an initialization in
the neighborhood of the solution obtained by LDA does not
seem to improve the accuracy results.

We then analyze the behavior of the algorithms for the
motor-imagery scenario. The same parameters are used for
all the algorithms. Results are shown in Table 2. A first
observation is that the accuracy results are much lower that
for the motor-movement scenario. This phenomenon could
be due to a stronger discriminative brain signal associated
to the actual movements than to imagined movements. It
can be seen in the table that CMA-ES outperforms all the
other algorithms. For this scenario, SVM and RHC are able
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Alg L Ts Best Mean Worst std
LDA 71.99 71.68 71.30 0.25

SVM 72.86 72.53 71.79 0.43

CMA-ES 50 3 75.56 74.90 74.49 0.40
5 75.56 75.11 74.74 0.33

100 3 75.97 74.61 73.88 0.90
5 75.82 74.73 73.97 0.73

RHC 50 3 74.28 72.15 70.61 1.35
5 72.40 71.41 70.36 0.80

10 72.70 71.37 70.24 0.95
100 3 73.11 71.44 68.42 1.91

5 73.57 71.38 69.95 1.37
10 73.01 71.82 69.54 1.34

CMA-ES-LDA 50 3 75.30 74.77 73.52 0.72
5 75.91 74.99 74.34 0.68

Table 2: Results of the different classifiers for the
motor-imagery scenario.
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Figure 2: Improvement of the classification algo-
rithms over LDA for the motor-imagery scenario

to improve the results of LDA. It is particularly noticeable
that RHC achieves maximum accuracies higher than SVM.
Nevertheless, RHC is not a consistent good classifier. It
has the highest standard deviation and the lowest mean ac-
curacy among all the algorithms. This can be further ap-
preciated in Figure 2 where it is the only algorithm whose
performance is worse than LDA. It is worth to notice that
the average improvements given by CMA-ES and CMA-ES-
LDA are around the 3% of accuracy.

5.3 Analysis of the models
The next goal is to investigate the information captured

in the covariance matrices learned by CMA-ES in the so-
lution of the optimization problems. The objective behind
the analysis of the matrices is threefold. First, we would like
to identify differences between the variances computed for
the different variables that could hint to their different roles
in the optimization process. Second, we would like to de-
tect possible interactions between the variables expressed in
a strong negative or positive covariance. Finally, we would
like to know if the differences between the motor-imagery
and motor-movement scenarios are somewhat reflected in
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Figure 3: Covariance matrix computed during the
application of CMA-ES to the motor-movement sce-
nario
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Figure 4: Covariance matrix computed during the
application of CMA-ES to the motor-imagery sce-
nario

differences between the models captured for the two prob-
lems. We recall that 12 of the variables of the problem (cor-
responding to coefficients (a1, a2, . . . , a12) of the hyperplane
correspond to the features extracted from the CSP com-
puted for different frequency bands and conditions. There-
fore, the covariances between the variables could be an indi-
cator of the relationships between the output of the CSPs.

To analyze the covariance matrix, we run CMA-ES allow-
ing 10 possible restarts for each of the 5 folds correspond-
ing to each scenario. We saved the last covariance matrix
learned by the algorithm. Therefore, we obtained 50 covari-
ance matrices learned from different CMA-ES initializations
and folds. These matrices should be useful to detect whether
any possible pattern in the covariances was consistent be-
tween datasets and runs of the algorithm. In addition, we
run a CMA-ES, also with 10 restarts using the whole data
set (i.e. all folds together) and similarly saved the last co-
variance matrix of each restart.

Figures 3 and 4 respectively show one of the covariance
matrices learned for each scenario using the complete dataset.
The colorbar represents the covariances strengh. For the
sake of clarity we only display the lower triangular matri-

1164



Covariances

R
un

s

 

 

10 20 30 40 50 60 70 80 90

5

10

15

20

25

30

35

40

45

50
−10

−5

0

5

10

15

Figure 5: Covariance values for different runs of
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Figure 6: Covariance values for different runs of
CMA-ES in its application to the motor-imagery
scenario

ces. There are clear differences between the covariance ma-
trices corresponding to the two scenarios. For the motor-
movement scenario there is a checkerboard pattern of inter-
action between variables in which adjacent variables in the
representation tend to have a negative covariance while vari-
ables at a distance two exhibit a positive covariance. On the
contrary, for the motor-imagery scenario covariances can be
very strong but are mainly limited to a strong positive vari-
ance for variables 2 and 9 and strong negative covariances
between variables pairs (2, 3) and (2, 9). A high variance
for one of the variables may indicate that different values of
this variable are possible in good classifiers. The negative
covariance may indicate how changes in one of the variables
are somewhat “compensated” by changes in the correlated
variables.

To investigate whether the patterns shown in Figures 3
and 4 are consistent, we inspected the covariance matrices
learned in the 50 CMA-ES runs. The 13·14

2
= 91 possible

covariance values obtained at the end of the 50 runs are
shown in Figures 5 and 6. The checkerboard pattern can
be appreciated in Figure 5 in the form of differently colored
stripes. The effect of the restarts can also be seen in the

figures. In the first runs of the algorithm, when the popu-
lation size is small, the algorithm is hardly able to detect
any covariance between the variables, as the population is
increased the same patterns of interactions appear. These
patterns are repeated 5 times, one for each fold. Figure 6
shows that the distinctive patterns detected for the motor-
imagery scenario are also repeated for the different runs and
across the folds.

6. CONCLUSION AND FUTURE WORK
In this paper we have shown that model-based EAs like

CMA-ES can be effective in the solution of a BCI classifi-
cation problem based on motor imagery. Our approach has
a number of merits: 1) The final classifier can be better
adjusted to the characteristics of the data (no assumptions
about the normality of the data are required); 2) The opti-
mization algorithm can extract and exploit regularities from
the search space allowing the adaptation to different dataset
distributions; 3) The model built during the optimization
process can reveal information about the problem domain.
We have also evaluated the feasibility of OpenViBE as a
tool for fast addition and validation of alternative machine
learning algorithms for BCI development.

The results presented in this paper are preliminary. More
experiments should be conducted to assess the statistical
significance of the results and validation of the algorithm on
other subjects is also required. Many extensions are possi-
ble to increase the accuracy of the classifiers. One possibility
is to evolve sets of classifiers instead of single classifiers as
done in [25]. When stochastic optimization methods are
used, usually diverse optimal solutions can be obtained and
combined to create more robust classifiers. The optimiza-
tion approach also allows the fitness function to be modified.
This can be done by assigning different weights to the differ-
ent cases that are being classified allowing to deal with class
imbalance and domain adaptation problems. In addition to
CMA-ES other model-based EAs like estimation of distribu-
tion algorithms that learn Bayesian [14], Gaussian [13], and
Markov networks [27] could be tried. Finally, more work is
required to investigate the potential implications and use of
the patterns of interactions captured by the models learned
by the optimization algorithms.
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logistic regression and multi-objective variable
selection for classifying MEG data. 2012. Submmitted
for publication.

[25] R. Santana, S. Muelas, A. Latorre, and J. M. Peña. A
direct optimization approach to the P300 speller. In
Proceedings of the 2011 Genetic and Evolutionary
Computation Conference GECCO-2011, pages
1747–1754, Dublin, Ireland, 2011.
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