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ABSTRACT
We present a study on the cumulative effect of the bloat
and the seeding of the initial population, inspired by ge-
netic transposition (GT), on the efficiency of incremental
evolution of simulated snake-like robot (Snakebot). In the
proposed incremental genetic programming (IGP), the task
of coevolving the locomotion gaits and sensing of the bot
in a challenging environment is decomposed into two sub-
tasks, implemented as two consecutive evolutionary stages.
First, we use genetic programming (GP) with two ways of
bloat management, (i) parsimony pressure which penalizes
the bloat and (ii) no bloat control, to evolve two pools of
sensor-less Snakebots. During the second stage of IGP, we
use these pools to seed the initial population of Snakebots
applying two methods of seeding: canonical seeding and GT-
inspired seeding. The empirical results indicate that the
efficiency of the first stage of IGP for both bloat control
techniques is similar. However, the bloated bots contribute
to a much more efficient second stage of evolution. Com-
pared to the canonical seeding with parsimony bots, the
GT-inspired seeding with bloated Snakebots yields about
five times higher probability of success and similar decrease
of computational effort of the second stage of IGP.
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General Terms
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1. INTRODUCTION
The insufficient efficiency of the genetic programming (GP),

together with its non-determinism are among the most im-
portant drawbacks that still hinder the wide adoption of
the evolutionary paradigm for solving challenging real-world
problems. The overall efficiency of GP depends on the cu-
mulative effect of two major, relatively independent fac-
tors: (i) the computational effort, i.e., the number of ge-
netic programs that should be evaluated in order to achieve
a given probability of success, and (ii) the computational
performance, i.e., the average run-time, required to evalu-
ate a single genetic program. Therefore, most of the efforts
of researchers and practitioners in evolutionary computa-
tion (EC) community are aligned along the two orthogonal
directions–improving the computational effort and compu-
tational performance of GP.

The computational effort of GP could be improved in sev-
eral ways, such as, incorporating a domain-specific knowl-
edge into the key attributes of GP (e.g., genetic represen-
tation, genetic operations, etc.), imposing problem-specific
syntax constrains (i.e., grammar) on the evolved genetic
programs, employing probability-distribution models, etc.
These approaches are usually intended to steer the simulated
evolution towards the most promising areas in the explored
(presumably rugged) fitness landscapes.

Another approach of improving computational effort of
GP stems from the assumption that the main genetic oper-
ations (crossover and mutation), due to their randomness,
are often damaging the partially constructed building blocks
of the solution. Thus, the destructive effects of these oper-
ations could be limited if they are occasionally allowed to
operate on the neutral genetic code, i.e., the code, that is
irrelevant to the quality (fitness) of the corresponding ge-
netic program. Moreover, such a neutral code might provide
the simulated evolution with a “playground” where the lat-
ter can experiment with developing either novel-, or better-
than-existing genotypic traits without the risk of damaging
the already evolved ones.

In biology, the constructive role of neutrality has been
well recognized, and noted to be a conducive mechanism
in the evolution of many successful traits in biological or-
ganisms [8, 22]. The presence of neutral genes in Nature
is often associated with smoother fitness landscapes, more
robust genotypes and a support mechanism for discovering
new phenotypes [8, 21, 22]. Similarly, the neutrality has also
been a topic of interest and discussion in EC. In a recent ar-
ticle, Galvan-lopez et al. [6], provide a good overview of the
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role of neutrality in EC. The authors conclude their work
with the open issues in this area and with their opinion on
the studies that would be beneficial to a better understand-
ing of the role of neutrality in EC. Due to the complex and,
to some extent, unpredictable nature of the latter, it is often
difficult to achieve an in-depth theoretical analysis of the ef-
fects of mechanisms and parameters on the performance of
these algorithms.

The work of Ebner [5] suggests that the neutrality in-
duced by the “junk code” provides better performance for
the evolution of genetic programs. It was also reported that
the neutrality contributes to a better efficiency of evolution
in Cartesian Genetic Programming (CGP) [20, 23]. This
conclusion remains to be a controversial one, however, as
in a follow-up study Collins reported that the latter work
is being flawed and that the effects of neutrality could in
fact be degrading the overall performance of evolution [3].
This ongoing discussion on the possible beneficial effect of
neutrality on the overall efficiency of GP is also stated by
Galvan-lopez et al. [6], who note that “one needs to find
ways of predicting when the addition of neutrality can be
beneficial in practical situations.” Although neutrality has
been shown to be beneficial in complex, rugged landscapes
with multiple optima [1, 4, 12], it also has adverse effects
on the evolution of simple problems with a small number of
optima and a smooth landscape.

Despite the beneficial effects of neutrality on the compu-
tational effort of GP, its implications on the overall per-
formance of GP are highly controversial. One of the most
important drawbacks of neutral code is that it often causes
a degradation of computational performance of GP. Indeed,
the neutral code in GP is often associated with the resulting
bloat [2], or, with a sharp increase of the size (and com-
plexity) of genetic programs in due course of the simulated
evolution. Usually, the increased size of the evolved genetic
programs does not correlate well with the convergence of the
respective fitness values. Moreover, due to the cache mem-
ory effects, the runtime overhead of interpreting the genetic
programs (represented in the computer memory as highly
fragmented parse trees) grows faster than linear with the in-
crease of their size. Therefore, applying parsimony pressure
in order to limit the growth of the size of genetic programs is
often seen as a natural way to alleviate bloat-induced degra-
dation of computational performance of GP [7, 14].

In our previous work we developed an incremental ap-
proach in order to improve the efficiency of evolution of
complex robotic artifacts in challenging environment. In the
proposed incremental genetic programming (IGP), the task
of coevolving the locomotion gaits and sensing of a simulated
Snake-like robot (Snakebot) in a challenging environment is
decomposed into two subtasks, implemented as two consecu-
tive evolutionary stages. First, we use genetic programming
to evolve a pool of sensorless Snakebots that move fast in
a smooth, open terrain. Then, during the second stage, we
use these pools to seed the initial population of Snakebots
that are further subjected to coevolution of their locomo-
tion control and sensing morphology in a challenging en-
vironment. Moreover, we also demonstrated a mechanism,
inspired by the genetic transposition (GT) seen in nature, to
create redundant, neutral genetic spaces by artificially bloat-
ing the bots at the stage of seeding the second stage of IGP.
This mechanism was shown to provide better performance
in terms of the computational effort required to evolve high

quality Snakebots [11]. The resulting approach provided a
valuable gain in the overall performance due to the negligible
decrease in the computational performance–since the main
contributor to the computational overhead is the simulation
of the Snakebots during the evaluation phase. However, the
effect of neutral code in the bots, evolved during the first
stage of IGP, on the efficiency of the second stage was con-
sidered beyond the scope of the considered work.

The objective of this work is to investigate the cumula-
tive effects of both the bloat and GT on the efficiency of
IGP used for incremental evolution of locomotion of sens-
ing Snakebot in a challenging environment with obstacles.
The successful bots should feature the evolved (emergent)
know-how about how to clear a narrow corridor by (i) mov-
ing fast, (ii) following the walls of the corridor, (iii) over-
coming a number of randomly scattered small boxes, and
(iv) circumnavigating large obstacles. In the proposed in-
cremental GP (IGP), the task of coevolving the locomotion
and the sensing of Snakebot in a challenging environment
is decomposed into two sub-tasks, implemented as two con-
secutive evolutionary stages. First we employ GP to evolve
a pool of simple, sensor-less bots that are able to move fast
in a smooth, open terrain. Then, during the second stage,
we use this pool to seed the initial population of the bots
that are further subjected to coevolution of their locomotion
control and sensing in the challenging environment. We are
especially interested on how the degree of bloat (and, con-
sequently, the associated neutrality), introduced during the
fist stage of the incremental evolution, effects the overall
performance of IGP.

Our choice of the application of GP is motivated by two
arguments that, as we believe, are in favour of the neutral-
ity. First, the considered problem is rather challenging, as
it features a large and highly rugged fitness landscape [11].
Shipman demonstrated that neutrality helps the discovery
of multiple phenotypes, but reduces the evolutionary perfor-
mance for achieving faster solutions in simpler problems [15].
Within this context, we would like to investigate if, during
the second stage of IGP, the neutrality would decrease the
computational effort of evolving novel traits (e.g., the sen-
sory abilities of the bot) in addition to the already evolved
locomotion of the bots. And second, as in the most of the
tasks in evolutionary robotics, it is the realistic simulation
of the physics of moving complex robotic artefact, rather
than the parsing of the genetic programs that consumes the
most of the run-time of GP. Therefore, we anticipate no
major bloat-induced degradation of the computational per-
formance of GP, as experienced with GT.

The remaining of this document is organized as follows.
Section 2 introduces the morphology and the moving abil-
ities of the Snakebot. In Section 3 we discuss the key at-
tributes of the proposed evolutionary framework. Section 4
presents the empirical result on the effect of bloat on the ef-
ficiency of incremental evolution of the bot in a challenging
environment. Section 5 draws a conclusion.

2. SIDEWINDING AND SENSING SNAKE-
LIKE MODULAR ROBOT

Snake-like robots feature potential robustness character-
istics beyond the capabilities of most wheeled and legged
vehicles, such as: the ability to traverse challenging ter-
rain and insignificant performance degradation when par-
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tial damage is inflicted. Some useful features of snake-like
robots include smaller size of the cross-sectional areas, sta-
bility, ability to operate in difficult terrain, good traction,
and complete sealing of the internal mechanisms. Moreover,
due to the modularity of their design, the snake-like robots
feature high redundancy and fault tolerance [17]. Robots
with such properties can be valuable for applications that in-
volve exploration, reconnaissance, medicine and inspection.
Designing a controller that can achieve optimal locomotion
of a modular Snakebot is a challenging task due to the large
number of degrees of freedom in the movement of segments
of a Snakebot. The locomotion gait of such bots is often
seen as an emergent property; observed at a higher level
of consideration of complex, nonlinear, hierarchically orga-
nized systems, comprising many relatively simply-defined
entities (morphological segments). In such complex systems
the higher-level properties of the system and the lower-level
properties of comprising entities cannot be directly induced
from each other [13]. Therefore even if an effective incorpo-
ration of sensing information in fast and robust locomotion
gaits might emerge from intuitively defined sensing morphol-
ogy and simple motion patterns of morphological segments,
neither the degree of optimality of the developed code nor
the way of how to incrementally improve this code is evident
to the human designer [10].

The previous research demonstrates that the control for
a fast moving modular robotic organism could be automati-
cally developed through various nature-inspired paradigms,
based on models of learning and evolution. The work, pre-
sented in [17] demonstrates the use of GP for evolution of
sensor-less sidewinding Snakebots in various environmental
conditions. Furthermore, the coevolution of active sensing
and the control of the locomotion gaits was demonstrated
to be achievable, albeit difficult [11]. The control of a mod-
ular Snakebot with sensors for locomotion through a maze
with obstacles was shown to be a challenging task to achieve
via canonical GP even when ADFs were used. The use of
incremental GP was shown to be a better approach, where
initially the locomotion of the Snakebot in an obstacle free
environment was achieved before evolving these Snakebots
for a second time to utilize sensors. Furthermore, the use of
a GT inspired incremental GP, which utilizes the addition
of neutral code into the genotype of the seeding individuals
for the second stage of the incremental GP runs had higher
success rates as well as more robust solutions [11].

The morphology of the sensors, attached to each of the
segments of the bot, coevolves with the way to incorporate
the sensory readings into the control of locomotion of the
bot. The genetically optimized morphological traits of the
bot include the initial orientation, the timing of switching
on, and the range of the simulated proximity sensors (e.g.,
laser range finders, LRF) attached to each of the segments
of the bot. The emergent features of the evolved gaits in-
clude both the contact and contact-less wall-following navi-
gation accomplished via adaptive, sensory-controlled differ-
ential steering of the fast moving sidewinding bot.

In this paper we investigate the coevolution of the active
sensing and locomotion control of sidewinding Snakebot in
the same environment presented in [11], which features a
narrow corridor with several large obstacles and many ran-
domly placed small obstacles constituting a rugged terrain.
The sensors on the Snakebot used in this paper follow the
same model as proposed in [18]: each segment of the Snake-

bot is provided with a fixed, immobile LRF with evolvable
initial orientation, range and timing of firing. The most effi-
cient locomotion gaits of Snakebot are not necessarily associ-
ated with the forward, rectilinear motions (and sidewinding
might emerge as a fast and robust locomotion). Therefore,
the eventual fusion of the readings of many sensors mounted
in all the segments of the bot would provide Snakebot with
the capability to perceive the features of surrounding envi-
ronment along its whole body. In addition to the widening
of the area of the perceived surroundings, multiple sensors
offer the potential advantages of robustness to damage of
some of them, dependability of the sensory information, and
an ability to perceive the spatial features of the surrounding
environment due to the motion parallax.

Scalable approaches that can handle multiple tasks are
important in the evolution of Snakebot, as the complexity
of evolving a controller for the described set up can become
an issue. The size of evolutionary search space can be seen
as a multiplication of the sizes of the search spaces of the
following interdependent evolutionary sub-tasks:

• Evolution of the control of locomotion: the time pat-
terns of turning angles of actuators that result in a fast
locomotion of the bot.

• Evolution of the morphology of the active sensing : ini-
tial orientation of the sensors, their range, and timing
of their activation.

• Evolution of the incorporation of the sensor signals
into the control of locomotion of the bot.

The evolution of both the morphology and the incorpo-
ration of the signals from many sensors face the challenge
of dealing with the uncertain sensor readings as they move
synchronously with the coupled segments of the snake. Fig-
ure 1 illustrates how the initial orientation of the axes of the
internal coordination systems of the segments of a bot dra-
matically differs from a sample instant orientation of these
axes in a moving bot. A sensor fixed to the segment of a
moving Snakebot would constantly change its spatial orien-
tation, and consequently it might alternatively perceive no
signal, a signal from the ground surface or from another seg-
ment of the snake (in both cases the sensory reading should
be ignored), or eventually from an obstacle. Moreover, in
the targeted environment the obstacle could be either a wall
(to be followed), a large box (to be circumnavigated), or a
small box (to be overcome).

The large search space of the evolution of the considered
Snakebot results in an intractable computational effort, and
as it was demonstrated in [11], canonical GP with Automat-
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(b) Intermediate Orien-
tation.

Figure 1: Orientation of the axes of the internal
coordination systems of the central segment at two
different Snakebot positions.
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Figure 2: Morphological segments of Snakebot are
linked via universal joint. Horizontal and vertical
actuators attached to the joint perform rotation of
the segment #i-1 in vertical and horizontal planes
respectively. A single LRF is attached to each of the
segments in the plane of the axes of the universal
joint.

ically Defined Functions (ADF) is unable to effectively ex-
plore the emerging search space in a reasonable time frame.

3. EVOLUTIONARY FRAMEWORK AND
THE SIMULATION ENVIRONMENT

For the experiments presented in this work we employ
open dynamics engine (ODE) as a simulation platform for
the Snakebot. ODE is a free, industrial quality software li-
brary for simulating articulated rigid body dynamics [16]. It
is fast, flexible and robust, and it has built-in collision detec-
tion. Therefore, ODE is suitable for a realistic simulation of
the physics of an entire Snakebot when applying actuating
forces to its segments. The main ODE related parameters
of the simulated Snakebot are same as elaborated in [17].

Snakebot is simulated in ODE as a set of 15 identical
spherical morphological segments (“vertebrae”), linked to-
gether via universal (Cardan) joints (Figure 2). All joints
feature identical angle limits and each joint has two attached
actuators (“muscles”). A single LRF sensor, with a limited
range is rigidly attached to each of the segments.

The functionality of the LRF can be defined by the val-
ues of the following set of parameters: (i) orientation, mea-
sured as an angle between the longitudinal axis of the sensor
and the horizontal axis of the joint, (ii) range of the sensor
(in cm), and (iii) the timing of activation, expressed as a
threshold value of the turning angle of the horizontal actua-
tor. The reading of LRF is a scalar value which corresponds
inversely to the distance between the sensor and an object
(if any within the sensor’s range), measured along the longi-
tudinal axis of the LRF. In the initial standstill position of
Snakebot (as depicted in Figure 1(a)) the rotation axes of
the actuators are oriented vertically (vertical actuator) and
horizontally (horizontal actuator) and perform rotation of
the joint in the horizontal and vertical planes respectively.

Considering the representation of Snakebot, the task of
designing the fastest locomotion can be rephrased as devel-
oping temporal patterns of desired turning angles of hori-
zontal and vertical actuators of each segment that result in
fastest overall locomotion of Snakebot. The proposed repre-
sentation of Snakebot as a homogeneous system comprising
identical morphological segments is intended to significantly
reduce the size of the search space of the GP.

For the evolution of the Snakebot, the genotype is rep-
resented as a triple consisting of a linear chromosome con-
taining the encoded values of the three relevant parameters
of LRF, and two parse trees corresponding to the algebraic

Figure 3: Genotype of the Snakebot consist of a
triple containing the values of the parameters of
LRF and two algebraic expressions of the temporal
patterns of the desired turning angles of horizontal
and vertical actuators, respectively. The genotype
of Snakebot is homogeneous: therefore all segments
feature the same triple.

expressions of the temporal patterns of the desired turning
angles of both the horizontal and vertical actuators, respec-
tively (Figure 3).

The Snakebot is genotypically homogeneous in that the
same triple is applied for the setup of the LRF and for the
control of actuators of all morphological segments. The en-
coding of the parameters of LRF is as elaborated in Fig-
ure 3. The same figure also illustrates the function set and
the terminal set of the GP, employed to evolve the control
sequences of both actuators. Since the locomotion gaits by
definition are periodical, the periodic functions sine and co-
sine are included in the function set of GP in addition to
the basic algebraic functions. Terminal symbols include the
variables time, segment ID, an ADF, the reading of the sen-
sor (LRF), and two constants: pi, and a random constant
within the range [0, 2]. The incorporation of the terminal
symbol segment ID (a unique index of morphological seg-
ments of Snakebot) provides GP with an effective way to
specialize (by phase, amplitude, frequency etc.) the genet-
ically identical motion patterns of actuators of each of the
morphological segments of the Snakebot.

The rationale of employing ADFs is based on the obser-
vation that the evolvability of straightforward, independent
encoding of desired turning angles of both horizontal and
vertical actuators is rather poor. Even without ADFs, GP is
able to adequately explore the potentially large search space
and ultimately discover the areas that correspond to fast lo-
comotion gaits in the solution space. However, it was ob-
served in the previous work of Tanev et al. [17] that not only
the motion patterns of adjacent segments are correlated, but
the motion patterns of horizontal and vertical actuators of
each segment in fast locomotion gaits are highly correlated
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too. Moreover, discovering and preserving such correlation
by GP is associated with enormous computational effort.
ADFs, which provide a way of introducing modularity and
reuse of code in GP [9], are employed in our approach to
allow GP to explicitly evolve the correlation between mo-
tion patterns of horizontal and vertical actuators as shared
fragments in algebraic expressions of desired turning angles
of both actuators. Furthermore, we observed that the best
results are obtained by; (i) allowing the use of ADF as a
terminal symbol in algebraic expression of desired turning
angle of vertical actuator only, and (ii) evaluating the value
of ADF by equalizing it to the value of currently evaluated
desired turning angle of horizontal actuator.

Table 1: Main parameters of GP.

Category Value

Genotype
LRF parameters (linear chromosome)
Horizontal actuator control (parse tree)
Vertical actuator control(parse tree)

Population Size 200 individuals

Selection
Binary Selection ratio: 0.1
Reproduction ratio: 0.9

Elitism 4 individuals
Mutation Rate 0.01
Trial Interval 16s (400 time steps of 40ms per step)
Termination (Fitness=120) or
Criteria (Tot. No. of generations=80)

The main GP (hence the EA) parameters are summarized
in Table 1. We use a DOM/XML-based implementation
of GP [19], with binary tournament selection and a single
point crossover. The crossover point is randomly selected
between the three components of the genotype (as shown in
Figure 3), unless stated otherwise. The mutation randomly
alters either a value of an allele in the linear chromosome
representing the parameters of LRF, or a sub-tree in one of
the two parse tress that correspond to the temporal patterns
of the control sequences of actuators.

4. EXPERIMENTAL SETUP
The experimental setup of employing IGP for evolution of

Snakebot is illustrated in Figure 4. During the first stage of
IGP, the locomotion of sensor-less bot is evolved in a smooth
terrain with two cases of bloat control: parsimony pressure
penalizing bloat (case 1a, pBC) and no bloat control (case
1b, noBC), respectively. In the former case, the fitness value
is penalized by 1

10
times the number of tree nodes in the

genotype of the bot. In the case of no bloat control, the
fitness value is not altered with respect to the complexity
of the genotype of the bot. Each of these two cases are
executed for 40 independent evolutionary runs. The target
fitness value is 100, which corresponds to the velocity of
locomotion that displace the Snakebot during the simulated
trial of 16s a distance equal to twice its length.

The best six bots from each of these two cases are then
used as seeding bots for the stage 2 of IGP, initialized by the
following two seeding mechanisms: canonical seeding (stage
2a) and seeding via GT (stage 2b) respectively. In canonical
seeding, 6 individuals from stage 1 are used “as is”, while
the remaining 194 individuals in the population are created
randomly. In the seeding via GT all 200 individuals in pop-

ulation are created by incorporating the entire genomes of
the 6 best bots from stage 1: 6 individuals being used “as
is”, and the remaining 194 individuals created using the GT
inspired method described in Figure 4.

For the second stage of IGP, there are two experimental
cases as well (shown in Figure 4 as stage 2a and 2b, respec-
tively). These two stages differ in the mechanism of seen
only, and feature identical evolutionary conditions. The ex-
perimental cases of both stages 2a and 2b feature the same
parsimony pressure conditions - a penalty to the fitness of
by 1

10
times the number of tree nodes in the genotype. By

applying bloat control in the second stage of IGP we could
obtain good, yet genetically simple bots (i.e., Occam razor).
These simple genotypes could be better comprehended and
modified (if needed) by human, and efficiently implemented
in the controller of the bot.

The difference in stages 2a and 2b is in the used two mech-
anisms of seeding: canonical seeding (stage 2a) and seeding
via GT (stage 2b), respectively (Figure 4). In canonical
seeding, 6 individuals from stage 1 are used “as is”, while
the remaining 194 individuals in the population are created
randomly. In the seeding via GT all 200 individuals in pop-
ulation are created by incorporating the entire genomes of
the 6 best bots from stage 1 (shown as Transposon A) in the
randomly initialized genotype (Transposons B and C).

The fitness function is based on distance the Snakebot
travels during the trial. The normalized fitness of 120 cor-
responds to the distance required to be traveled during the
trial in order to clear a narrow corridor covered with obsta-
cles of various sizes. The evolution is terminated if the bot
clears the corridor (fitness is 120) or if the maximum number
of generations is reached.

4.1 Stage 1: Evolution of Locomotion of
Sensorless Snakebot

We executed 40 independent runs for both the Stage 1a
(pBC) and 1b (noBC) of IGP, respectively. The aggregated
fitness convergence characteristics are shown in Figure 5.
As the figure illustrates, the use of a simple parsimony pres-
sure, as described earlier, has no implications significant on
the fitness convergence characteristics, and therefore, on the
overall computational effort of the first stage of IGP. We
also visually inspected the locomotion gaits of the successful
Snakebots from each of these two cases and confirmed that
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Figure 5: The convergence of average fitness during
the first stage of IGP with two cases of bloat control
- parsimony pressure (pBC) and no bloat control
(noBC), respectively. The results are aggregated
over 40 independent runs.
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Case 2a: Canonical Seeding Case 2b: Seeding via genetic transposition 

  Seeding 

Main features: 

 Challenging terrain, 

 Bot with sensors, 

 Bloat control: Parametric bloat control (pBC), 

 Two cases of seeding: 

 Case 2a: Canonical seeding, and 

 Case 2b: Seeding via genetic transposition 

Stage 2 of IGP 

Main features 

 Smooth terrain, 

 Sensorless bot, 

 Bloat control: 

 Case 1a: parametric bloat control (pBC), and 

 Case 1b: no bloat control (noBC)   

Stage 1 of IGP 

Figure 4: The two stages of IGP. In stage 1, the locomotion of senssorless bot is evolved in a smooth terrain
with two cases of bloat control: parsimony pressure penalizing bloat (case 1a, pBC) and no bloat control
(case 1b, noBC), respectively. The best six bots from each of these two cases are then used as seeding bots
for the stage 2 of IGP, initialized by the following two seeding mechanisms: canonical seeding (stage 2a) and
seeding via GT (stage 2b) respectively. In canonical seeding, 6 individuals from stage 1 are used “as is”,
while the remaining 194 individuals in the population are created randomly. In the seeding via GT all 200
individuals in population are created by incorporating the entire genomes of the 6 best bots from stage 1
(shown as Transposon A) in the randomly initialized genotype (Transposons B and C).

they are similar. The use of parsimony pressure did exactly
what it is supposed to: the only significant difference be-
tween the two experimental cases was in the average tree
sizes, and the use of parsimony pressure provided solutions
with smallest tree sizes. The statistical results are shown in
Table 2.

4.2 Stage 2a: Coevolution of Sensing and
Locomotion via Canonical Seeding

We executed 40 independent evolutionary runs using canon-
ical seeding with two different pools (of six best Snakebots
each) of seeding bots, obtained from stages 1a (pBC) and
1b (noBC), respectively (Figure 4). The six bots from these
pools are used as elite individuals and the remaining 194 in-
dividuals of the initial population are generated randomly.
The average fitness convergence characteristics are shown in
Figure 6(a). Unlike the runs from the first stage, there is a
significant difference in the performance of the evolutionary
runs using different seeds. The best evolutionary perfor-
mance is obtained when seeds that were previously evolved
with no bloat control are used, and the worst performance
is observed when seeds with parsimony pressure are used.
In average, the seeds with no bloat control reaches the best
fitness values of the parsimony seeds about five times faster.

Table 2: Results of evaluation of IGP. Stages 2a
and 2b are initialized via canonical and GT-inspired
seeding, respectively. Favr is the average fitness of
population in the final generation, Rsucc is the num-
ber of successful runs of the second stage (of 40),
Savr is the average size of genetic programs (number
of tree nodes) in the final generation, and SSeedavr
is the average size of genetic programs in the pool
of the six seeding bots, respectively.

Stage of IGP Favr Rsucc Savr SSeedavr

Stage 1
noBC 101 NA 105.3 NA

pBC 100.5 NA 82.4 NA

Stage 2a
noBC 87.3 8 197 131

pBC 68 3 122 85

Stage 2b
noBC 95 16 220 131

pBC 89.5 6 135 85

The probability of successful runs (i.e., the bot clears the
narrow corridor) is shown in Figure 6(b) for the two cases
of IGP runs. As the figure illustrates, a clearer distinction
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between the runs using no bloat control (noBC) and the par-
simony pressure (pBC) can be seen; the former case feature
both a better convergence of the fitness and higher probabil-
ity of success. Moreover, because the realistic simulation of
the physics of the bot (rather than the parsing of the geno-
type) consumes most of the run-time of GP, no major bloat-
induced degradation of the computational performance of
IGP is observed.

The statistical information from these experiments is sum-
marized in Table 2.
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Figure 6: The convergence of average fitness (a),
and the probability of successful runs (b) of stage
2a (with canonical seeding) of IGP. pBC and noBC
denote the results, obtained from the pool of seed-
ing bots evolved during stages 1a and 1b, respec-
tively. The results are aggregated over 40 indepen-
dent runs.

4.3 Stage 2b: Sensing and locomotion via IGP
with GT

We conducted 40 independent evolutionary runs using
GT-inspired seeding from two different pools of bots (of six
best Snakebots each), obtained from stages 1a (pBC) and 1b
(noBC) of IGP, respectively (Figure 4). Analogically to the
experimental setup of stage 2a, six bots from the two pools
are used as elite individuals. However, the remaining 194 in-
dividuals of the population are created via the GT-inspired
seeding mechanism as detailed in [11] and illustrated in Fig-
ure 4. The genome of the seeding bot is used to form only
a part of the new individual, where the rest of the genetic
structure is generated randomly. As shown in Figure 7(a),
the average fitness convergence of the seeds, evolved without
bloat control (noBC) during stage 1b of IGP, is much faster
than the seed with parsimony pressure (pBC). The runs with
seeds evolved with no bloat control reach the best fitness val-
ues of the parsimony seeds almost three times faster (fitness
of 90 is achieved in 15 vs 40 generations).

As Figure 7(b) illustrates, the probability of success of the
runs using seeds evolved under parsimony pressure have suc-
cess chances of 20% after 40 generations. The same probabil-
ity of success is reached in 13 generations (i.e., three times
faster) by runs using seeds evolved with no bloat control.
The best probability of success of 40% after 40 generations
is achieved by seeds evolved with no parsimony pressure.

5. CONCLUSIONS
In this work we studied the cumulative effect of bloat and

seeding inspired by genetic transposition (GT) on the effi-
ciency of incremental evolution of simulated sensing snake-
like robot in a challenging environment. As the experimental
results suggest, the use of a simple parsimony pressure has
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Figure 7: The convergence of average fitness (a),
and the probability of successful runs (b) of stage 2b
(with GT-inspired seeding) of IGP. pBC and noBC
denote the results, obtained from the pool of seed-
ing bots evolved during stages 1a and 1b, respec-
tively. The results are aggregated over 40 indepen-
dent runs.

no immediate effect on the efficiency of evolution of the first
stage of incremental genetic programming (IGP) - evolution
of fast moving sensor-less bots in a smooth terrain. How-
ever, when, during the second stage of IGP, evolved genetic
programs are reused for further development under different
conditions than the first stage, the neutrality caused by the
bloated genetic programs are beneficial for the more efficient
evolution of the sensing abilities of the bot. We assume that
this is due to the presence of a neutral code (i.e., a code
which has no immediate effect on the fitness), that could be
utilized by IGP as an evolutionary playground to develop
the needed sensory abilities without the risk of damaging
the already evolved, fast locomotion.

Furthermore, we demonstrate that the best performance
is achieved when bloated seeds are used with GT-inspired
seeding. In average, the GT-inspired seed with bloated bots
features about five times higher probability of success and
similar decrease of computational effort of the second stage
of IGP than canonical seed with parsimony bots. GT aims
to introduce additional neutrality to the seeding genome in
order to provide a safe playground for the genetic operators.
The success of GT was demonstrated to significantly surpass
the performance shown by canonical seeding in an earlier
work [11]. In the experiments presented here, the neutrality
introduced by GT is shown to complement the neutrality
from bloated seeds, providing the best evolutionary perfor-
mance as a result. The experimental results suggest that
evolution benefits from the presence of different forms of
neutrality introduced by both GT and bloated seeds when
a two-stage IGP is used. Conversely, the explicit parsimony
pressure negatively affects the computational effort of evo-
lution.

The presented findings could be applied for the domains
where the implementation of the side effects, rather than the
parsing of genetic representation, is by far the most com-
putationally expensive aspect of fitness evaluation. How-
ever, the overall effect of the interplay between (i) the bloat-
induced degradation of the computational performance, and
(ii) the possible improvement of the computational effort
should be carefully considered before applying the proposed
approach in domains where the parsing and evaluating the
very genetic programs dominate the run-time overhead of
the evolutionary system.

167



6. ACKNOWLEDGMENTS
The presented work is part of a project funded by Japan

Society for the Promotion of Science (JSPS).

7. REFERENCES
[1] W. Beaudoin, S. Verel, P. Collard, and C. Escazu.

Deceptiveness and neutrality: The nd family of fitness
landscapes. In GECCO 2006: Proceedings of the 2006
conference on genetic and evolutionary computation,
pages 507–514, 2006.

[2] M. Brameier and W. Banzhaf. Neutral variations
cause bloat in linear gp. In Proceedings of the 6th
European conference on Genetic programming,
EuroGP’03, pages 286–296. Springer-Verlag, 2003.

[3] M. Collins. Finding needles in haystacks is harder
with neutrality. In GECCO 2005: Proceedings of the
2005 conference on Genetic and evolutionary
computation, volume 2, pages 1613–1618, 2005.

[4] B. Doerr, M. Gnewuch, N. Hebbinghaus, and
F. Neumann. A rigorous view on neutrality. In
Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pages 2591 –2597, sept. 2007.

[5] M. Ebner. On the search space of genetic
programming and its relation to nature’s search space.
In Proceedings of the 1999 Congress on Evolutionary
Computation. CEC 99, pages 1357–1361, 1999.
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