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ABSTRACT
We consider the recently proposed concept of enhancing
an evolutionary algorithm (EA) with a complete solution
archive. It stores evaluated solutions during the optimiza-
tion in order to detect duplicates and to efficiently transform
them into yet unconsidered solutions. For this approach
we introduce the so-called bounding extension in order to
identify and prune branches in the trie-based archive which
only contain inferior solutions. This extension enables the
EA to concentrate the search on promising areas of the so-
lution space. Similarly to the classical branch-and-bound
technique, bounds are obtained via primal and dual heuris-
tics. As an application we consider the generalized min-
imum spanning tree problem where we are given a graph
with nodes partitioned into clusters and exactly one node
from each cluster must be connected in the cheapest way.
As the EA uses operators based on two dual representa-
tions, we exploit two corresponding tries that complement
each other. Test results on TSPlib instances document the
strength of this concept and that it can compete with the
leading metaheuristics for this problem in the literature.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic methods; G.1.6
[Numerical Analysis]: Optimization

General Terms
Algorithms

Keywords
evolutionary algorithm, solution archive, network design,
branch-and-bound
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1. INTRODUCTION
Lots of complex combinatorial optimization problems

(COPs) are nowadays approached by (hybrid) evolutionary
algorithms (EA), which belong to the family of population
based metaheuristics. In contrast to exact algorithms, they
frequently scale better with increasing problem size and are
able to find good approximate solutions in relatively short
computation times. However, a common drawback is that
they usually do not keep track of the search history, and
already evaluated solutions are often revisited. When the
selection pressure is rather high, the population size only
moderate, or the genetic operators do not introduce much
innovation, the population’s diversity drops strongly and
in the extreme case the EA gets stuck by creating almost
only duplicates of a small set of leading candidate solutions,
called “super-individuals”. In such a situation of premature
convergence, the heuristic obviously does not perform well
anymore. There are several established approaches for han-
dling this problem, such as duplicate elimination or popu-
lation management. These are well-known techniques for
maintaining a necessary degree of diversity in the current
population.

We go one step further and investigate the recently intro-
duced complete solution archive as a more powerful exten-
sion for EAs that not only considers the current population,
but also detects already evaluated candidate solutions over
the whole search history and efficiently transforms them into
similar but yet unvisited solutions by means of an “intelli-
gent mutation”. Figure 1 illustrates the cooperation between
the EA and the archive.

This concept has been successfully applied to some bench-
mark problems where solutions are encoded as binary strings
[18, 14]. In our preliminary work [9], it was applied to a
complex network design problem for the first time. Now
we further extend the functionality of the solution archive
by introducing the so-called bounding extension for detect-
ing branches in the archive which only contain inferior so-
lutions. These branches can be pruned similarly to classical
branch-and-bound (B&B) algorithms in order to focus the
search on more promising regions and to limit the mem-
ory overhead. For storing already considered solutions we
use the trie data structure [4] that allows a fast duplicate-
detection and an efficient transformation into unvisited so-
lutions. Tries are typically used for effectively storing and
searching large amounts of strings, e.g., in language dic-
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Figure 1: Cooperation between EA and trie.

tionary applications. Main advantages are that the mem-
ory effort is relatively low and that the costs for insertion
and search operators essentially only depend on the word
lengths, but not on the number of strings stored in the trie.

1.1 The Generalized Minimum Spanning
Tree Problem

We apply our archive-enhanced EA to the generalized
minimum spanning tree problem (GMSTP) which is defined
as follows: Given an undirected weighted complete graph
G = 〈V,E, c〉 with node set V partitioned into r pairwise
disjoint clusters V1, . . . , Vr, edge set E and edge cost func-
tion c : E → R+, a solution S = 〈P, T 〉 is defined as
P = {p1, . . . , pr} ⊆ V containing exactly one node from
each cluster, i.e., pi ∈ Vi, i = 1, . . . , r, and T ⊆ E being a
spanning tree on the nodes in P , see Figure 2. The costs of
S are the total edge costs, i.e., C(T ) =

∑
(u,v)∈T c(u, v) and

the objective is to identify a solution with minimum costs.
The GMSTP was introduced in [11] and has been proven

to be NP-hard. Beside our previous work [9], many success-
ful exact methods [2, 13, 3] and metaheuristic approaches
[5, 6, 8, 10, 12] were developed for this problem in the re-
cent years. There are several real world applications of the
GMSTP, e.g., in the design of backbones in large commu-
nication networks. Devices belonging to the same existing
local area network correspond to nodes within the same clus-
ter, and the backbone is required to connect one device per
local network.

From the point of view of the EA, P is encoded as a
vector. Therefore we use the notation P = 〈p1, . . . , pr〉 in
the remaining sections.

V1 V2

V3

V4

V5

p1

p2

p3 p4

p5

Figure 2: Example for a solution to the GMSTP.

2. EVOLUTIONARY ALGORITHM FOR
THE GMSTP

We use a classic steady-state EA where the archive is
consulted each time after a new solution is generated by
crossover and mutation. In the following we describe the
EA components.

2.1 Solution Encodings
Following [9], we utilize a dual-representation, i.e., two

incomplete solution representations which complement each
other are used together. On the one hand, the Spanned
Nodes Representation (SNR) characterizes a solution by its
spanned nodes P . Decoding such a genotype means to find
a classical minimum spanning tree (MST) on P which can
be done in polynomial time. On the other hand, the Global
Structure Representation (GSR) characterizes solutions by
the so-called global tree structure T g where T g ⊆ V g × V g

and V g = 〈V1, . . . , Vr〉. It defines which clusters are adja-
cent in the solution without specifying the actually spanned
nodes. A decoding procedure calculates the optimal spanned
node for each cluster via dynamic programming in O(|V |2)
time [13]. Since T g always describes a tree structure be-
tween the clusters, we store for each cluster its predecessor
in the vector Π = 〈π2, . . . , πr〉 when rooting the tree at V1.

2.2 Genetic Operators
As selection we use tournament selection of size 2.

Crossover is implemented for both representations sepa-
rately. For SNR we apply uniform crossover on P and edge
recombination [15] on the global tree structure is used for
GSR. Each time a new offspring is created, we decide ran-
domly which representation to use. Mutation is based on the
same considerations, i.e., depending on the representation,
we either exchange the spanned node in a randomly chosen
cluster in SNR or a global connection in GSR. In fact, muta-
tion is not absolutely necessary since duplicate solutions are
transformed in the solution archive anyway. However, dur-
ing our tests it turned out to be beneficial to include a fast
and simple mutation with some low probability so that less
duplicates arise and we do not need to transform so often.

3. SOLUTION ARCHIVES FOR THE
GMSTP

The solution archive is implemented by two indexed tries
[4], storing solutions for each representation, respectively.
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Figure 3: Example of how solution S1 is stored in
trie TSNR already containing two solutions. The bold
path marks the way of inserting or searching S1.

Each trie is able to identify duplicate solutions and trans-
forms them into new solutions in its associated solution en-
coding. We have to be aware though that it is possible that a
new solution created by one trie becomes a duplicate in the
other trie. Therefore the transformation procedures must
be carried out in turn by the two tries so that a newly de-
rived solution is re-checked in the opposite trie until it is
new w.r.t. both tries. The specific implementations for the
tries have been described in the previous work [9], but we
summarize the essential parts in order to better understand
the additional features in this work, namely the bounding
extensions.

3.1 Trie Based on SNR
The trie TSNR is based on the vector of spanned nodes

P = 〈p1, . . . , pr〉 and has maximal height r. Each trie-node
at level i = 1, . . . , r corresponds to cluster Vi and contains
entries next[j], j = 1, . . . , |Vi|, each being either a refer-
ence to a trie-node on the next level, a complete-flag, or an
empty-flag. The empty-flag ‘/’ means that none of the solu-
tions in the subtree that would start at this point has been
considered yet, while the complete-flag ‘C’ indicates that all
solutions in the subtree have already been visited by the
EA. When inserting a solution, we follow in each level i the
entry that corresponds to the value of pi. In the trie-node of
the last level, next[pr] is set to ‘C’, indicating the presence
of the solution at this point. Figure 3 shows an example of
how a solution S1 is stored in TSNR. Since we want to keep
the trie as compact as possible, subtries where all solutions
have been visited are pruned. This is done by removing trie-
nodes that only contain C-flags and changing the entry in
the previous level that pointed towards it into a C-flag.

One essential feature of the solution archive is to trans-
form duplicates upon detection. When the solution P =
〈p1, . . . , pr〉 would be revisited, it is efficiently transformed
into a yet unconsidered candidate solution P ′. The basic
idea of transformation is to backtrack to a previous trie-node
on the path to the root that contains at least one yet uncon-
sidered solution. In that trie-node on level i, i = 1, . . . , r we
randomly choose an alternative entry not marked as com-
plete and go down this subtrie following the remaining data
〈pi+1, . . . , pr〉 whenever possible, i.e., unless we encounter a
C-flag in which case we choose an alternative branch again
that must contain at least one unconsidered solution. We
follow a randomized transformation strategy [9] in order to
avoid a strong biasing, i.e., that some positions are subject
to changes more frequently than others.

We now add the new bounding extension as an addi-
tional feature based on the following idea: Since the solution
archive covers the entire solution space, choosing a branch at
a particular trie-node corresponds to choosing a subspace.
If reasonable bounds can be computed in these nodes for
the corresponding solutions’ objective values, we are able
to prune whole subtries that only contain inferior solutions
without explicitly considering each of them. Note that this
corresponds to the underlying idea of classical B&B where
primal and dual heuristics are used to compute lower and
upper bounds in each B&B node, aiming at pruning sub-
trees that exclusively consist of invalid and/or suboptimal
solutions.

For calculating a lower bound at a particular entry in a
trie-node corresponding to cluster Vx, we consider the graph
GSNR = 〈V SNR, ESNR〉 which is defined as follows. V SNR is
composed of two sets of clusters V f and V o. The fixed set
V f consists of clusters from the trie-root to cluster Vx where
the spanned nodes are fixed. We denote by p(Vi), Vi ∈ V f ,
the spanned node of cluster Vi. The open set V o consists
of the remaining clusters that have no fixed nodes yet. For
these clusters the condition to connect exactly one node will
be relaxed by allowing arbitrary edges to any, even multiple,
of its nodes. ESNR is composed of three sets of connections
Eff , Efo, and Eoo. Set Eff contains connections between
clusters of set V f , i.e., Eff = {(Vi, Vj) | Vi, Vj ∈ V f}. The
costs of such a connection corresponds to the actual edge
cost c(p(Vi), p(Vj)). Set Efo contains connections between a
cluster of set V f and a cluster of set V o, i.e., Efo = {(Vi, Vj) |
Vi ∈ V f , Vj ∈ V o}. The costs of such a connection is
defined as min{c(p(Vi), v) | v ∈ Vj}. Finally, Eoo contains
connections between clusters of set V o, i.e., Eoo = {(Vi, Vj) |
Vi, Vj ∈ V o}. The costs of such a connection is defined as
min{c(u, v) | u ∈ Vi, v ∈ Vj}. Now the lower bound is
obtained by applying a greedy MST algorithm on GSNR.

Figure 4 shows an example for this procedure. Assume
that a previously obtained solution S1 = 〈1, 2, 3, 2, 2〉 has
objective value C(S1) = 12. A lower bound for all solutions
starting with 〈1, 5, 2, . . . 〉 is calculated on the graph GSNR.
The dashed lines represent the whole set of considered con-
nections in ESNR and the bold lines are the actually selected
ones by the MST algorithm. Note that neither does only one
node has to be connected per cluster, nor does the structure
has to be connected. Assume the heuristic obtains a lower
bound of 13, then there is no need to consider any further
solutions in the corresponding subtrie and it is pruned.

Building up ESNR can be computationally expensive if it
is done every time from scratch when calculating a lower
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Figure 4: Example of how a lower bound is obtained
for a partial solution in SNR and the corresponding
subtrie is pruned due to the bound being larger than
the objective value of a known solution (S1).

bound. Fortunately, the sets Efo and Eoo for all possi-
ble solutions can be computed once in advance in O(|V |2)
time during preprocessing. Therefore the time-complexity
of the bound calculation for a partial solution is dominated
by applying the MST algorithm on ESNR which requires
O(r2 log r) time. Nonetheless it is not convenient to do it at
each level when inserting a new solution or transforming a
duplicate. On the one hand, being able to prune a subtrie at
high levels means that more inferior solutions are excluded
at once, thus more space and time may be saved. On the
other hand, the lower bounds in these situations with rela-
tively few fixed clusters usually are not tight enough to let
this happen. In our experiments there was not a single case
where such a pruning could be performed in the upper half
of the trie. Therefore during insertion and transformation,
the bounding procedure is only applied in the lower half of
the trie. Still it is too expensive to do it too often, so we
apply the procedure only with a certain probability when-
ever the insertion or transformation operator accesses a trie
node.

3.2 Trie Based on GSR
The trie TGSR is based on the predecessors vector Π =
〈π2, . . . , πr〉 and has maximal height r − 1. Each trie-node
at level i = 1, . . . , r− 1 corresponds to the predecessor πi+1

and contains entries next[j], j = 1, . . . , r. Figure 5 shows
an example of how the solution S1 is stored in TGSR.

Inserting, searching and transforming a solution in this
trie follows the same scheme as for TSNR. While the first two
operators require O(r) time, the complexity of transforma-
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root

/

/ /

//

51 2 3

/

/ /

/

4

// / /

Solution S1

C

S1

π2

π3

π4

π5 //

//

/ C

//

/C

/ / / /

C

Figure 5: Example of how solution S1 is stored in
trie TGSR containing four solutions. The bold path
marks the way of inserting or searching S1.

tion is O(r3). This is due to the difficulties when modifying
the predecessor vector. Changing one value of Π may result
in an invalid tree structure. Therefore an additional repair-
mechanism based on depth-first-search is required to ensure
validity. Due to the larger trie-nodes, TGSR is in general
substantially larger than TSNR.

The bound calculation for TGSR works as follows. With-
out fixing the full predecessor vector Π = 〈π2, . . . , πr〉,
the global structure in general represents a forest F g =⋃

i=1,...,lK
g
i where Kg

i = 〈V g
i , T

g
i 〉, i = 1, . . . , l, are the l

global tree components in F g and V g
i denotes the set of

clusters that are contained in component Kg
i . For every

Kg
i , i = 1, . . . , l, that is not a single cluster we apply the

dynamic programming procedure that is also used for de-
coding genotypes in GSR. As a result we obtain for each Kg

i

the actual nodes to be spanned for the clusters in V g
i that

minimize the connection costs. After all global tree com-
ponents are decoded, they are connected by using the same
MST heuristic as in case of SNR. For this purpose the cheap-
est connections between all components are considered and
the condition to connect exactly one node in each cluster is
relaxed again. Since each component Kg

i is connected in the
cheapest way, we obtain a lower bound.

Figure 6 shows an example for this procedure. Assume we
want to compute the lower bound for all solutions starting
with 〈5, 1, 5, . . . 〉. Forest F g contains two global tree com-
ponents: Kg

1 with clusters V1 and V3 as well as Kg
2 with

clusters V2, V4, and V5. In the next step they are decoded
via dynamic programming and connected using the cheapest
connections. Assuming we obtain a lower bound of 14 and
a previously known solution (S1) with objective value of 12
exists, the subtrie starting at this point is pruned.

The complexity of calculating lower bounds in GSR is
higher than for doing so in SNR. The cheapest connections
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Figure 6: Example of how a lower bound is obtained
for a partial solution in GSR and how the corre-
sponding subtrie is pruned.

between clusters and/or nodes are the same which are pre-
computed for SNR. However, additional effort is necessary
for decoding the l global tree components. In overall this re-
quires at most O(|V |2) time since it will not take longer than
decoding a complete genotype in GSR. In preliminary exper-
iments we tried not to decode the components exactly but to
use the estimated cheapest connections between clusters in-
stead. Although this was much faster, the obtained bounds
were too inaccurate and pruning happened only rarely.

Aside from the higher computational complexity, GSR’s
lower bounds are typically tighter than those from SNR. On
the one hand this is due to the more sophisticated bounding
calculation where runtime is not spent in vain. On the other
hand decisions in GSR are more powerful per se, since fixing
a connection between two widely separated clusters has a
larger impact on solution quality than fixing a bad spanned
node in a cluster in SNR. While pruning in SNR is typically
only possible in the lower half of trie, this does not hold for
the lower bounds calculated in GSR. Here we observe that
pruning happens on nearly any arbitrary level in the trie, so
all levels are considered. However, as in SNR, the bounding
calculation is only performed with a certain probability.

4. COMPUTATIONAL RESULTS
We tested our approach on TSPlib1 instances using ge-

ographical center clustering [1]. For each instance we per-
formed 30 independent runs with each considered algorithm
variant in order to derive average objective values and stan-
dard deviations. When generating new solutions, recom-
bination was always performed and the mutation rate was
set to 10%. The population contained 100 solutions. These
parameters are relatively standard for an EA. We tested dif-
ferent settings, but the impact on the solution qualities were

1elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html

insignificant. This indicates that the solution archive is able
to compensate changes in the primary parameters of the EA
and makes it more robust. Archive specific parameters such
as the probability for bounding calculations have larger ef-
fects. The time and memory overhead can become very
large when they are set too high. The appropriate values
are derived from extensive testings in [7].

First we show in Table 1 the impact on time and memory
consumption with respect to the bounding extension. For
this purpose we terminated the EA after a fixed number of
10000 iterations, and we either only used the SNR archive
or the GSR archive. This way we are able to see the differ-
ences more clearly. The first column lists the instance names
with the last three digits indicating |V |. For each variant we
show average CPU-times required on a single core of an In-
tel Core 2 quad PC with 2.4GHz and 4GB memory and the
average sizes of the archives at the end. Solution qualities
are not listed here since they are not the focus of this table.
The probability of the bound calculation at a trie node when
it is accessed was set to 0.05. Even with this low probabil-
ity, the time overhead is substantial and in many cases the
runtime was doubled. We also observe an increased memory
consumption when applying bounding. This might be coun-
terintuitive at first glance since one goal of this technique is
to save memory by pruning subtries with inferior solutions.
However, a new solution must be generated each time when
this happens. So we essentially perform a transformation
after pruning which in general introduces new branches in
the trie. As pointed out in Section 3.2, the GSR trie is
substantially larger than the SNR trie.

Next we extend the results previously published in [9] in
order to show the impact of the bounding extension on the
solution quality. In Table 2 the EA was tested in the fol-
lowing variants: EA without archive, EA with SNR archive
based on trie TSNR, EA with GSR archive based on trie
TGSR, EA with full archive, i.e., using both tries, and EA
with full archive and bounding. As termination criterion
we now used a fixed CPU-time since the overhead caused
by the archive and/or the bounding extension must be con-
sidered. The first two columns list the instance names and
the time limit. For each EA variant we show the average
final solution values C(T ) and corresponding standard de-
viations (sd). Best results are marked bold. We observe
that the EA variant without archive performs worst in gen-
eral. Among the two variants where the archive only uses
one representation, GSR is more often the better choice. By
combining both tries in the archive we are able to get even
better results, but including bounding further increases the
solution qualities on all except one instance. This indicates
that the solution archive and the bounding have a positive
impact on the EA, and the time overhead is compensated.
Since the differences on C(T ) for the last two EA variants
are relatively small, we performed one-sided Wilcoxon rank
sum tests for the assumption that the variant with bound-
ing performs better than the variant without bounding. On
the five instances where the results differ, the error proba-
bilities are between 0.07 and 0.50, so we conclude that the
differences are not significant.

In order to obtain a more meaningful picture, we com-
pare in Table 3 the last two EA variants on an extended
TSPlib instance set2 introduced in [12]. These instances

2neumann.hec.ca/chairedistributique/data/gmstp
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Table 1: Time and memory consumption by the archive.

SNR archive GSR archive
no bounding with bounding no bounding with bounding

Instance time mem time mem time mem time mem
kroa150 23s 6.7 MB 36s 8.0 MB 24s 28.9 MB 37s 32.8 MB
d198 39s 10.7 MB 75s 12.5 MB 41s 55.4 MB 58s 59.5 MB
krob200 49s 8.2 MB 82s 9.7 MB 49s 49.0 MB 99s 54.1 MB
gr202 42s 10.0 MB 68s 11.6 MB 44s 58.3 MB 55s 61.2 MB
ts225 49s 17.3 MB 73s 19.0 MB 53s 84.7 MB 61s 85.3 MB
pr226 64s 6.8 MB 126s 7.7 MB 61s 76.1 MB 100s 89.3 MB
gil262 74s 17.9 MB 123s 21.3 MB 78s 111.4 MB 93s 115.8 MB
pr264 80s 15.1 MB 139s 17.8 MB 83s 108.5 MB 106s 115.9 MB
pr299 101s 18.8 MB 174s 22.1 MB 105s 133.6 MB 129s 137.4 MB
lin318 113s 17.8 MB 217s 22.1 MB 116s 163.5 MB 152s 174.2 MB
rd400 168s 25.8 MB 318s 31.9 MB 178s 264.7 MB 212s 276.9 MB
fl417 204s 18.1 MB 499s 20.5 MB 196s 265.0 MB 326s 302.5 MB
gr431 243s 28.9 MB 466s 34.3 MB 248s 309.3 MB 267s 315.3 MB
pcb442 217s 34.4 MB 406s 41.1 MB 229s 360.0 MB 244s 367.4 MB

Table 2: Results of different EA variants.

no archive SNR archive GSR archive full archive with bounding

Instance time C(T ) sd C(T ) sd C(T ) sd C(T ) sd C(T ) sd
kroa150 150s 9830.6 31.4 9831.3 30.1 9815.0 0.0 9815.0 0.0 9815.0 0.0
d198 300s 7055.1 8.7 7059.6 9.0 7044.6 2.3 7044.0 0.0 7044.0 0.0
krob200 300s 11275.0 45.6 11248.9 7.5 11244.0 0.0 11244.0 0.0 11244.0 0.0
gr202 300s 242.1 0.3 242.2 0.4 242.0 0.2 242.0 0.0 242.0 0.0
ts225 300s 62290.8 40.4 62299.1 50.9 62268.6 0.5 62268.4 0.5 62268.3 0.5
pr226 300s 55515.0 0.0 55515.0 0.0 55515.0 0.0 55515.0 0.0 55515.0 0.0
gil262 450s 945.5 4.0 945.0 3.7 942.4 2.0 942.0 0.0 942.0 0.0
pr264 450s 21893.2 7.7 21898.4 20.9 21886.0 0.0 21886.0 0.0 21886.0 0.0
pr299 450s 20352.1 37.4 20349.7 24.9 20318.5 11.3 20318.1 11.3 20316.0 0.0
lin318 600s 18545.9 29.2 18547.3 25.6 18525.8 12.4 18511.0 10.8 18513.8 9.9
rd400 600s 5953.0 15.4 5959.4 20.2 5946.4 10.8 5940.2 6.5 5939.7 6.7
fl417 600s 7982.0 0.0 7982.0 0.0 7982.0 0.0 7982.0 0.0 7982.0 0.0
gr431 600s 1034.1 1.4 1033.4 0.9 1033.3 0.7 1033.0 0.0 1033.0 0.0
pr439 600s 51921.4 60.7 51888.5 56.3 51810.5 26.5 51791.0 0.0 51791.0 0.0
pcb442 600s 19717.0 59.5 19708.1 70.2 19632.6 21.1 19623.7 15.9 19617.0 12.4

Table 4: Comparison with other state-of-the-art approaches on the standard TSPlib instances.

TS VNS DCS EA + archive

Instance C(T) time C(T ) sd time C(T ) sd time C(T ) sd time
kroa150 9815.0 150s 9815.0 0.0 150s 9815.0 0.0 133s 9815.0 0.0 39s
d198 7062.0 300s 7044.0 0.0 300s 7044.0 0.0 265s 7044.0 0.0 78s
krob200 11245.0 300s 11244.0 0.0 300s 11244.0 0.0 265s 11244.0 0.0 78s
gr202 242.0 300s 242.0 0.0 300s 242.0 0.0 265s 242.0 0.0 78s
ts225 62366.0 300s 62268.5 0.5 300s 62268.3 0.5 265s 62268.5 0.5 78s
pr226 55515.0 300s 55515.0 0.0 300s 55515.0 0.0 265s 55515.0 0.0 78s
gil262 942.0 450s 942.3 1.0 450s 942.0 0.0 398s 942.0 0.0 118s
pr264 21886.0 450s 21886.5 1.8 450s 21886.0 0.0 398s 21886.0 0.0 118s
pr299 20339.0 450s 20322.6 14.7 450s 20317.4 1.5 398s 20316.0 0.0 118s
lin318 18521.0 600s 18506.8 11.6 600s 18513.6 7.8 531s 18519.3 8.4 157s
rd400 5943.0 600s 5943.6 9.7 600s 5941.5 9.9 531s 5939.5 5.2 157s
fl417 7990.0 600s 7982.0 0.0 600s 7982.7 0.5 531s 7982.0 0.0 157s
gr431 1034.0 600s 1033.0 0.2 600s 1033.0 0.0 531s 1033.0 0.0 157s
pr439 51852.0 600s 51847.9 40.9 600s 51833.8 36.1 531s 51791.0 0.0 157s
pcb442 19621.0 600s 19702.8 52.1 600s 19662.5 39.8 531s 19626.0 17.0 157s
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Table 5: Comparison with other state-of-the-art approaches on the extended TSPlib instances.
GA TS2 EA + archive

Instance C∗(T ) time C∗(T ) time C∗(T ) C(T ) sd time
ali535 114379 492s 114303 683s 114303 114419.1 96.6 243s
att532 12007 500s 12001 597s 12001 12007.8 6.3 115s
d493 16526 388s 16493 587s 16493 16501.0 18.3 154s
d657 19465 969s 19427 1056s 19427 19456.6 32.5 335s
fl417 7936 218s 7935 233s 7935 7935.0 0.0 2570s
gil262 887 73s 887 74s 887 887.0 0.0 13s
gr431 86899 266s 86885 233s 86885 86903.4 42.3 80s
gr666 144918 2866s 144756 1365s 144737 144747.7 40.8 237s
lin318 18476 105s 18471 130s 18471 18486.3 4.3 46s
p654 22214 881s 22208 1045s 22207 22207.0 0.0 1634s
pa561 868 559s 864 702s 865 870.7 2.7 107s
pcb442 19670 284s 19571 266s 19571 19593.9 22.1 66s
pr264 21886 57s 21872 72s 21872 21872.0 0.0 20s
pr299 20307 86s 20290 94s 20290 20290.0 0.0 21s
pr439 51808 981s 51760 574s 51749 51749.9 3.6 84s
rat575 2189 627s 2170 762s 2170 2180.0 6.3 125s
rat783 3044 1653s 3017 1916s 3015 3027.4 7.4 292s
rd400 5880 205s 5868 208s 5868 5875.9 8.9 56s
si535 12791 458s 12791 573s 12791 12791.0 0.0 123s
u574 15069 620s 15037 517s 15034 15058.1 14.3 155s
u724 16015 1281s 15905 1290s 15904 15947.4 26.6 324s

Table 3: Results of different EA variants on the ex-
tended TSPlib instances.

no bounding with bounding sign.diff.

Instance time C(T ) sd C(T ) sd error
ali535 600s 114581.1 95.8 114404.9 90.7 <0.001
att532 600s 12008.1 7.4 12004.9 4.5 0.051
d493 600s 16516,8 14,5 16494.9 3.1 <0.001
d657 600s 19504.0 42.2 19451.7 31.3 <0.001
fl417 600s 7935.0 0.0 7935.0 0.0 N.A.
gil262 450s 887.0 0.0 887.0 0.0 N.A.
gr431 600s 86889.2 18.0 86888.2 17.3 0.500
gr666 600s 144837.3 109.1 144790.6 77.1 0.037
lin318 600s 18485.9 13.9 18485.1 8.6 0.468
p654 600s 22207.0 0.0 22207.0 0.0 N.A.
pa561 600s 870.6 2.9 866.7 2.4 <0.001
pcb442 600s 19589.0 21.5 19584.1 15.0 0.109
pr264 450s 21872.0 0.0 21872.0 0.0 N.A.
pr299 450s 20301.2 16.3 20290.0 0.0 <0.001
pr439 600s 51754.3 15.1 51749.0 0.0 0.050
rat575 600s 2184.0 6.3 2178.5 4.8 <0.001
rat783 600s 3033.6 13.2 3028.5 8.3 0.076
rd400 600s 5874.9 11.2 5875.0 5.4 0.670
si535 600s 12791.0 0.0 12791.0 0.0 N.A.
u574 600s 15063.0 15.1 15051.4 8.9 <0.001
u724 600s 15965.1 35.4 15949.2 29.4 0.046

are larger and have also been derived by geographical cen-
ter clustering. Note that some of these instances have the
same names as those in the first set, but the clustering data
and/or the distance data are different. Beside the average
final solution values and corresponding standard deviations,
we also list for each instance the error probability (error)
of the one-sided Wilcoxon rank sum test for the assump-
tion that the variant with bounding performs better than

the variant without bounding. Besides five instances where
both variants perform equally well and one instance where
the EA variant without bounding performs slightly better,
we observe that the bounding extension now consistently
increases the solution quality. On nine instances these im-
provements are statistically significant with error probabili-
ties less than 5%.

In Table 4 we compare our EA using the full archive and
bounding with several leading state-of-the-art approaches
from literature consisting of a tabu search approach (TS1)
by Ghosh [5], a hybrid variable neighborhood search ap-
proach (VNS) by Hu et al. [8], and an algorithm based on
dynamic candidates sets (DCS) by Jiang and Chen [10]. Us-
ing a fixed CPU-time as termination criterion, TS1 and VNS
ran on a Pentium 4 PC with 2.8GHz, DCS ran on a Pen-
tium D PC with 2.66GHz and the EA ran on an Intel Core i7
PC with 3.4GHz (in contrast to the preliminary tests where
an Intel Core 2 quad PC was used). Since the different
approaches used different hardware, we scaled the time lim-
its according to the the well-known Standard Performance
Evaluation Corporation (SPEC) benchmark3. It indicates
that Core i7 (score 47.1) is around 332% faster than Pen-
tium D (score 14.2) which is then again around 15% faster
than Pentium 4 (score 12.3). After compensating the het-
erogeneous testing environments by using the appropriate
time limits, we observe that our EA can compete well with
the other approaches, especially on larger instances.

In Table 5 we compare our approach with a genetic al-
gorithm (GA) by Golden et al. [6] and a tabu search ap-
proach (TS2) by Oencan et al. [12] on the extended TSPlib
instances. GA ran on a Xeon workstation with 2.66GHz and
TS2 ran on a Pentium 4 PC with 3GHz. Since these authors
did not use a fixed CPU-time as termination criterion, we
terminated our EA after 2000 iterations without improve-
ment. Because only best solutions are listed for GA and

3www.spec.org/cpu2006
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TS2 in [12], we also focused on the best solutions obtained
by 30 runs of our EA (but we nevertheless added the aver-
age values and the standard deviations). We observe that
our approach competes well with TS2 and outperforms the
GA. By means of the SPEC benchmarks for the different
hardwares on which TS2 and our EA were tested, we can
see that the required CPU-times are comparable for most of
the instances. On the instance fl417 our EA consumes an
exceptionally large amount of runtime. The reason is that
the final best solution can be found extremely easily, there-
fore the solution archive spends much time on converting all
the duplicates which arise.

5. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a novel bounding extension for

a solution archive enhanced EA for the GMSTP. Since the
EA uses operators based on two dual representations, we
introduced two different bounding heuristics, respectively.
Tests on TSPlib instances show that the extension, par-
ticularly when combining both representations, is able to
improve the search behavior significantly. Compared with
several leading state-of-the-art approaches from literature,
the archive-enhanced EA is able to keep up with the very
top candidates.

For future work, we want to investigate another extension
for solution archives where the transformation of duplicate
solutions is guided by estimation heuristics. This approach
complements the bounding extensions so that the solution
archive not only cuts off inferior solutions, but puts more
focus on promising ones. We also believe that the concept
of solution archives is a powerful addition to EAs in a more
general sense, when it is implemented adequately for appro-
priate combinatorial optimization problems. Hence we want
to further pursue this concept also for other problems.
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