
Dynamic Segregative Genetic Algorithm for Optimizing the
Variable Ordering of ROBDDs

Cristian Rotaru
”Al. I. Cuza” University of Iaşi, Faculty

of Computer Science
Gen. Berthelot 5, Iaşi, Romania

cristian.rotaru@infoiasi.ro

Octav Brudaru
“Gh. Asachi” Technical University of

Iaşi
D. Mangeron 53, Iaşi, Romania

brudaru@tuiasi.ro

ABSTRACT
In this paper an efficient dynamic segregative genetic algorithm
for optimizing variable order in Reduced Ordered Binary
Decision Diagrams is presented. The approach integrates a basic
genetic algorithm and uses a feature function in order to define a
similarity measure between chromosomes. Subpopulations of
individuals, formed by applying a clustering procedure in the
feature space, are explored in parallel by multiple copies of the
basic genetic algorithm. A communication protocol preserves the
similarity inside each subpopulation during the evolution process.
The redundant exploration of the search space is avoided by using
a tabu search associative memory. Genetic material from yet
unexplored regions of the search space is managed and organized
in order to explicitly guide the search process to yet undiscovered
local optima. The experimental evaluation of the algorithm uses
classical benchmark problems, known to be very difficult.
Experiments suggest that our approach has a better performance
in terms of stability and quality of the solution, when compared to
other heuristics, such as local search methods, basic genetic
algorithms, a cellular genetic algorithm and even the static
segregative genetic algorithm that was the starting point of this
work. The quality of the distributed implementation and the
communication protocol are thoroughly analyzed.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods
and Search – heuristic methods.

General Terms
Algorithms

Keywords
segregative genetic algorithm, feature space, associative tabu
search memory, search space management, similarity preserving
communication protocol, extensive exploration, intensive
exploitation, distributed implementation.

1. INTRODUCTION
We propose a new method to optimize the variable order in

Reduced Ordered Binary Decision Diagrams (ROBDDs).
ROBDDs are data structures that represent canonical forms for
Boolean functions. An ROBDD is an acyclic graph with respect
to some order of the input variables and satisfying a set of
properties. The size of the ROBDD is the number of non-terminal
nodes and it is proven that it strongly depends on the order of the
variables ([1]). The goal is to minimize this size. One important
application of ROBDDs is in digital circuit design – a smaller size
of the ROBDD that represents a Boolean function describing a
circuit transfers directly to a smaller chip size. Other applications
include: symbolic model checking; formal verification of
combinatorial circuits; analysis of sequential systems.

The methods used to tackle the problem are both exact and
approximate. The most successful exact approaches are based on
the branch-and-bound paradigm and use the lemma proven in [2].
The heuristic approaches are categorized in two types: static and
dynamic methods. Static methods use application specific
information, for example the structure of the evaluated
combinatorial circuit, to build good variable orders before
constructing the ROBDD ([3]). Dynamic methods improve the
size of an ROBDD by modifying the order of variables. Basic
approaches are described in [4] and [5]. [6] presents “the sifting
heuristic”, a specialized local search technique based on hill-
climbing. [7] describes a method based on simulated annealing
and [8] introduces the use of genetic algorithms, further
developed in [9]. Hybrid approaches are described in [10] and
[11]. [12] introduces a novel method for optimizing the variable
order, a cellular genetic algorithm with parallel evolving and
communicating grids. This method employs multiple populations
to explore the search space and uses a similarity preserving
communication protocol to transfer high quality genetic material
between subpopulations, in order to boost the quality of the
solution.

In [13] the authors describe an initial variant of a segregative
genetic algorithm for the problem of optimizing the variable order
of ROBDDs. The segregative approach defines a similarity
measure between chromosomes. The measure is computed in a
feature space obtained by attaching feature vectors to
chromosomes. Large numbers of individuals are organized in
subpopulations, by applying a clustering procedure in the feature
space. The search space is explored by means of a basic genetic
algorithm (BGA) on each subpopulation. Depending on
computational resources, multiple subpopulations can be explored
in parallel. A communication protocol is used to maintain the
similarity inside each subpopulation during the evolution. A tabu
search associative memory is introduced in order to avoid
redundant exploration of the search space.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07...$10.00.

657

In this paper an improved version of the algorithm described
in [13] is proposed. Some of the components of the approach are
revised to deliver better performance. The main improvement is
the introduction of the management of yet unexplored regions of
the search space. The algorithm in [13], called Static Segregative
Genetic Algorithm (SSGA), generates a large initial population,
divides it in a fixed number of subpopulations and explores these
subpopulations. Chromosomes that occur during the evolution
process and are not similar with any subpopulation are included in
some subpopulation, but usually they do not have the power to
guide the search process towards the newly discovered region of
the search space. The new approach explicitly manages
chromosomes from these regions, by dynamically creating
subpopulations that will be later explored by the BGA. The
approach is called Dynamic Segregative Genetic Algorithm
(DSGA). Some of the ideas used by the approach can be also
found in [14].

The structure of the paper is the following: Section 2
describes the problem; Section 3 briefly describes the BGA;
Section 4 presents the translation from genotype to phenotype;
Section 5 details all aspects of the segregative approach; Section 6
presents the extensive experimental evaluation of the method;
Section 7 summarizes some conclusions and future work
directions.

2. OPTIMIZING THE ORDER OF
VARIABLES FOR ROBDDS

This section formally describes the ROBDD data structure
and the problem of optimizing the variable order. The importance
of variable ordering is briefly underlined.

Let BF: Bn → Bm, B = {0,1} be a Boolean function that
outputs m values. Let π be a permutation of the n input variables,
π = (v1,v2,…,vn), vi ∈ B, i = 1,…,n.

An Ordered BDD (OBDD) for BF with respect to π is a
directed acyclic graph with the following properties ([15]): i) it
has exactly two terminal nodes, labeled with 0 and 1,
respectively; ii) each nonterminal node is labeled by a variable vi,
0 < i ≤ n and has two out-edges labeled with 0 and 1, respectively;
iii) the order in which the variables appear on any path in the
graph respects the order π. The number of nonterminal nodes in
the graph represents the size of the OBDD and is the value that
must be minimized.

The structure called Reduced OBDD (ROBDD) is obtained
by applying reduction rules to an OBDD with a fixed variable
order, further reducing the size of the graph ([15]). A ROBDD is a
canonical form for BF. The size of the structure strongly depends
on the fixed order. In [1] it is proven that optimizing the order of
variables is NP-complete and finding the best order is NP-hard.

Figure 1. Dependence of the size of the ROBDD on the order
of variables

Figure 1 illustrates the effect of using different orders of
variables when building ROBDDs for a simple Boolean function.
For two slightly different orders the sizes of the corresponding
ROBDDs differ substantially.

3. BASIC GENETIC ALGORITHM
The method used to explore subpopulations in the context of

the segregative approach can be any population based method for
which a similarity measure between individuals can be defined.
The method used in this paper is the genetic algorithm described
thoroughly in [16].

A chromosome represents a permutation of the input
variables of BF, denoted x = (x1,x2,…,xn), xi ∈ {v1,…,vn},
i=1,…,n. The fitness of a chromosome, denoted f(x), is the size of
the ROBDD obtained by using x as the order of variables. The
size of the initial population, denoted pop_sz, is directly
proportional to the number of variables, n, as a consequence of an
empirically determined rule. The initial population is generated
randomly.

The algorithm applies an elitist selection for survival. The
offspring compete with the current generation. The best pop_sz
individuals with respect to fitness value are kept in the next
generation.

The method uses two crossover operators, described in [9],
and three mutation operators, described in [17]. [16] shows that
using several operators yields better results than applying only
one operator for crossover and one for mutation. The common
characteristic of all genetic operators is that the similarity
between parents and offspring grows with the number of
generations, assuring the convergence of the algorithm. The
probabilities to apply crossover and mutation, denoted pCX and pM
respectively, are empirically initialized and dynamically
controlled during the evolution process, by means of a measure of
the variability of the population. The variability is computed each
generation as the distribution of fitness values over the entire
population. The probabilities are adjusted in order for the
variability to match a predefined objective function. This function
ultimately defines the balance between exploration and
exploitation. In [16] specific equations are presented and the
effects of several objective functions are thoroughly examined.

The algorithm stops when the variation of the average fitness
of the population stagnates: |avg_fit(k) – avg_fit(k – 1)|/avg_fit(k)
< Tstop holds true for Nstop consecutive generations, where
avg_fit(k) is the average fitness of the population at generation k,
and Tstop a small threshold value.

4. FEATURE SPACE
The capacity of the segregative algorithm to manage

individuals during the evolution process depends on the measure
of similarity defined between individuals. As mentioned before, a
chromosome represents a permutation of the input variables. This
representation does not support a straightforward definition of a
measure of similarity. In order to define the similarity between
two individuals, a real valued feature vector is computed for each
chromosome. The vector, denoted φ(x), is computed when the
chromosome x is evaluated. The measure of similarity between
two chromosomes x and x′ is defined as the Euclidean distance in ℝn between the corresponding feature vectors, || φ(x) – φ(x′) ||.

Two methods to compute the feature vector are described
below, both used to define the similarity between chromosomes in
[12] and [13]. Let x be a chromosome. One option is to use the
structural information of x, as permutation of the input variables.
The obtained feature vector, denoted φ1(x), is defined as: φ1(x) =
(α1,…,αn), where αi = xi/[n(n+1)/2], i = 1,…,n. φ1(x) ∈ ℝn and Σαi
= 1. Another option is to capture the cost based characteristics of
x. The second feature vector, denoted φ2(x), is defined as: φ2(x) =

658

(λ1,…,λn) ∈ ℕn, where λi represents the number of nodes on the i-
th level of the graph corresponding to the ROBDD.

The extensive experimental evaluations of the algorithms
described in [12] and [13] show that using the feature vector φ1
yields more stable but poorer quality results than using φ2. In all
cases, by using φ2, the stability of the results decreases slightly,
while the quality improves substantially. All experimental results
further presented in this paper are obtained by using φ2, denoted
simply φ from now on.

5. THE SEGREGATIVE ALGORITHM
This section describes the elements of the segregative

approach and how they work.

5.1 Search space exploration by
subpopulations

The segregative algorithm employs multiple copies of the
BGA to explore the search space. At any particular moment, each
copy evolves a given subpopulation. Subpopulations are clusters
of similar chromosomes, with regard to the feature vector φ, and
are representative for some region of the search space. Depending
on available computational resources, a number p of
subpopulations are explored in parallel. During the evolution
process, the segregative approach discovers and explores various
well defined regions of the search space and intensifies the search
in promising regions by applying the BGA. A communication
protocol preserves the similarity inside the evolved
subpopulations. The approach avoids redundant exploration of
regions of the search space and manages yet unexplored regions
of the search space. This is done by means of the control
components of the algorithm, which will be later detailed. The
segregative algorithm acts as a collector of various local optima
from different regions of the search space.

5.1.1 Initializing the subpopulations
Initially, a large population, denoted Pinit, is randomly

generated. All chromosomes are evaluated and the feature vectors
are computed. A clustering algorithm is used to split the set of
feature vectors in S similar groups, Cl1,…,ClS ⊂ ℝn, with the
centroids ϕ1,…,ϕS ∈ ℝn. The initial subpopulations are represented
by the preimages of the clusters from the feature space, in the
representation space, Pi = φ−1(Cli), i = 1,…,S. The subpopulations
are sent to the component of the algorithm QNEW that will
distribute them to the copies of BGA, for exploration. The activity
of QNEW will be later detailed.

Experiments show that the c-means clustering algorithm
offers good results in terms of speed and accuracy. The Davies-
Bouldin index for the quality of the clustering solution was used
to determine a good value for the number of clusters, S.

5.1.2 Control components
The control components of the algorithm are used to define

the behavior of the method. The following subsections will detail:
the tabu search associative memory, the management of yet
unexplored and unknown regions of the search space, and the
archive that stores promising individuals occurred during the
evolution process. Several focused scenarios involving
communications between components of the algorithm and
subpopulations will be presented. A later subsection will detail all
aspects regarding the communication protocol.

5.1.2.1 Tabu search associative memory
The tabu search associative memory, denoted TSAM, is a

control component introduced in order to avoid the redundant

exploration of regions of the search space. As previously
mentioned, the BGAs evolve subpopulations of individuals that
induce clusters of feature vectors in the feature space. A
subpopulation SP has a corresponding centroid in the feature
space, ϕSP ∈ ℝn, and a cluster radius, ρSP ∈ ℝ, which are
computed when the clustering algorithm is applied. The centroid
captures the features off all individuals in the cluster and is
computed by the clustering algorithm. The radius is set as the
maximum distance between any feature vector in the cluster and
the centroid. When the evolution process on SP is finished, the
pair (ϕSP,ρSP) is sent to TSAM. At some moment in the execution of
the segregative algorithm, TSAM stores s pairs (ϕsp,ρsp), where ϕsp
is the centroid of some explored subpopulation sp and ρsp is the
radius of the cluster. The associative feature of this memory
comes from the fact that it does not store chromosomes from
different regions of the search space; it only stores centroids
which capture the characteristics of many individuals from the
corresponding regions.

Let x be a chromosome received by TSAM from a copy of the
BGA. The communication protocol between subpopulations
currently explored by copies of BGA ensures that x does not
belong to any of those subpopulations. The function of TSAM is to
decide whether x belongs to an already explored region of the
search space or not. If for some j ∈ {1,…,s}, || φ(x) – ϕj || ≤ ρj
holds, then x belongs to an already explored region and is
discarded, otherwise x belongs to an yet unexplored or unknown
region and it is sent to QNEW.

5.1.2.2 Management of the search space
The component that manages yet unexplored and unknown

regions of the search space, denoted QNEW, contains two
collections of individuals: PQNEW and UNEW.

PQNEW is a priority queue of yet unexplored clusters of
individuals. PQNEW stores the centroids and radiuses of the
clusters and also a small number of representative chromosomes
that will be used to start the evolution process on the
subpopulation. The subpopulations are scored with the average
fitness of these individuals. When a copy of the BGA finishes the
evolution process on the assigned subpopulation, it will receive
from PQNEW the best subpopulation to explore. PQNEW is
initialized with the initial subpopulations, P1,…,PS.

UNEW is a large collection of chromosomes from unknown
regions of the search space. Let x be a chromosome received by
QNEW from TSAM. x does not belong to any subpopulation that is
currently or was already explored. If x is similar enough with
some cluster from PQNEW it will be stored in the small population
of that cluster if it is good enough, or it will be discarded. If not, x
is stored in the unstructured collection UNEW. Initially, UNEW is
empty. When the size of UNEW reaches a high enough value,
1000–2000 chromosomes, denoted MUNEW, the same clustering
procedure described in the initialization phase is applied, UNEW is
emptied, and the resulting subpopulations are appended to PQNEW.

QNEW is the component that ensures the dynamic character of
the approach by managing and organizing new genetic material
produced during the evolution process on subpopulations. The
segregative algorithm stops when PQNEW and UNEW are empty and
all copies of the BGA finish the execution on the assigned
subpopulation.

5.1.2.3 Archive
The last component of the segregative approach is also a

collection of chromosomes. The archive stores the elite of
individuals from explored subpopulations, meaning 5−10% of the
individuals from the last generation. The selection of the BGA

659

being elitist, these are the best chromosomes produced by the
evolution process on those subpopulations.

The main benefit of the archive is an alternative method to
initialize the segregative method: it offers the means for
efficiently restarting the algorithm, by including the high quality
chromosomes from the archive in the primordial large population.
This procedure can be correlated with keeping the information
stored by TSAM in consecutive runs of the algorithm, which can
accelerate the discovery and exploration of new regions of the
search space.

5.1.3 Communication protocol
Data transfer occurs between currently explored

subpopulations, subpopulations and control components and
between control components of the segregative algorithm. The
communication between different entities defines their behavior
and ensures the functionalities of the segregative method.

Each data transfer has a source and a destination. The source
entity places data in a buffer at the destination. In order not to
overwhelm the communication with processing times, data
accumulates in buffers and all entities involved process their
buffers every R evolution stages, counting all copies of the BGA.
Effects of varying this value will be presented in the experimental
evaluation section.

5.1.3.1 Data transfer at subpopulation level
Data transfer that originates in a subpopulation is intended to

preserve the similarity inside that subpopulation. Offspring
created by means of genetic operators are either kept in the
subpopulation, or sent to other subpopulations or control
components, if they are not similar enough with the current
subpopulation.

Let BGAi be the copy of the BGA, which currently evolves
the subpopulation SPi. Let ϕi be the centroid of the cluster induced
by SPi in the feature space and ρi the radius of this cluster. Let x
be a chromosome generated during the evolution process on SPi.

If || ϕi – φ(x) || ≤ ρi, then x is similar enough to the individuals
in SPi and is included in the evolution process performed by
BGAi.

If || ϕj – φ(x) || ≤ ρj holds for some j ∈ {1,…,p}, j ≠ i, then x is
similar with the currently explored subpopulation SPj and it will
be included in the evolution process performed by BGAj. BGAj
receives such chromosomes in a buffer, denoted Bufj.

If none of the above cases hold, then x is not similar with any
currently explored subpopulation and it will be sent to TSAM.

At the end of the evolution process on SPi, the pair (ϕi,ρi) is
sent to TSAM and the elite of the current population is sent to the
archive. The copy of the BGA that performed the exploration of
SPi will receive another subpopulation from QNEW, if available.

5.1.3.2 Data transfer at control component level
TSAM receives chromosomes from the copies of the BGA in

the buffer denoted BTSAM. Let x be such an individual. If TSAM
decides that x belongs to an already explored region of the search
space, then x is discarded, otherwise it is sent to QNEW.

QNEW receives individuals from TSAM in the buffer denoted
BQNEW. The chromosomes are either discarded, or stored in the
initial population of some cluster in PQNEW, or in UNEW. Whenever
a copy of the BGA finishes the exploration on some
subpopulation, QNEW extracts the best subpopulation from PQNEW
and sends it to the BGA for exploration.

5.2 Execution of the algorithm
This section summarizes the execution steps of the copies of

BGA and of the control components of the segregative algorithm.

The procedures include the functionalities of all entities and the
data flows previously detailed.

5.2.1 Execution of the BGA
1. receive subpopulation SP from QNEW: individuals to initialize

the population, centroid and radius of the cluster induced in
the feature space, (ϕSP,ρSP).

2. initialize the evolution stage, st = 1; initialize the current
population pop(1); empty the buffer, Buf = ∅.

3. while not stopped do:
3a. st = st + 1;
 if st % R = 0 then pop(s) = pop(s-1) ∪ Buf, Buf = ∅;
 else pop(s) = pop(s-1).
3b. apply genetic operators, evaluate offspring, and

compute feature vectors; for each new individual x:
• pop(s) = pop(s) ∪ {x} or
• send x to another currently explored subpopulation or
• send x to TSAM.

3c. apply selection on pop(s); update centroid and radius.

5.2.2 Execution of the segregative algorithm
1. initialize Pinit; obtain P1,…,PS by clustering;

PQNEW = {P1,…,PS}; UNEW = ∅.
2. TSAM = ∅.
3. while PQNEW and UNEW are not empty:

3a. if a copy of the BGA is free and PQNEW is not empty
• choose the best subpopulation from PQNEW and send

it to the BGA;
• the copy of the BGA starts the evolution process.

3b. when a copy of the BGA finishes the exploration of a
subpopulation:

• send the centroid and radius of the completed cluster
to TSAM ;

• update the archive.
3c. every R generations, TSAM checks the chromosomes in

BTSAM and either discards them or sends them to QNEW.
3d. every R generations, QNEW processes the chromosomes in

BQNEW and discards them, or stores them in some cluster in
PQNEW, or stores them in UNEW.

3e. when UNEW reaches the size MUNEW, or UNEW is not empty
and PQNEW is empty, apply the clustering procedure on the
feature vectors of the individuals in UNEW, obtain the
similar subpopulations in the representation space and
append them to PQNEW, empty UNEW.

Figure 2. Functional diagram of the segregative algorithm

660

6. EXPERIMENTAL EVALUATION
The experiments are designed to study the stability and

quality of the solution obtained by the segregative approach.
Comparisons with the single population genetic algorithm, the
cellular genetic algorithm from [12], the static segregative genetic
algorithm from [13] and other heuristic approaches are
extensively described below. Other experiments study the quality
of the distributed implementation and the efficiency of the
communication protocol.

The experimental evaluation uses well known benchmark
problems from the LGSynth91 dataset, found at [21]. The
instances are divided into three categories, depending on their
size: small – cm85a, cm163a, cu, alu4, s1494, vda, misex3;
medium – apex2, apex7, cordic, ttt2; and large instances – i3,
apex6.

The optimal solution is known for most of the instances and
is denoted bk. The reported indicators are the following: best
found solution (bf), the average (m), standard deviation (σ) and
unitized risk (σ/m) for the absolute error (bf – bk). The column
titled In/Out presents the number of input and output variables of
the Boolean function, respectively.

The CUDD library ([22]) was used in order to build the
ROBDD associated with an order of variables and to compute the
fitness and feature vector φ2, which is used in all experiments.

6.1 Parameter tuning
The parameters of the basic genetic algorithm are the ones

which gave the best results in [16]. The values are empirically set.
The extensive experimental evaluation in [16] analyzes the effect
of different choices for all parameters. The following values are
used in [16] to produce the results reported in the performance
evaluation and are also used in the segregative approach. The size
of the population, pop_sz, is set to 50 for the small and medium
problem instances, and to 50 and 100 for the large instances. pCX,
the probability of the crossover operator, is initialized to 0.6. pM,
the probability of the mutation operator, is initialized to 0.35. The
objective function for the variability of the population, used to
control pCX and pM, is an exponential periodic function. The
parameters used to define the stopping condition are: Nstop = 20
and Tstop = 0.001.

The experiment designed to determine a suitable size for the
primordial population, Pinit, consists in running the algorithm on
some of the test instances (alu4, cordic and apex6) with different
values, ranging from 200 to 10000, and checking for statistically
significant differences between the averages of the absolute error
(m), obtained on each instance. Both Wilcoxon Signed-Rank non-
parametric test and the two-tailed t-test with assumed unequal
variances showed (p < 0.01) that values ranging from 2000 to 200
chromosomes produce a decrease in stability and quality of the
solution. Values ranging from 2000 to 10000 revealed no
significant difference. This proves the efficiency of the
component QNEW that successfully manages the exploration of
unknown regions of the search space, compensating for a poor
initial genetic pool. The size Pinit is set to 2000 individuals. As
showed in [13], the static segregative genetic algorithm requires
an initial population of size at least 5000 to deliver best
performance. MUNEW, the maximum size of the unstructured
population UNEW, is set to 1000 chromosomes (|Pinit| / 2).

Various values for the communication period, R, are tested:
2, 4, 8, 10 and 12 evolution stages. Detailed results are presented
in the section concerning the evaluation of the distributed
implementation. The value used for generating the results in the
performance evaluation is 8.

In conclusion, most of the parameters of the approach are set
to known best suitable values, the rest are determined by means of
a limited statistical analysis. As the results obtained by using
these settings are very promising, a further in-depth analysis of
the parameters and dependencies between them is not included in
this work. Future research should devise experiments and
procedures to determine if the whole ensemble of parameters, for
the BGA and control components of the DSGA, can be fine-tuned
against each other to deliver even better performance for the
segregative approach.

6.2 Performance evaluation
For the performance evaluation, a computer with an AMD

Athlon X4 630 processor was used. As this processor has 4
physical cores, 4 copies of the BGA ran in parallel. For each
problem instance, the algorithm was executed 30 times.

6.2.1 Quality and stability
The reported indicators are presented in Table 1.

Table 1. Performance evaluation of the DSGA

Instance In/Out bk bf m σ σ/m
cm85a 11/3 28 28 0 0 -
cm163a 16/5 26 26 0 0 -
cu 14/11 32 32 0 0 -
alu4 14/8 350 350 0 0 -
s1494 14/25 369 369 0 0 -
vda 17/39 478 478 0 0 -
misex3 14/14 478 478 0 0 -
apex2 39/3 - 303 305.5 2.063 0.0067
apex7 49/37 - 214 215 1.114 0.0051
cordic 23/2 42 42 0 0 -
ttt2 24/21 107 107 0 0 -
i3 132/6 133 133 0 0 -
apex6 135/99 498 506 20.16 7.985 0.3959

The segregative method finds the optimal solution in all runs
on all small and medium instances, for which the optimal value is
known. This happens also for one of the large instances (i3). For
the second large instance, apex6, which is the most difficult one,
the results are very close to the optimal value. The standard
deviation and unitized risk prove the high stability of the method
which replicates the same or very close results in nearly all runs.

6.2.2 Comparison with other heuristic methods
The first comparison focuses on some simple search

procedures and other more complex heuristics from the literature.
As published results are not available in a systematic manner,
only the best found solution is reported on some of the small and
medium instances. Table 2 present the comparison with the
following methods: the sifting heuristic ([6]); the genetic
algorithm described in [8]; depth first search, breadth first search,
fault simulation ([18]); level and fanin heuristics ([19]); fanout
heuristic ([20]). The results show that the DSGA offers results at
least as good as or better than these approaches.

Table 2. Comparison with other heuristics

Inst. sift GA[8] DSGA Inst. sift GA[8] DSGA
cm85a 36 28 28 alu4 602 350 350
cm163a 28 26 26 s1494 388 370 369
cu 35 32 32

Inst. dfs bfs fsim lvl fin fout DSGA
vda 529 3647 533 2733 515 533 478
ttt2 190 171 234 163 170 186 107

661

The second comparison is a more detailed one with the
following methods: the basic genetic algorithm used in the
segregative approach (BGA), the static segregative genetic
algorithm from [13] (SSGA) and the best variant of the cellular
genetic algorithm from [12] (CGA). As all methods behave very
well on the small instances, only the results for the medium and
large instances are reported.

Table 3 presents the comparison with the BGA. In order to
achieve a fair comparison, an execution of the BGA that
contributes to the computation of the reported parameters consists
actually of multiple executions followed by an aggregation of the
results. The number of executions depends on the available
computation time, which is set for each instance as the average
execution time of the DSGA on that instance.

Table 3. Comparison with BGA

Method BGA DSGA
Instance bf m σ bf m σ

apex2 312 352 54 303 305.5 2.063
apex7 215 240 11 214 215 1.114
cordic 42 5.3 3.6 42 0 0
ttt2 107 4.1 5.4 107 0 0
i3 157 35.4 12 133 0 0
apex6 561 84.8 22 506 20.16 7.985

Table 3 shows that both quality and stability of the solution
are significantly higher in the case of the DSGA, especially on the
most difficult instances. This fact proves some of the qualities of
the segregative approach compared to the single population
genetic algorithm. In the case of the DSGA, the stability of the
solution is an explicit goal of the approach, achieved by a
systematic exploration of the search space. The search procedure
is guided by well-defined characteristics of the search space and
the intensification of the search is more focused on clearly
defined regions. The method avoids being trapped in local optima
by using the tabu search memory. The quality of the solution, best
found and average, shows that the efficient search process
achieved by the DSGA compensates for the weak performance of
the BGA.

Table 4 presents the comparison with the two other multi
population approaches: SSGA and CGA.

Table 4. Comparison with SSGA and CGA

Meth. SSGA CGA DSGA
Inst. bf m σ bf m σ bf m σ

apex2 304 315 3.6 309 318.6 7.2 303 305.5 2.06
apex7 214 227 3.5 214 225.3 11 214 215 1.12
cordic 42 1.3 1.0 42 0.1 0.3 42 0 0
ttt2 107 1.5 1.1 107 0.4 0.8 107 0 0
i3 138 9.7 3.1 133 0 0 133 0 0
apex6 536 55.9 9.6 508 38.6 13 506 20.16 7.98

The SSGA is a primitive version of the DSGA, having the
same main purpose: a systematic exploration of the search space
that focusses on solution stability and aims at improving the
quality by exploring various local optima. The CGA is an
intermediate design between the single population genetic
algorithm and the segregative approach. The merit of the
approach is the communication between parallel evolving
populations that considerably boosts the quality of the solution.
The results suggest that the DSGA performs better than both other
approaches in terms of stability and quality of the solution.

All reported results are obtained in similar conditions: each
algorithm was executed 30 times for each instance, on the same
processor type. The parameters for the components of the BGA
that are incorporated in all approaches are the same. Both
Wilcoxon Signed-Rank non-parametric test and the two-tailed t-
test with assumed unequal variances proved (p < 0.01) the
statistical significance of the differences between the averages of
the absolute error (m), on each problem instance.

The results of the t-test for the comparison with the CGA are
the following: apex2 – t(34) = −9.623, p < 0.001; apex7 – t(30) =
−5.321, p < 0.001; cordic – t(29) = −1.795, p = 0.083; ttt2 – t(29)
= −3.067, p < 0.005; apex6 – t(45) = −6.623, p < 0.001. The
statistical significance of the differences proves the quality of the
main components introduced by the segregative design: the
exploration of the search space by subpopulations, the
communication protocol that preserves the similarity of the
explored subpopulations and the tabu search associative memory.

The results for the comparison with the SSGA are the
following: apex2 – t(47) = −12.885, p < 0.001; apex7 – t(35) =
−17.832, p < 0.001; cordic – t(29) = −6.966, p < 0.001; ttt2 –
t(29) = −7.426, p < 0.001; i3 – t(29) = −16.909, p < 0.001; apex6
– t(54) = −16.091, p < 0.001. The tests confirm that the newly
introduced component QNEW, that represents the main difference
between DSGA and SSGA, produces significant differences in the
quality of the solution obtained by the algorithm.

6.3 Evaluation of the distributed
implementation

This section presents results regarding the efficiency of the
distributed implementation and details several aspects regarding
the communication protocol at different levels of the segregative
approach.

6.3.1 Efficiency of computations
Four copies of the BGA were run in parallel on a four-core

processor. The measures used to evaluate the quality of the
distributed implementation are the following: the parallel
computing time, denoted Tp – the maximum execution time for
any processor; the efficiency of processors utilization, denoted Ec
– Ec = Ts / (p × Tp), where Ts is the sequential execution time and
p is the number of processors, p = 4.

The values are computed as averages over all executions of
the algorithm that produced the results reported in the
performance evaluation section and are grouped according to the
size of the problem instances: small – Tp = 5.2 seconds, Ec = 0.9;
medium – Tp = 22.5 seconds, Ec = 0.94; large – Tp = 70.3 seconds,
Ec = 0.97.

The parallel time, in each processor, mainly consists of the
fitness evaluation. The reported times are quite small taking into
account the size of the problems and the complexity of building
the ROBDD for a chromosome. Also, the algorithm explores
many subpopulations during the process. An immediate advantage
of the segregative approach is that the parallel time can be
reduced by running more copies of the BGA in parallel, without
any further changes.

As comparison, [10] reports the following execution times
for three different exact methods, for some of the test instances, in
seconds: cordic – 1.93 / 1.35 / 1.29; ttt2 – 435 / 345 / 362. Results
for execution times of exact methods on the large instances are
not available.

Decreases in the value of Ec are obtained only by
synchronizations during communication. The values, very close
to 1, prove the efficiency of the communication protocol, which

662

does not load the computations of the copies of BGA and control
components with unnecessary overhead. The presented values are
obtained with a communication rate, R, of 8 evolution stages,
counting all copies of the BGA. Higher values for R, such as 10
and 12, produced almost the same results. Smaller values, such as
2 and 4, yielded worse processor utilization on small instances,
where computations are very fast and a more intense
communication overwhelms the system. In terms of quality and
stability of the solution, different values for R do not produce
significantly different results. As an empiric rule, R should be set
to p × 2 or p × 3. Both Wilcoxon Signed-Rank non-parametric test
and the two-tailed t-test with assumed unequal variances were
applied to check the statistical significance of the differences
between the averages of the absolute error (m) and Ec, obtained on
each test instance, for the tested values for R. Only R was varied,
all other parameters were the same as the ones used in the
performance evaluation. All tests confirmed the presented
conclusions with p < 0.01.

6.3.2 Communication issues
This subsection presents some issues regarding data flows at

different levels of the segregative approach, in order to illustrate
the effects of the communication protocol. All data corresponds to
an execution on the cordic problem instance. The parameters are
the same as the ones used in the performance evaluation.

Figure 3. Data flows at subpopulation level

Figure 3 presents the number of chromosomes transferred by
three parallel evolving subpopulations towards the fourth one.
The moments of communication are multiples of the
communication period, R. The dynamic adjustment of the genetic
operator rates makes the communication at subpopulation level
hard to predict. The data does not indicate a classical
communication pattern for algorithms with multiple populations,
such as an intense communication in the beginning of the
evolution and then a decreasing trend towards the end.

Figure 4. Data flows at control components level

Figure 4 presents the traffic towards and between the control
components of the segregative algorithm. The values on each of
the three graphs represent the total amount of transferred
chromosomes until some evolution stage, counting all copies of
the BGA. The dotted line represents the number of chromosomes
transferred by the copies of the BGA towards TSAM (chromosomes
which are not similar to any of the four currently explored
subpopulations. The intensity of the communication is correlated
with the intensity of the traffic at subpopulation level. Lower data
flows between currently explored subpopulations produce a more
intense transfer towards TSAM. The dash-dot line represents the

amount of chromosomes that are transferred by TSAM towards
QNEW (chromosomes that do not belong to any explored region of
the search space). The traffic is more intense in the beginning of
the execution, which is to be expected, taking into account that
the exploration history recorded by TSAM is initially void and
becomes larger and larger during the execution. As the algorithm
converges, the transfer towards QNEW stagnates. The solid line
represents the amount of chromosomes that are stored by QNEW in
UNEW, the large unstructured population with individuals from
unexplored regions of the search space. The trend is similar to the
previously described one: the communication is more intense in
the beginning of the execution and stagnates as the algorithm
converges.

Figure 5. Amount of chromosomes entering UNEW

Figure 5 depicts the evolution of the number of
chromosomes in UNEW. UNEW is initially empty and it receives
individuals until it reaches the maximum size, MUNEW. After that
the clustering procedure is applied and UNEW is emptied. As the
exploration performed by the algorithm becomes more extensive,
UNEW gets filled up more slowly.

Figure 6. Average fitness in the Archive

Figure 6 presents the average fitness of the individuals in the
archive, computed after the evolution of some subpopulation is
finished and the archive is updated. Because of the random
initialization of Pinit, the initial values represent, in general, low
fitness values. The values improve during the execution. The
quality decreases towards the end because the algorithm also
explores low quality subpopulations. The trend of the evolution
suggests that PQNEW handles well the prioritization of
subpopulations which are sent to the copies of BGA for
exploration.

Figure 7. Evolution of the best found solution

Figure 7 presents the evolution of the best found solution
during the execution of the algorithm. The starting value is of low
quality, due to random initialization. The method greatly
improves the solution, and very fast. Constant improvement
towards the end of the evolution underlines the capacity of the
algorithm to escape local optima.

663

7. CONCLUSIONS AND FUTURE WORK
In this paper a highly efficient dynamic segregative genetic

algorithm for optimizing the order of variables in ROBDDs was
presented. The approach deals with both representation and
feature space. The exploration of the search space is achieved by
evolving many subpopulations of individuals, which are induced
by clustering in the feature space. The design of the algorithm is
general and can incorporate any population based heuristic, as
long as a similarity measure between individuals can be defined.
An efficient communication protocol is introduced in order to
maintain similarity inside the explored subpopulations and to
focus the search on well-defined regions of the search space. The
approach systematically avoids being trapped in local optima by
using a tabu search associative memory. The exploration
capabilities of the method are enhanced by a component that
manages individuals from yet unexplored regions of the search
space. Large quantities of promising individuals are managed and
organized in subpopulations, in order to guide the search process
towards newly discovered regions of the search space. The
approach has a high potential for distributed computing and can
be easily extended to solve problem instances in short time or to
successfully solve very large instances that are intractable with
exact methods.

Extensive evaluation on difficult benchmark problems shows
a high level of performance of the algorithm in terms of quality
and stability of the solution. Comparisons with single and multi-
population heuristics are presented. The efficiency of the
communication protocol and that of a distributed implementation
are thoroughly analyzed.

Future research directions are focused on: devising a better
feature vector, in order to better discriminate between highly
similar individuals; integration of the branch-and-bound paradigm
by evolving embryos instead of chromosomes; parameter tuning.

8. ACKNOWLEDGMENTS
Special thanks to Dr. Rüdiger Ebendt, Institute of

Transportation Systems, Berlin, German Aerospace Center, for
his support and for providing us with his ROBDD parser, based
on CUDD package. All the experiments included in this paper
were performed using this parser.

Cristian Rotaru acknowledges that this work was partially
supported by the European Social Fund in Romania, under the
responsibility of the Managing Authority for the Sectorial
Operational Programme for Human Resources Development
2007-2013, Grant POSDRU/88/1.5/S/47646.

9. REFERENCES
[1] Bollig, B., Wegener, I. 1996. Improving the variable

ordering of OBDDs Is NP-complete. IEEE Trans. on
Computers, vol. 45, p. 993–1002.

[2] Friedman, S. J., Supowit, K. J. 1990. Finding the optimal
variable ordering for BDDs. IEEE Trans. on Comp., vol. 39,
p. 710–713.

[3] Fujii, H., Ootomo, G., Hori, C. 1993. Interleaving based
variable ordering methods for OBDD. Int'l Conf. on CAD, p.
38–41.

[4] Meinel, C., Slobodova, A. 1997. Speeding up variable
reordering for OBDDs. Int'l Conf. on Computer Design, p.
338–343.

[5] Panda, S., Somezi, F. 1995. Who are the variables in your
neighborhood. Int'l Conf. of CAD, p. 74–77.

[6] Rudell, R. 1993. Dynamic variable ordering for ordered
binary decision diagrams. Int'l Conf. of CAD, p. 42–47.

[7] Bollig, B., Lobbing, M., Wegener, I. 1995. Simulated
annealing to improve variable orderings for OBDDs. Int'l
Workshop on Logic Synth., p. 5b:5.1–5.10.

[8] Drechsler, R., Becker, B., Göckel, N. 1996. A genetic
algorithm for variable ordering of OBDDs, IEEE
Proceedings, 143(6), p. 363–368.

[9] Lenders, W., Baier, C. 2005. Genetic algorithms for variable
ordering problem of BDDs. Lect. Notes in Comp. Sc.,
Springer, p. 1–20, vol. 3469/2005.

[10] Ebendt, R., Günther, W., Drechsler, R. 2005. Combining
ordered best-first search with branch and bound for exact
BDD minimization. IEEE Trans. on CAD of Integ. Circuits
and Syst. 24(10), p. 1515–1529.

[11] Brudaru, O., Ebendt, R., Furdu, I. 2010. Optimizing variable
ordering of BDDs with double hybridized embryonic genetic
algorithm. Proc. of The 12th Int. Symposium on Symb. and
Num. Algorithms for Sc. Comp., Synasc 2010, p. 167–173.

[12] Rotaru, C., Brudaru, O. 2012. Multi-grid cellular genetic
algorithm for optimizing variable ordering of ROBDDs.
Proc. of the 2012 IEEE Congress on Evolutionary
Computation, IEEE CEC 2012, in press.

[13] Brudaru, O., Rotaru, C., Furdu, I. 2011. Static segregative
genetic algorithm for optimizing variable ordering of
ROBDDs. Proc. of The 13th Int. Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, Synasc
2011, p. 222–229.

[14] Brudaru, O., Rotaru, C. 2010. Dynamic segregative genetic
algorithm for assembly lines balancing. Proc. of The 12th Int.
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, Synasc 2010, p. 229–236.

[15] Bryant, R.E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Trans on Comp. 35(8), p. 667–
691.

[16] Furdu, I., Brudaru, O. 2009. New hybrid genetic algorithm
with adaptive operators and variability target for optimizing
variable order in OBDD. Proc. of "Gh. Vranceanu" Int’l
Conference on Mathematics and Informatics ICMI 2, nr. 2 ,
p.156–172, vol. 19/2009.

[17] Goldberg, D.E. 1989. Genetic algorithms in search,
optimization and machine learning, Addison Wesley.

[18] Butler, K.M., Ross, D., Kapur, R., Mercer, M.R. 1991.
Heuristics to compute variable orderings for efficient
manipulation of OBDDs. Proc. of the 28th ACM/IEEE
Design Autom. Conf., p. 417–420.

[19] Malik, S., Wang, A.R., Brayton, R.K., Sangiovanni-
Vincentelli, A. 1988. Logic verification using BDDs in a
logic synthesis environment. Proc. of the ACM/IEEE Int.
Conf. on Computer Aided Design, p. 6–9.

[20] Fujita, M., Fujisawa, H., Kawato, N. 1988. Evaluation and
improvements of Boolean comparison method based on
BDDs. Proc. of the ACM/IEEE Int. Conf. on Computer
Aided Design, p. 2–5.

[21] http://cadlab.cs.ucla.edu/~kirill/, accessed June 2010.

[22] CUDD package URL: vlsi.colorado.edu/~fabio/CUDD.

664

