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ABSTRACT 
In this paper an efficient dynamic segregative genetic algorithm 
for optimizing variable order in Reduced Ordered Binary 
Decision Diagrams is presented. The approach integrates a basic 
genetic algorithm and uses a feature function in order to define a 
similarity measure between chromosomes. Subpopulations of 
individuals, formed by applying a clustering procedure in the 
feature space, are explored in parallel by multiple copies of the 
basic genetic algorithm. A communication protocol preserves the 
similarity inside each subpopulation during the evolution process. 
The redundant exploration of the search space is avoided by using 
a tabu search associative memory. Genetic material from yet 
unexplored regions of the search space is managed and organized 
in order to explicitly guide the search process to yet undiscovered 
local optima. The experimental evaluation of the algorithm uses 
classical benchmark problems, known to be very difficult. 
Experiments suggest that our approach has a better performance 
in terms of stability and quality of the solution, when compared to 
other heuristics, such as local search methods, basic genetic 
algorithms, a cellular genetic algorithm and even the static 
segregative genetic algorithm that was the starting point of this 
work. The quality of the distributed implementation and the 
communication protocol are thoroughly analyzed. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search – heuristic methods. 

General Terms 
Algorithms 

Keywords 
segregative genetic algorithm, feature space, associative tabu 
search memory, search space management, similarity preserving 
communication protocol, extensive exploration, intensive 
exploitation, distributed implementation. 

1. INTRODUCTION 
We propose a new method to optimize the variable order in 

Reduced Ordered Binary Decision Diagrams (ROBDDs). 
ROBDDs are data structures that represent canonical forms for 
Boolean functions. An ROBDD is an acyclic graph with respect 
to some order of the input variables and satisfying a set of 
properties. The size of the ROBDD is the number of non-terminal 
nodes and it is proven that it strongly depends on the order of the 
variables ([1]). The goal is to minimize this size. One important 
application of ROBDDs is in digital circuit design – a smaller size 
of the ROBDD that represents a Boolean function describing a 
circuit transfers directly to a smaller chip size. Other applications 
include: symbolic model checking; formal verification of 
combinatorial circuits; analysis of sequential systems. 

The methods used to tackle the problem are both exact and 
approximate. The most successful exact approaches are based on 
the branch-and-bound paradigm and use the lemma proven in [2]. 
The heuristic approaches are categorized in two types: static and 
dynamic methods. Static methods use application specific 
information, for example the structure of the evaluated 
combinatorial circuit, to build good variable orders before 
constructing the ROBDD ([3]). Dynamic methods improve the 
size of an ROBDD by modifying the order of variables. Basic 
approaches are described in [4] and [5]. [6] presents “the sifting 
heuristic”, a specialized local search technique based on hill-
climbing. [7] describes a method based on simulated annealing 
and [8] introduces the use of genetic algorithms, further 
developed in [9]. Hybrid approaches are described in [10] and 
[11]. [12] introduces a novel method for optimizing the variable 
order, a cellular genetic algorithm with parallel evolving and 
communicating grids. This method employs multiple populations 
to explore the search space and uses a similarity preserving 
communication protocol to transfer high quality genetic material 
between subpopulations, in order to boost the quality of the 
solution. 

In [13] the authors describe an initial variant of a segregative 
genetic algorithm for the problem of optimizing the variable order 
of ROBDDs. The segregative approach defines a similarity 
measure between chromosomes. The measure is computed in a 
feature space obtained by attaching feature vectors to 
chromosomes. Large numbers of individuals are organized in 
subpopulations, by applying a clustering procedure in the feature 
space. The search space is explored by means of a basic genetic 
algorithm (BGA) on each subpopulation. Depending on 
computational resources, multiple subpopulations can be explored 
in parallel. A communication protocol is used to maintain the 
similarity inside each subpopulation during the evolution. A tabu 
search associative memory is introduced in order to avoid 
redundant exploration of the search space. 
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In this paper an improved version of the algorithm described 
in [13] is proposed. Some of the components of the approach are 
revised to deliver better performance. The main improvement is 
the introduction of the management of yet unexplored regions of 
the search space. The algorithm in [13], called Static Segregative 
Genetic Algorithm (SSGA), generates a large initial population, 
divides it in a fixed number of subpopulations and explores these 
subpopulations. Chromosomes that occur during the evolution 
process and are not similar with any subpopulation are included in 
some subpopulation, but usually they do not have the power to 
guide the search process towards the newly discovered region of 
the search space. The new approach explicitly manages 
chromosomes from these regions, by dynamically creating 
subpopulations that will be later explored by the BGA. The 
approach is called Dynamic Segregative Genetic Algorithm 
(DSGA). Some of the ideas used by the approach can be also 
found in [14]. 

The structure of the paper is the following: Section 2 
describes the problem; Section 3 briefly describes the BGA; 
Section 4 presents the translation from genotype to phenotype; 
Section 5 details all aspects of the segregative approach; Section 6 
presents the extensive experimental evaluation of the method; 
Section 7 summarizes some conclusions and future work 
directions. 

2. OPTIMIZING THE ORDER OF 
VARIABLES FOR ROBDDS 

This section formally describes the ROBDD data structure 
and the problem of optimizing the variable order. The importance 
of variable ordering is briefly underlined. 

Let BF: Bn → Bm, B = {0,1} be a Boolean function that 
outputs m values. Let π be a permutation of the n input variables, 
π = (v1,v2,…,vn), vi ∈ B, i = 1,…,n.  

An Ordered BDD (OBDD) for BF with respect to π is a 
directed acyclic graph with the following properties ([15]): i) it 
has exactly two terminal nodes, labeled with 0 and 1, 
respectively; ii) each nonterminal node is labeled by a variable vi, 
0 < i ≤ n and has two out-edges labeled with 0 and 1, respectively; 
iii) the order in which the variables appear on any path in the 
graph respects the order π. The number of nonterminal nodes in 
the graph represents the size of the OBDD and is the value that 
must be minimized.  

The structure called Reduced OBDD (ROBDD) is obtained 
by applying reduction rules to an OBDD with a fixed variable 
order, further reducing the size of the graph ([15]). A ROBDD is a 
canonical form for BF. The size of the structure strongly depends 
on the fixed order. In [1] it is proven that optimizing the order of 
variables is NP-complete and finding the best order is NP-hard. 

 

Figure 1. Dependence of the size of the ROBDD on the order 
of variables 

Figure 1 illustrates the effect of using different orders of 
variables when building ROBDDs for a simple Boolean function. 
For two slightly different orders the sizes of the corresponding 
ROBDDs differ substantially. 

3. BASIC GENETIC ALGORITHM 
The method used to explore subpopulations in the context of 

the segregative approach can be any population based method for 
which a similarity measure between individuals can be defined. 
The method used in this paper is the genetic algorithm described 
thoroughly in [16]. 

A chromosome represents a permutation of the input 
variables of BF, denoted x = (x1,x2,…,xn), xi ∈ {v1,…,vn}, 
i=1,…,n. The fitness of a chromosome, denoted f(x), is the size of 
the ROBDD obtained by using x as the order of variables. The 
size of the initial population, denoted pop_sz, is directly 
proportional to the number of variables, n, as a consequence of an 
empirically determined rule. The initial population is generated 
randomly. 

The algorithm applies an elitist selection for survival. The 
offspring compete with the current generation. The best pop_sz 
individuals with respect to fitness value are kept in the next 
generation. 

The method uses two crossover operators, described in [9], 
and three mutation operators, described in [17]. [16] shows that 
using several operators yields better results than applying only 
one operator for crossover and one for mutation. The common 
characteristic of all genetic operators is that the similarity 
between parents and offspring grows with the number of 
generations, assuring the convergence of the algorithm. The 
probabilities to apply crossover and mutation, denoted pCX and pM 
respectively, are empirically initialized and dynamically 
controlled during the evolution process, by means of a measure of 
the variability of the population. The variability is computed each 
generation as the distribution of fitness values over the entire 
population. The probabilities are adjusted in order for the 
variability to match a predefined objective function. This function 
ultimately defines the balance between exploration and 
exploitation. In [16] specific equations are presented and the 
effects of several objective functions are thoroughly examined. 

The algorithm stops when the variation of the average fitness 
of the population stagnates: |avg_fit(k) – avg_fit(k – 1)|/avg_fit(k) 
< Tstop holds true for Nstop consecutive generations, where 
avg_fit(k) is the average fitness of the population at generation k, 
and Tstop a small threshold value. 

4. FEATURE SPACE 
The capacity of the segregative algorithm to manage 

individuals during the evolution process depends on the measure 
of similarity defined between individuals. As mentioned before, a 
chromosome represents a permutation of the input variables. This 
representation does not support a straightforward definition of a 
measure of similarity. In order to define the similarity between 
two individuals, a real valued feature vector is computed for each 
chromosome. The vector, denoted φ(x), is computed when the 
chromosome x is evaluated. The measure of similarity between 
two chromosomes x and x′ is defined as the Euclidean distance in ℝn between the corresponding feature vectors, || φ(x) – φ(x′) ||. 

Two methods to compute the feature vector are described 
below, both used to define the similarity between chromosomes in 
[12] and [13]. Let x be a chromosome. One option is to use the 
structural information of x, as permutation of the input variables. 
The obtained feature vector, denoted φ1(x), is defined as: φ1(x) = 
(α1,…,αn), where αi = xi/[n(n+1)/2], i = 1,…,n. φ1(x) ∈ ℝn and Σαi 
= 1. Another option is to capture the cost based characteristics of 
x. The second feature vector, denoted φ2(x), is defined as: φ2(x) = 
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(λ1,…,λn) ∈ ℕn, where λi represents the number of nodes on the i-
th level of the graph corresponding to the ROBDD. 

The extensive experimental evaluations of the algorithms 
described in [12] and [13] show that using the feature vector φ1 
yields more stable but poorer quality results than using φ2. In all 
cases, by using φ2, the stability of the results decreases slightly, 
while the quality improves substantially. All experimental results 
further presented in this paper are obtained by using φ2, denoted 
simply φ from now on. 

5. THE SEGREGATIVE ALGORITHM 
This section describes the elements of the segregative 

approach and how they work. 

5.1 Search space exploration by 
subpopulations 

The segregative algorithm employs multiple copies of the 
BGA to explore the search space. At any particular moment, each 
copy evolves a given subpopulation. Subpopulations are clusters 
of similar chromosomes, with regard to the feature vector φ, and 
are representative for some region of the search space. Depending 
on available computational resources, a number p of 
subpopulations are explored in parallel. During the evolution 
process, the segregative approach discovers and explores various 
well defined regions of the search space and intensifies the search 
in promising regions by applying the BGA. A communication 
protocol preserves the similarity inside the evolved 
subpopulations. The approach avoids redundant exploration of 
regions of the search space and manages yet unexplored regions 
of the search space. This is done by means of the control 
components of the algorithm, which will be later detailed. The 
segregative algorithm acts as a collector of various local optima 
from different regions of the search space. 

5.1.1 Initializing the subpopulations 
Initially, a large population, denoted Pinit, is randomly 

generated. All chromosomes are evaluated and the feature vectors 
are computed. A clustering algorithm is used to split the set of 
feature vectors in S similar groups, Cl1,…,ClS ⊂ ℝn, with the 
centroids ϕ1,…,ϕS ∈ ℝn. The initial subpopulations are represented 
by the preimages of the clusters from the feature space, in the 
representation space, Pi = φ−1(Cli), i = 1,…,S. The subpopulations 
are sent to the component of the algorithm QNEW that will 
distribute them to the copies of BGA, for exploration. The activity 
of QNEW will be later detailed. 

Experiments show that the c-means clustering algorithm 
offers good results in terms of speed and accuracy. The Davies-
Bouldin index for the quality of the clustering solution was used 
to determine a good value for the number of clusters, S. 

5.1.2 Control components 
The control components of the algorithm are used to define 

the behavior of the method. The following subsections will detail: 
the tabu search associative memory, the management of yet 
unexplored and unknown regions of the search space, and the 
archive that stores promising individuals occurred during the 
evolution process. Several focused scenarios involving 
communications between components of the algorithm and 
subpopulations will be presented. A later subsection will detail all 
aspects regarding the communication protocol. 

5.1.2.1 Tabu search associative memory 
The tabu search associative memory, denoted TSAM, is a 

control component introduced in order to avoid the redundant 

exploration of regions of the search space. As previously 
mentioned, the BGAs evolve subpopulations of individuals that 
induce clusters of feature vectors in the feature space. A 
subpopulation SP has a corresponding centroid in the feature 
space, ϕSP ∈ ℝn, and a cluster radius, ρSP ∈ ℝ, which are 
computed when the clustering algorithm is applied. The centroid 
captures the features off all individuals in the cluster and is 
computed by the clustering algorithm. The radius is set as the 
maximum distance between any feature vector in the cluster and 
the centroid. When the evolution process on SP is finished, the 
pair (ϕSP,ρSP) is sent to TSAM. At some moment in the execution of 
the segregative algorithm, TSAM stores s pairs (ϕsp,ρsp), where ϕsp 
is the centroid of some explored subpopulation sp and ρsp is the 
radius of the cluster. The associative feature of this memory 
comes from the fact that it does not store chromosomes from 
different regions of the search space; it only stores centroids 
which capture the characteristics of many individuals from the 
corresponding regions.  

Let x be a chromosome received by TSAM from a copy of the 
BGA. The communication protocol between subpopulations 
currently explored by copies of BGA ensures that x does not 
belong to any of those subpopulations. The function of TSAM is to 
decide whether x belongs to an already explored region of the 
search space or not. If for some j ∈ {1,…,s}, || φ(x) – ϕj || ≤ ρj 
holds, then x belongs to an already explored region and is 
discarded, otherwise x belongs to an yet unexplored or unknown 
region and it is sent to QNEW. 

5.1.2.2 Management of the search space 
The component that manages yet unexplored and unknown 

regions of the search space, denoted QNEW, contains two 
collections of individuals: PQNEW and UNEW.  

PQNEW is a priority queue of yet unexplored clusters of 
individuals. PQNEW stores the centroids and radiuses of the 
clusters and also a small number of representative chromosomes 
that will be used to start the evolution process on the 
subpopulation. The subpopulations are scored with the average 
fitness of these individuals. When a copy of the BGA finishes the 
evolution process on the assigned subpopulation, it will receive 
from PQNEW the best subpopulation to explore. PQNEW is 
initialized with the initial subpopulations, P1,…,PS. 

UNEW is a large collection of chromosomes from unknown 
regions of the search space. Let x be a chromosome received by 
QNEW from TSAM. x does not belong to any subpopulation that is 
currently or was already explored. If x is similar enough with 
some cluster from PQNEW it will be stored in the small population 
of that cluster if it is good enough, or it will be discarded. If not, x 
is stored in the unstructured collection UNEW. Initially, UNEW is 
empty. When the size of UNEW reaches a high enough value, 
1000–2000 chromosomes, denoted MUNEW, the same clustering 
procedure described in the initialization phase is applied, UNEW is 
emptied, and the resulting subpopulations are appended to PQNEW. 

QNEW is the component that ensures the dynamic character of 
the approach by managing and organizing new genetic material 
produced during the evolution process on subpopulations. The 
segregative algorithm stops when PQNEW and UNEW are empty and 
all copies of the BGA finish the execution on the assigned 
subpopulation. 

5.1.2.3 Archive 
The last component of the segregative approach is also a 

collection of chromosomes. The archive stores the elite of 
individuals from explored subpopulations, meaning 5−10% of the 
individuals from the last generation. The selection of the BGA 
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being elitist, these are the best chromosomes produced by the 
evolution process on those subpopulations. 

The main benefit of the archive is an alternative method to 
initialize the segregative method: it offers the means for 
efficiently restarting the algorithm, by including the high quality 
chromosomes from the archive in the primordial large population. 
This procedure can be correlated with keeping the information 
stored by TSAM in consecutive runs of the algorithm, which can 
accelerate the discovery and exploration of new regions of the 
search space.  

5.1.3 Communication protocol 
Data transfer occurs between currently explored 

subpopulations, subpopulations and control components and 
between control components of the segregative algorithm. The 
communication between different entities defines their behavior 
and ensures the functionalities of the segregative method. 

Each data transfer has a source and a destination. The source 
entity places data in a buffer at the destination. In order not to 
overwhelm the communication with processing times, data 
accumulates in buffers and all entities involved process their 
buffers every R evolution stages, counting all copies of the BGA. 
Effects of varying this value will be presented in the experimental 
evaluation section. 

5.1.3.1 Data transfer at subpopulation level 
Data transfer that originates in a subpopulation is intended to 

preserve the similarity inside that subpopulation. Offspring 
created by means of genetic operators are either kept in the 
subpopulation, or sent to other subpopulations or control 
components, if they are not similar enough with the current 
subpopulation. 

Let BGAi be the copy of the BGA, which currently evolves 
the subpopulation SPi. Let ϕi be the centroid of the cluster induced 
by SPi in the feature space and ρi the radius of this cluster. Let x 
be a chromosome generated during the evolution process on SPi. 

If || ϕi – φ(x) || ≤ ρi, then x is similar enough to the individuals 
in SPi and is included in the evolution process performed by 
BGAi.  

If || ϕj – φ(x) || ≤ ρj holds for some j ∈ {1,…,p}, j ≠ i, then x is 
similar with the currently explored subpopulation SPj and it will 
be included in the evolution process performed by BGAj. BGAj 
receives such chromosomes in a buffer, denoted Bufj. 

If none of the above cases hold, then x is not similar with any 
currently explored subpopulation and it will be sent to TSAM. 

At the end of the evolution process on SPi, the pair (ϕi,ρi)  is 
sent to TSAM and the elite of the current population is sent to the 
archive. The copy of the BGA that performed the exploration of 
SPi will receive another subpopulation from QNEW, if available. 

5.1.3.2 Data transfer at control component level 
TSAM receives chromosomes from the copies of the BGA in 

the buffer denoted BTSAM. Let x be such an individual. If TSAM 
decides that x belongs to an already explored region of the search 
space, then x is discarded, otherwise it is sent to QNEW. 

QNEW receives individuals from TSAM in the buffer denoted 
BQNEW. The chromosomes are either discarded, or stored in the 
initial population of some cluster in PQNEW, or in UNEW. Whenever 
a copy of the BGA finishes the exploration on some 
subpopulation, QNEW extracts the best subpopulation from PQNEW 
and sends it to the BGA for exploration. 

5.2 Execution of the algorithm 
This section summarizes the execution steps of the copies of 

BGA and of the control components of the segregative algorithm. 

The procedures include the functionalities of all entities and the 
data flows previously detailed. 

5.2.1 Execution of the BGA 
1. receive subpopulation SP from QNEW: individuals to initialize 

the population, centroid and radius of the cluster induced in 
the feature space, (ϕSP,ρSP). 

2. initialize the evolution stage, st = 1; initialize the current 
population pop(1); empty the buffer, Buf = ∅. 

3. while not stopped do: 
3a. st = st + 1; 
 if st % R = 0 then pop(s) = pop(s-1) ∪ Buf, Buf = ∅; 
 else pop(s) = pop(s-1). 
3b. apply genetic operators, evaluate offspring, and 

compute feature vectors; for each new individual x: 
• pop(s) = pop(s) ∪ {x} or 
• send x to another currently explored subpopulation or 
• send x to TSAM. 

3c. apply selection on pop(s); update centroid and radius. 

5.2.2 Execution of the segregative algorithm 
1. initialize Pinit; obtain P1,…,PS by clustering;  

PQNEW = {P1,…,PS}; UNEW = ∅. 
2. TSAM = ∅. 
3. while PQNEW and UNEW are not empty: 

3a. if a copy of the BGA is free and PQNEW is not empty 
• choose the best subpopulation from PQNEW and send 

it to the BGA; 
• the copy of the BGA starts the evolution process. 

3b. when a copy of the BGA finishes the exploration of a 
subpopulation: 

• send the centroid and radius of the completed cluster 
to TSAM ; 

• update the archive. 
3c. every R generations, TSAM checks the chromosomes in 

BTSAM and either discards them or sends them to QNEW. 
3d. every R generations, QNEW processes the chromosomes in 

BQNEW and discards them, or stores them in some cluster in 
PQNEW, or stores them in UNEW. 

3e.  when UNEW reaches the size MUNEW, or UNEW is not empty 
and PQNEW is empty, apply the clustering procedure on the 
feature vectors of the individuals in UNEW, obtain the 
similar subpopulations in the representation space and 
append them to PQNEW, empty UNEW. 

 

Figure 2. Functional diagram of the segregative algorithm 
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6. EXPERIMENTAL EVALUATION 
The experiments are designed to study the stability and 

quality of the solution obtained by the segregative approach. 
Comparisons with the single population genetic algorithm, the 
cellular genetic algorithm from [12], the static segregative genetic 
algorithm from [13] and other heuristic approaches are 
extensively described below. Other experiments study the quality 
of the distributed implementation and the efficiency of the 
communication protocol. 

The experimental evaluation uses well known benchmark 
problems from the LGSynth91 dataset, found at [21]. The 
instances are divided into three categories, depending on their 
size: small – cm85a, cm163a, cu, alu4, s1494, vda, misex3; 
medium – apex2, apex7, cordic, ttt2; and large instances – i3, 
apex6.  

The optimal solution is known for most of the instances and 
is denoted bk. The reported indicators are the following: best 
found solution (bf), the average (m), standard deviation (σ) and 
unitized risk (σ/m) for the absolute error (bf – bk). The column 
titled In/Out presents the number of input and output variables of 
the Boolean function, respectively.  

The CUDD library ([22]) was used in order to build the 
ROBDD associated with an order of variables and to compute the 
fitness and feature vector φ2, which is used in all experiments. 

6.1 Parameter tuning 
The parameters of the basic genetic algorithm are the ones 

which gave the best results in [16]. The values are empirically set. 
The extensive experimental evaluation in [16] analyzes the effect 
of different choices for all parameters. The following values are 
used in [16] to produce the results reported in the performance 
evaluation and are also used in the segregative approach. The size 
of the population, pop_sz, is set to 50 for the small and medium 
problem instances, and to 50 and 100 for the large instances. pCX, 
the probability of the crossover operator, is initialized to 0.6. pM, 
the probability of the mutation operator, is initialized to 0.35. The 
objective function for the variability of the population, used to 
control pCX and pM, is an exponential periodic function. The 
parameters used to define the stopping condition are: Nstop = 20 
and Tstop = 0.001. 

The experiment designed to determine a suitable size for the 
primordial population, Pinit, consists in running the algorithm on 
some of the test instances (alu4, cordic and apex6) with different 
values, ranging from 200 to 10000, and checking for statistically 
significant differences between the averages of the absolute error 
(m), obtained on each instance. Both Wilcoxon Signed-Rank non-
parametric test and the two-tailed t-test with assumed unequal 
variances showed (p < 0.01) that values ranging from 2000 to 200 
chromosomes produce a decrease in stability and quality of the 
solution. Values ranging from 2000 to 10000 revealed no 
significant difference. This proves the efficiency of the 
component QNEW that successfully manages the exploration of 
unknown regions of the search space, compensating for a poor 
initial genetic pool. The size Pinit is set to 2000 individuals. As 
showed in [13], the static segregative genetic algorithm requires 
an initial population of size at least 5000 to deliver best 
performance. MUNEW, the maximum size of the unstructured 
population UNEW, is set to 1000 chromosomes (|Pinit| / 2).  

Various values for the communication period, R, are tested: 
2, 4, 8, 10 and 12 evolution stages. Detailed results are presented 
in the section concerning the evaluation of the distributed 
implementation. The value used for generating the results in the 
performance evaluation is 8. 

In conclusion, most of the parameters of the approach are set 
to known best suitable values, the rest are determined by means of 
a limited statistical analysis. As the results obtained by using 
these settings are very promising, a further in-depth analysis of 
the parameters and dependencies between them is not included in 
this work. Future research should devise experiments and 
procedures to determine if the whole ensemble of parameters, for 
the BGA and control components of the DSGA, can be fine-tuned 
against each other to deliver even better performance for the 
segregative approach. 

6.2 Performance evaluation 
For the performance evaluation, a computer with an AMD 

Athlon X4 630 processor was used. As this processor has 4 
physical cores, 4 copies of the BGA ran in parallel. For each 
problem instance, the algorithm was executed 30 times.  

6.2.1 Quality and stability 
The reported indicators are presented in Table 1. 

Table 1. Performance evaluation of the DSGA 

Instance In/Out bk bf m σ σ/m 
cm85a 11/3 28 28 0 0 -
cm163a 16/5 26 26 0 0 -
cu 14/11 32 32 0 0 -
alu4 14/8 350 350 0 0 -
s1494 14/25 369 369 0 0 -
vda 17/39 478 478 0 0 -
misex3 14/14 478 478 0 0 -
apex2 39/3 - 303 305.5 2.063 0.0067
apex7 49/37 - 214 215 1.114 0.0051
cordic 23/2 42 42 0 0 -
ttt2 24/21 107 107 0 0 -
i3 132/6 133 133 0 0 -
apex6 135/99 498 506 20.16 7.985 0.3959

The segregative method finds the optimal solution in all runs 
on all small and medium instances, for which the optimal value is 
known. This happens also for one of the large instances (i3). For 
the second large instance, apex6, which is the most difficult one, 
the results are very close to the optimal value. The standard 
deviation and unitized risk prove the high stability of the method 
which replicates the same or very close results in nearly all runs. 

6.2.2 Comparison with other heuristic methods 
The first comparison focuses on some simple search 

procedures and other more complex heuristics from the literature. 
As published results are not available in a systematic manner, 
only the best found solution is reported on some of the small and 
medium instances. Table 2 present the comparison with the 
following methods: the sifting heuristic ([6]); the genetic 
algorithm described in [8]; depth first search, breadth first search, 
fault simulation ([18]); level and fanin heuristics ([19]); fanout 
heuristic ([20]). The results show that the DSGA offers results at 
least as good as or better than these approaches. 

Table 2. Comparison with other heuristics 

Inst. sift GA[8] DSGA Inst. sift GA[8] DSGA
cm85a 36 28 28 alu4 602 350 350
cm163a 28 26 26 s1494 388 370 369
cu 35 32 32  

Inst. dfs bfs fsim lvl fin fout DSGA
vda 529 3647 533 2733 515 533 478
ttt2 190 171 234 163 170 186 107
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The second comparison is a more detailed one with the 
following methods: the basic genetic algorithm used in the 
segregative approach (BGA), the static segregative genetic 
algorithm from [13] (SSGA) and the best variant of the cellular 
genetic algorithm from [12] (CGA). As all methods behave very 
well on the small instances, only the results for the medium and 
large instances are reported. 

Table 3 presents the comparison with the BGA. In order to 
achieve a fair comparison, an execution of the BGA that 
contributes to the computation of the reported parameters consists 
actually of multiple executions followed by an aggregation of the 
results. The number of executions depends on the available 
computation time, which is set for each instance as the average 
execution time of the DSGA on that instance.  

Table 3. Comparison with BGA 

Method BGA DSGA 
Instance bf m σ bf m σ 

apex2 312 352 54 303 305.5 2.063
apex7 215 240 11 214 215 1.114
cordic 42 5.3 3.6 42 0 0
ttt2 107 4.1 5.4 107 0 0
i3 157 35.4 12 133 0 0
apex6 561 84.8 22 506 20.16 7.985

Table 3 shows that both quality and stability of the solution 
are significantly higher in the case of the DSGA, especially on the 
most difficult instances. This fact proves some of the qualities of 
the segregative approach compared to the single population 
genetic algorithm. In the case of the DSGA, the stability of the 
solution is an explicit goal of the approach, achieved by a 
systematic exploration of the search space. The search procedure 
is guided by well-defined characteristics of the search space and 
the intensification of the search is more focused on clearly 
defined regions. The method avoids being trapped in local optima 
by using the tabu search memory. The quality of the solution, best 
found and average, shows that the efficient search process 
achieved by the DSGA compensates for the weak performance of 
the BGA. 

Table 4 presents the comparison with the two other multi 
population approaches: SSGA and CGA.  

Table 4. Comparison with SSGA and CGA 

Meth. SSGA CGA DSGA 
Inst. bf m σ bf m σ bf m σ 

apex2 304 315 3.6 309 318.6 7.2 303 305.5 2.06
apex7 214 227 3.5 214 225.3 11 214 215 1.12
cordic 42 1.3 1.0 42 0.1 0.3 42 0 0
ttt2 107 1.5 1.1 107 0.4 0.8 107 0 0
i3 138 9.7 3.1 133 0 0 133 0 0
apex6 536 55.9 9.6 508 38.6 13 506 20.16 7.98

The SSGA is a primitive version of the DSGA, having the 
same main purpose: a systematic exploration of the search space 
that focusses on solution stability and aims at improving the 
quality by exploring various local optima. The CGA is an 
intermediate design between the single population genetic 
algorithm and the segregative approach. The merit of the 
approach is the communication between parallel evolving 
populations that considerably boosts the quality of the solution. 
The results suggest that the DSGA performs better than both other 
approaches in terms of stability and quality of the solution. 

All reported results are obtained in similar conditions: each 
algorithm was executed 30 times for each instance, on the same 
processor type. The parameters for the components of the BGA 
that are incorporated in all approaches are the same. Both 
Wilcoxon Signed-Rank non-parametric test and the two-tailed t-
test with assumed unequal variances proved (p < 0.01) the 
statistical significance of the differences between the averages of 
the absolute error (m), on each problem instance.  

The results of the t-test for the comparison with the CGA are 
the following: apex2 – t(34) = −9.623, p < 0.001; apex7 – t(30) = 
−5.321, p < 0.001; cordic – t(29) = −1.795, p = 0.083; ttt2 – t(29) 
= −3.067, p < 0.005; apex6 – t(45) = −6.623, p < 0.001. The 
statistical significance of the differences proves the quality of the 
main components introduced by the segregative design: the 
exploration of the search space by subpopulations, the 
communication protocol that preserves the similarity of the 
explored subpopulations and the tabu search associative memory. 

The results for the comparison with the SSGA are the 
following: apex2 – t(47) = −12.885, p < 0.001; apex7 – t(35) = 
−17.832, p < 0.001; cordic – t(29) = −6.966, p < 0.001; ttt2 – 
t(29) = −7.426, p < 0.001; i3 – t(29) = −16.909, p < 0.001; apex6 
– t(54) = −16.091, p < 0.001. The tests confirm that the newly 
introduced component QNEW, that represents the main difference 
between DSGA and SSGA, produces significant differences in the 
quality of the solution obtained by the algorithm. 

6.3 Evaluation of the distributed 
implementation 

This section presents results regarding the efficiency of the 
distributed implementation and details several aspects regarding 
the communication protocol at different levels of the segregative 
approach. 

6.3.1 Efficiency of computations 
Four copies of the BGA were run in parallel on a four-core 

processor. The measures used to evaluate the quality of the 
distributed implementation are the following: the parallel 
computing time, denoted Tp – the maximum execution time for 
any processor; the efficiency of processors utilization, denoted Ec 
– Ec = Ts / (p × Tp),  where Ts is the sequential execution time and 
p is the number of processors, p = 4.  

The values are computed as averages over all executions of 
the algorithm that produced the results reported in the 
performance evaluation section and are grouped according to the 
size of the problem instances: small – Tp = 5.2 seconds, Ec = 0.9; 
medium – Tp = 22.5 seconds, Ec = 0.94; large – Tp = 70.3 seconds, 
Ec = 0.97. 

The parallel time, in each processor, mainly consists of the 
fitness evaluation. The reported times are quite small taking into 
account the size of the problems and the complexity of building 
the ROBDD for a chromosome. Also, the algorithm explores 
many subpopulations during the process. An immediate advantage 
of the segregative approach is that the parallel time can be 
reduced by running more copies of the BGA in parallel, without 
any further changes. 

As comparison, [10] reports the following execution times 
for three different exact methods, for some of the test instances, in 
seconds: cordic – 1.93 / 1.35 / 1.29; ttt2 – 435 / 345 / 362. Results 
for execution times of exact methods on the large instances are 
not available. 

Decreases in the value of Ec are obtained only by 
synchronizations during communication.  The values, very close 
to 1, prove the efficiency of the communication protocol, which 
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does not load the computations of the copies of BGA and control 
components with unnecessary overhead. The presented values are 
obtained with a communication rate, R, of 8 evolution stages, 
counting all copies of the BGA. Higher values for R, such as 10 
and 12, produced almost the same results. Smaller values, such as 
2 and 4, yielded worse processor utilization on small instances, 
where computations are very fast and a more intense 
communication overwhelms the system. In terms of quality and 
stability of the solution, different values for R do not produce 
significantly different results. As an empiric rule, R should be set 
to p × 2 or p × 3. Both Wilcoxon Signed-Rank non-parametric test 
and the two-tailed t-test with assumed unequal variances were 
applied to check the statistical significance of the differences 
between the averages of the absolute error (m) and Ec, obtained on 
each test instance, for the tested values for R. Only R was varied, 
all other parameters were the same as the ones used in the 
performance evaluation. All tests confirmed the presented 
conclusions with p < 0.01. 

6.3.2 Communication issues 
This subsection presents some issues regarding data flows at 

different levels of the segregative approach, in order to illustrate 
the effects of the communication protocol. All data corresponds to 
an execution on the cordic problem instance. The parameters are 
the same as the ones used in the performance evaluation. 

 

Figure 3. Data flows at subpopulation level 

Figure 3 presents the number of chromosomes transferred by 
three parallel evolving subpopulations towards the fourth one. 
The moments of communication are multiples of the 
communication period, R. The dynamic adjustment of the genetic 
operator rates makes the communication at subpopulation level 
hard to predict. The data does not indicate a classical 
communication pattern for algorithms with multiple populations, 
such as an intense communication in the beginning of the 
evolution and then a decreasing trend towards the end.  

 

Figure 4. Data flows at control components level 

Figure 4 presents the traffic towards and between the control 
components of the segregative algorithm. The values on each of 
the three graphs represent the total amount of transferred 
chromosomes until some evolution stage, counting all copies of 
the BGA. The dotted line represents the number of chromosomes 
transferred by the copies of the BGA towards TSAM (chromosomes 
which are not similar to any of the four currently explored 
subpopulations. The intensity of the communication is correlated 
with the intensity of the traffic at subpopulation level. Lower data 
flows between currently explored subpopulations produce a more 
intense transfer towards TSAM. The dash-dot line represents the 

amount of chromosomes that are transferred by TSAM towards 
QNEW (chromosomes that do not belong to any explored region of 
the search space). The traffic is more intense in the beginning of 
the execution, which is to be expected, taking into account that 
the exploration history recorded by TSAM is initially void and 
becomes larger and larger during the execution. As the algorithm 
converges, the transfer towards QNEW stagnates. The solid line 
represents the amount of chromosomes that are stored by QNEW in 
UNEW, the large unstructured population with individuals from 
unexplored regions of the search space. The trend is similar to the 
previously described one: the communication is more intense in 
the beginning of the execution and stagnates as the algorithm 
converges. 

 

Figure 5. Amount of chromosomes entering UNEW 

Figure 5 depicts the evolution of the number of 
chromosomes in UNEW. UNEW is initially empty and it receives 
individuals until it reaches the maximum size, MUNEW. After that 
the clustering procedure is applied and UNEW is emptied. As the 
exploration performed by the algorithm becomes more extensive, 
UNEW gets filled up more slowly. 

 

Figure 6.  Average fitness in the Archive 

Figure 6 presents the average fitness of the individuals in the 
archive, computed after the evolution of some subpopulation is 
finished and the archive is updated. Because of the random 
initialization of Pinit, the initial values represent, in general, low 
fitness values. The values improve during the execution. The 
quality decreases towards the end because the algorithm also 
explores low quality subpopulations. The trend of the evolution 
suggests that PQNEW handles well the prioritization of 
subpopulations which are sent to the copies of BGA for 
exploration. 

 

Figure 7. Evolution of the best found solution 

Figure 7 presents the evolution of the best found solution 
during the execution of the algorithm. The starting value is of low 
quality, due to random initialization. The method greatly 
improves the solution, and very fast. Constant improvement 
towards the end of the evolution underlines the capacity of the 
algorithm to escape local optima. 
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7. CONCLUSIONS AND FUTURE WORK 
In this paper a highly efficient dynamic segregative genetic 

algorithm for optimizing the order of variables in ROBDDs was 
presented. The approach deals with both representation and 
feature space. The exploration of the search space is achieved by 
evolving many subpopulations of individuals, which are induced 
by clustering in the feature space. The design of the algorithm is 
general and can incorporate any population based heuristic, as 
long as a similarity measure between individuals can be defined. 
An efficient communication protocol is introduced in order to 
maintain similarity inside the explored subpopulations and to 
focus the search on well-defined regions of the search space. The 
approach systematically avoids being trapped in local optima by 
using a tabu search associative memory. The exploration 
capabilities of the method are enhanced by a component that 
manages individuals from yet unexplored regions of the search 
space. Large quantities of promising individuals are managed and 
organized in subpopulations, in order to guide the search process 
towards newly discovered regions of the search space. The 
approach has a high potential for distributed computing and can 
be easily extended to solve problem instances in short time or to 
successfully solve very large instances that are intractable with 
exact methods. 

Extensive evaluation on difficult benchmark problems shows 
a high level of performance of the algorithm in terms of quality 
and stability of the solution. Comparisons with single and multi-
population heuristics are presented. The efficiency of the 
communication protocol and that of a distributed implementation 
are thoroughly analyzed. 

Future research directions are focused on: devising a better 
feature vector, in order to better discriminate between highly 
similar individuals; integration of the branch-and-bound paradigm 
by evolving embryos instead of chromosomes; parameter tuning. 
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