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ABSTRACT
We investigate semantic properties of linear programs, both
internally, by analyzing the memory states they produce
during execution, and externally, by inspecting program out-
comes. The main concept of the formalism we propose is
program trace, which reflects the behavior of program in
semantic space. It allows us to characterize programming
tasks in terms of traces of programs that solve them, and
to propose certain measures that reveal their properties.
We are primarily interested in measures that quantitatively
characterize functional (semantic, behavioral) modularity of
programming tasks. The experiments conducted on large
samples of linear programs written in Push demonstrate
that semantic structure varies from task to task, and re-
veal patterns of different forms of modularity. In particular,
we identify interesting relationships between task modular-
ity, task complexity, and program length, and conclude that
a great share of programming tasks are modular.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
genetic programming, modularity, program semantics, Push

1. INTRODUCTION
Modularity, ubiquitous in nature and human design, is quite
an elusive concept that can be interpreted in multiple ways.
It is typically defined in the framework of complex sys-
tems, i.e., systems comprising multiple interconnected com-
ponents. Such a system is termed modular if some of its
components are interconnected stronger than others, either
in a structural [2] or functional [1, 16] sense. A different
concept known under this term, the propensity of solutions
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to be composed of repeated parts (cf. body segments in
animals), is outside the scope of this paper.

In genetic programming (GP), it is common to character-
ize modularity in direct relation to program code, and iden-
tify modules with code fragments (typically subprograms).
In this perspective, a module is a subprogram that turns out
to be beneficial for individuals’ fitness. This framing forms
the foundation for automatically defined functions and var-
ious methods of code encapsulation (see, e.g., [11, 15]).

This perspective on modularity in GP has however certain
limitations. In contrast to representations in which modules
naturally reveal themselves in solution’s structure, e.g., in
connections in neural and logical networks [2], modules in
GP cannot be usually detected by means of a purely struc-
tural analysis. For most program representations, particu-
larly for trees, one cannot tell if a subprogram constitutes a
module in certain task, by looking at a single solution to that
task. To find out whether a piece of code forms a module or
not, it has to be put into different contexts, and its effects
on individuals’ fitness have to be investigated (e.g., [6, 14]).
Such an approach is however disputable, because a module
cannot be expected to serve its purpose if the context (the
remaining program part) is not ready to cooperate with it.

This problem can be illustrated from another perspective.
Consider the programming task of writing a function that
calculates a median of a list of numbers. Clearly, it can be
split into two subtasks: the list should be first sorted, and
then the central element has to be located. However, at least
for the former subtask, there exist many possible solutions
(sorting functions), which can have little in common in syn-
tactic terms. A single program that solves this task can be
useless for identifying modules.

This clearly shows that module in GP should be consid-
ered more as a functional entity that is responsible for cer-
tain aspect of the whole programming task. In this framing,
a module exists in abstraction from specific programs, and
modularity is an inherent property of a task, rather than of
a single solution, a more phenotypic (behavioral, semantic)
than genotypic (structural, syntactic) phenomenon. This
perspective is also prevailing in general studies on modu-
larity, not specific for GP. For instance, the NK-landscapes
[3] and HIFF [16] benchmarks implement modularity as a
property of task (fitness function, to be precise).

Though functional framing of modularity deserves inter-
est, it has attracted only limited attention in GP [7, 4, 10,
9]. The possible reason for this state of matter is that the
interactions between functional modules in GP are much
more complex than in optimization problems. For instance,
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in NK-landscapes and HIFF, modularity is an effect of dif-
ferent combinations of variable values bringing various con-
tributions to fitness. In GP, one cannot expect that subpro-
grams, which are not simply variables but entities that per-
form processing of external data, would contribute to pro-
gram’s fitness in an equally straightforward way (not men-
tioning the fact that equalling variables with subprograms
is highly questionable in the first place). Epistasis between
components is here much more sophisticated and thus more
difficult to detect and model.

In this study, we attempt to develop the functional per-
spective on modularity in GP by investigating the relation-
ships between program semantics and modularity. The pa-
per has two major contributions. Firstly, we propose a uni-
fied formalism for semantic characterization of the process
of program execution, program outcome, and programming
task. Secondly, we provide ways to quantitatively assess
modularity of programming tasks, and discover interesting
relationships of these measurements to other properties, se-
mantic diversity and program complexity.

2. PROGRAMS, TRACES AND TASKS
The core concept of GP and other approaches to auto-

matic programming is programming task (task for short),
which can be formulated as ‘find a program that, given in-
put, produces specific output, i.e., exhibits the desired be-
havior’. A task intended to be solved by humans will typi-
cally express the desired output in terms of constraints. For
instance, given an input comprising three numbers x1, x2, x3,
the programming task of finding a sorting program could be
specified as constraint x1 ≤ x2 ≤ x3. In GP, one typically
describes the expected behavior in a different way, more
characteristic for supervised machine learning from exam-
ples: a set of examples (fitness cases) of the input-output
mapping is given, and the program sought for has to repli-
cate (or approximate) the mapping for these examples.

Both formulations try to grasp the concept of program
semantics. The latter, by specifying the behavior only for
selected inputs, can be viewed a an approximation of the
former. In following we unify them into a common formal
framework.

We define program as a finite sequence of instructions from
a given set I, written in the programming language of con-
sideration. A program interpreter, capable of executing such
programs, is equipped with memory that is filled with pro-
gram input prior to execution and stores program output
after it terminates. All information about the intermediate
states of program execution, except for the program itself
and instruction pointer, is reflected by the state of mem-
ory. Let M denote a finite set of all possible memory states,
and let s0 be the vector composed of all elements from M
ordered in an arbitrary way. Thus, s0 represents also all
possible inputs to any program that can be executed by the
interpreter.

For a given program p, consider applying it independently
to all inputs from s0. For a start, assume that we execute
the first instruction of p. For each element of s0, this will
result in a certain memory state from M . These memory
states can be gathered in a vector s1, with its elements cor-
responding to the elements of s0. Consequently, execution
of each subsequent instruction of p will result in analogous
vectors s2, s3, . . .. This process can be alternatively viewed
as having |M | interpreters, and running p in parallel on all
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Figure 1: Graphical representation of three distinct
traces of three programs p1, p2, p3, each of length 4,
that solve task s. Vertical columns of states corre-
spond to consecutive instructions executed by pro-
grams. Note that a program can revisit the same
state (p2 visits state s2 twice), and different pro-
grams can visit the same state on different stages
of their execution (both p1 and p3 visit s1).

of them, for all elements of s0. Throughout this paper, pro-
gram execution will be meant in this very sense.

We call the vectors s0, s1, s2, . . . states to clearly tell them
apart from the elements of M . The set of states that can be
visited while executing any program in this way is a (proper

or not) subset of M |M|. The sequence of states visited when
executing the consecutive instructions of program p consti-
tutes its trace t(p). A state can appear in a trace more than
once, and different programs can have the same trace. The
initial visiting of s0 is not included in traces.

The length of a trace can be greater than the length of
its program if I includes jumps or loops. In particular, non-
stopping programs have infinitely long traces. For this rea-
son, we consider programming languages that have no loop
nor jump instructions, which implies that all programs halt
and that the lengths of a program and its trace are equal,
i.e., |p| = |t(p)|. When considering sets of programs, we will
also assume they all have the same length l.

Let ti(p) ∈ M |M| denote the ith state in the trace t(p).
The state reached at the end of p’s execution, i.e., tl(p), will
be referred to as semantic of p, as it reflects the output of p
for all possible inputs (embraced by s0), thus nothing more
can be said about its behavior.

A programming task can be now formulated as follows:
given s ∈ M |M|, find a program p such that tl(p) = s.

Therefore, a task is equivalent to a specific point s ∈ M |M|

that determines the desired output for all possible memory
states. We say that a p such that tl(p) = s solves task s
and that p is a solution to s. Let P (s) denote the set of all
solutions of s. A programming task is solvable if P (s) �= ∅.

The set of traces of all programs that solve s will be called
task trace and denoted by T (s) = {t(p) : tl(p) = s}. In
general, |T (s)| ≤ |P (s)|.

Figure 1 shows graphical representation of three traces of
three programs of length l = 4 that solve the same task s,
superimposed on each other. Only the states that belong to
the considered traces are shown. The illustration emphasizes
the sequential nature of programs, which are executed from
left to right (note the instruction numbers at the top). Note
that a state can appear multiple times at different positions
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in single or multiple traces. Thus, this representation is not
equivalent to graph or automaton.

Trace is a convenient concept in that it embraces all stages
of program’s ‘lifecycle’: definition of input data, program
execution, and program output. A state is a formal object
capable of representing programming tasks, a semantics of
a program, but also partial results of program execution.
The set M |M| embraces the Cartesian product of all memory
states that can be produced by any program given any input.
Every state fromM |M| defines a programming task (solvable
or not), and some states are semantics of actual programs.
The starting point for traces of all programs is the same
(s0), so a trace of a program is not conditioned by its input.
As a set of fitness cases typically used in GP is a subset of
s0, this unifies the two views of semantics discussed earlier.

2.1 Experiment 1: Diversity and complexity
The objective of this experiment is to analyze program-

ming tasks in a chosen programming language using the in-
troduced formalism. We chose Push [13] and interpreter
PshGP written by Jon Klein, http://spiderland.org/Psh/.
In general, Push programs are lists of instructions that can
be nested, but we disable nesting to consider only strictly
linear programs of length l.

Push is a stack-based language, and its interpreter is equip-
ped with separate stacks for different data types. We as-
sume that computation takes place in the integer domain,
and that memory state is fully determined by the state of
integer stack. Two memory states are considered identical if
they comprise stacks of the same depth, with the same value
at each position. The input to a program is the initial stack
state, and the output is the state it leaves after completion.

Our programming language comprises 8 instructions I =
{*, +, -, /, neg, dup, pop, swap}, all of which affect only the
state of integer stack. The arithmetic operations pop two
arguments from the stack and push the result on top of it;
neg pops a number, and pushes a negative of it; dup pushes
a copy of the topmost element; pop discards the topmost el-
ement; swap reverses the order of the two topmost elements.
An instruction has no effect if the stack is too shallow. Note
that, as all numbers in the stack contribute to its state, and
this applies also to output stack states, the programs con-
sidered here perform in fact multiple regression.
We cannot consider all possible program inputs, as stacks

can have an arbitrary depth. Thus, we limit the set of con-
sidered inputs to a sample of 10 integers {−5,−4, . . . , 3, 4}.
An initial memory state consists of two copies of a num-
ber placed on the stack (e.g., (−5,−5) or (3, 3)).1 Thus,
the initial state s0 (cf. Section 2) is a vector of 10 stacks
(fitness cases), each holding two identical integers: s0 =
[(−5,−5), . . . ,(4, 4)]. Any other state is a vector of 10 stack
states corresponding to these initial stack states.

Sampling procedure. To gain insight into the semantic
characteristic of entire program space, considering a specific
programming task or even a few benchmarks would be insuf-
ficient. Rather than that, we aim at characterizing a large
sample of programming tasks and programs that solve them.
We cannot however create tasks arbitrarily, i.e., by gener-
ating desired output state via filling the stack with random

1With only one copy of the input number, a program, to
produce a nonempty stack, would have to start with dup to
provide the subsequent instructions with enough arguments.
This would unnecessarily constrain the program space.

Algorithm 1 The sampling algorithm: I - instruction set,
l - program length, nt - number of unique traces to be gen-
erated, np - maximal number of iterations.

1: procedure Sample(I, l, nt, np)
2: P ← ∅ � Set of unique programs generated so far
3: T ← ∅ � Set of unique traces generated so far
4: S ← ∅ � Set of unique semantics (tasks) generated so far
5: repeat
6: repeat
7: p← RandomProgram(I, l)
8: until p /∈ P
9: t← t(p) � The trace of the drawn program
10: if ¬IsTrivial(t) then
11: P ← P ∪ {p} � Update the samples
12: T ← T ∪ {t}
13: S ← S ∪ {tl}
14: end if
15: np ← np − 1
16: until np = 0 or |T | = nt

17: return (P, T ,S)
18: end procedure

integers, as such tasks are not guaranteed to be solvable (in
particular, under length limit l). Thus, we do the reverse:
we generate programs and check which tasks they solve.

Systematic enumeration of |I|l = 8l programs is infeasible
even for small l, so we rely on sampling procedure Sample

detailed in Algorithm 1. Sample produces a threefold result:
a sample P of programs, the set T of program traces of
programs in P, and the set S of semantics of those programs,
which is simply the set of final states {tl(p)} of traces from
T . S is also the set of tasks solved by the programs from P.

In each iteration, Sample generates a random program
by drawing l instructions with equal probability (iid). A
program has to pass several checks to get into the final sam-
ple. Firstly, it has to be unique – duplicates are rejected.
Secondly, it has to be nontrivial, i.e., it cannot end with
the same memory state for all fitness cases, nor produce
an empty stack for one or more fitness cases. Programs that
are trivial in this sense are symptomatic for stack-based lan-
guages: once the stack becomes empty, it cannot be refilled
and remains empty till the end of program execution. The
longer a program, the more likely it is to happen; for l = 20,
over 95% of randomly drawn programs turn out to be trivial.

Let us also note that lines 12 and 13 of Sample are fre-
quently ineffective, as multiple programs can map onto the
same trace, and multiple traces can end with the same state.

Sample terminates when nt unique traces have been col-
lected or the maximum number of iterations np elapsed (to-
tal number of generated programs, whether trivial or not).
These stopping conditions and the sets produced by Sample

will be used selectively in the subsequent experiments.

Semantic diversity of programs. We start with inves-
tigating semantic diversity, by which we mean the number
of unique semantics of generated programs (|S|), or, equiva-
lently, the number of tasks solved by the sample programs.
Figure 2 presents, for different program lengths, the para-
metric curves reflecting progression of the number of non-
trivial programs (|P|, horizontal axis) and semantic diversity
(|S|, vertical axis), with the number of generated programs
(np). Datapoints have been obtained by calling Sample for
consecutive values of np. All curves start in the lower left
corner (an empty sample, np = 0), and the end of each curve
marks the point for np = 50, 000, 000.
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Figure 2: Number of nontrivial programs and se-
mantic diversity as a function of the number of gen-
erated programs np, for different program lengths l.

As program length grows, the end points of curves shift
to the left, because longer programs are more likely to be
trivial. Most instructions (arithmetic and pop) reduce stack
size, so, as l increases, it becomes more probable for the stack
to become empty at some point of program execution. For
this reason, for maximal np, the number of nontrivial pro-
grams generated for l = 30 is almost ten times smaller than
for l = 10, despite drawing the same number of programs.

The next effect clearly visible in Fig. 2 is that the longer
the programs, the steeper the curves. If a newly generated
program is nontrivial, then it is more likely to increase the
semantic diversity for large l than for small l. This was ex-
pected, as, for the assumed instruction set (and for all ‘rea-
sonable’ instruction sets), making programs longer cannot
decrease the number of outputs they can produce. When
the trivial programs are left aside, semantic diversity is a
non-decreasing function of program length.

However, the distribution of program semantics is highly
non-uniform, i.e., some semantics are more likely to be gen-
erated than others (cf. demonstration for tree-based GP in
[5], ch. 7). For this reason, the slope of the curves decreases
and the consecutive data points tend to get closer to each
other. The richer the pool of already generated semantics,
the harder it is to generate a novel one. The number of
generated semantics approaches asymptotically the actual
number of semantics that could be generated by enumera-
tion of all programs. This is clearly visible for l = 10, and
we expect it to become prominent for larger l, if it was not
for limited computational resources.

As a net effect of the above factors, semantic diversity ob-
tained for the largest np (endpoints of curves) increases with
l only to a certain point. Starting from l around 15 . . . 20,
it starts to drop, so that for l = 25 and 30 it is significantly
smaller than for l = 20. There is an opposition between pro-
grams’ potential to produce novel semantics, which grows
with l, and the probability of generating semantically non-
trivial programs, which decreases with l. An interesting con-
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Figure 3: Internal semantic diversity of randomly
generated nontrivial programs as a function of in-
struction number.

sequence of this is the existence of a break-even point, which
represents the optimal program length (here: ∈ [15, 20]) that
allows attaining maximum semantic diversity for an assumed
sample size n. This can be practically leveraged in GP, e.g.,
in population initialization methods.

This confirms the earlier result presented in [5] (e.g., Fig.
7.2) for program trees: with increasing l, the distribution of
semantics converges to a limit. This distribution, not shown
here for brevity, is very non-uniform in our case: its median
is three orders of magnitude larger than its mean.

Internal semantic diversity. Within the assumed pro-
gram syntax, every subsequence of program’s instructions
can be considered as a subprogram. Thus, by analogy to se-
mantic diversity of entire programs, we can define internal
semantic diversity, meant as the number of states programs
can reach at a certain point of execution k (instruction num-
ber). This concept can be expressed in terms of traces as
|{tk : t ∈ T }|, where T is a sample of traces. Figure 3 shows
this quantity, as a function of instruction number k, for clar-
ity only for program lengths l = 10, 20, and 30. The series
start at abscissa k = 1, as k = 0 is here the state prior to pro-
gram execution, which is always s0. For technical reasons,
we could here call Sample with larger np = 200, 000, 000,
which explains why the curves reach higher values.

Our instructions cannot reduce semantic diversity, i.e.,
produce fewer states than it is applied to. For each state in
M |M|, up to |I| = 8 states can be reached in a single step of
program execution. Consequently, the curves in Fig. 3 have
to be weakly monotonic. If we could consider all programs,
this dependency would be strictly such. However, due to
limited sample size, some divergence from monotonicity can
be observed at the end of the curve for l = 30.

For the reasons explained earlier, the curve for l = 20
reaches the same level as that for l = 30: for the latter, it is
much harder to generate programs that are nontrivial.

The flatness of the initial curve parts can be explained in
the following way. Except for neg, the only instructions ca-
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pable of producing memory states that differ from the input
state are the binary arithmetic operations, which pop two
arguments from the stack and push only one result. With
quite a shallow stack state at the beginning of program ex-
ecution (two copies of the input integer), such instructions
can quickly empty the stack and render the program trivial
(see the footnote in Section 2.1). Therefore, to be nontriv-
ial, a program has to constantly maintain sufficient stack
depth, and the only instruction capable of this is dup. It
can be then expected that many nontrivial programs have
numerous dup instructions at the beginning. This implies
fewer arithmetic operations at these locations, and causes
the semantic diversity to grow relatively slowly.

Task complexity. Every program semantic (element of S)
generated by Sample is a final state of at least one program
trace (element of T ), and identifies a task. But it might
be the case that the same state is being reached, and thus
solved, by some other program(s) from the sample at an
earlier stage of execution.

The length of the shortest program that generates data is
a natural measure of complexity of that data, known as Kol-
mogorov complexity. An approximation of this complexity
measure can be easily calculated from our random sample.
For a given task s ∈ S (which is also a state), we find the
index of the earliest position of this state in all traces, i.e.,
argmink t

k : tk = s, t ∈ T . This number characterizes
the complexity of the task in the above sense. This is of
course only an approximation (upper limit) of the actual
Kolmogorov complexity, as an even shorter program that
reaches s can still exists outside our sample.

Figure 4 presents the distribution of complexity of the
sample of tasks S generated by Sample for l = 20 and
nt = 1, 000, 000. Expectedly, most tasks in S turn out to be
less complex than the assumed program length. Complexity
of some of them is as low as 1, i.e., they can be solved by ex-
ecuting a single instruction. However, majority of tasks turn
out to have complexity of 8 to 10. This makes us aware that
complexity of tasks considered here can vary substantially,
which will have certain implications for further analysis.

3. MODULARITY OF TASKS
In this section we attempt to identify certain properties

of traces that could reveal and characterize modularity. In
search for such properties, we recall the concept of func-
tional module outlined in Introduction. In our formal frame-
work, we identify functional module with a state in task

s0 s′ s

Figure 5: An exemplary trace of task s, for which s′

is an intersection.

trace that makes some parts of task independent or close-
to-independent from others.

We formalize this as follows. An intersection for task s
is any state s′ �= s that belongs to

⋂
p∈P (s) t(p), i.e., is vis-

ited at least once by every program that solves s. Figure
5 presents an exemplary trace of task s, for which s′ is an
intersection. The edges are dashed to emphasize that the
traces can visit other states before and after visiting s′. An
intersection is then a common element for traces of all pro-
grams that solve a task.

If an intersection s′ for task s exists, s becomes decom-
posable, and can be split into two subtasks (modules): (i)
the subtask identified by s′, and (ii) finding a program that
implements a path from s′ to s.2 The intersection serves as
a target for the former task, and as a starting state for latter
task. Both subtasks can be solved independently, potentially
at much lower computational cost (see Section 3.2).

However, it may be expected that intersections in strict
sense do not exist for many tasks, especially when task trace
contains many program traces. Nevertheless, for reasons
that will be given later, any convergence of traces is desir-
able, even if not all of them meet at a single state. Therefore,
we relax the formal definition, and aim at identifying states
that form intersections in a weak sense, i.e., at least some
of traces cross at them. Such states form ‘waistlines’ in task
traces, like states s4 and s5 in Fig. 1. We propose two tools
for characterization of such features in task traces.

3.1 Experiment 2: Diversity profiles
In this experiment, we search for signs of intersections by
analyzing internal semantic diversity within task trace, in
a way that resembles the experiment described in Section
2.1. By analogy to ti(p) that denotes the ith state in trace
of program p, let T i(s) be the set of such ith states for all
programs that solve s, i.e., T i(s) = {ti(p) : p ∈ P (s)}. T i(s)
is then the set of states reached by all programs that solve
s at the ith step of their execution. The cardinality of this
set, |T i(s)|, is the semantic diversity of task trace T (s) at
step i. This is analogous to semantic diversity as pictured
in Fig. 3, however constrained to traces of a single task.

For instance, assuming that the programs p1, p2, p3 con-
sidered in Fig. 1 are the only solutions to s, so that the
figure depicts the entire T (s), the diversity of T (s) at step
i = 1, . . . , 4 amounts to 3, 2, 3, and 1, respectively. The local
minimum of diversity after the second instruction indicates
the presence of intersection at state s4.

This example shows that diversity of task trace can help
discovering intersections for a single task. However, it can-
not be directly applied to statistically characterize a sample
of tasks. A task trace composed of m program traces can
have diversity up to m. If the number of traces per task

2The latter subtask cannot be simply described as ‘solving
task s’, as its initial state is s′, not s0.
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Figure 6: The prototypes of diversity profiles ob-
tained using cluster analysis (abscissa: instruction
number (step), ordinate: relative diversity). Shad-
ing reflects intra-cluster variance.

varies heavily in a sample (which is the case here), so will
the diversity, and discovering any regularities will be hard.

Therefore, to make trace diversity comparable between
tasks, we divide it by the maximum diversity of trace, defin-
ing so relative diversity at step i,

(|T i(s)| − 1)/ max
j=1,...,l

|T j(s)|

. It is a number in interval [0, 1] that indicates how diverse is
the task trace at specific instruction compared to the max-
imum diversity it reaches at any step. It drops to 0 only
when all traces cross at a single state (|T i(s)| = 1).
The material for analysis is here the sample generated

by Sample for l = 30 and np = 200, 000, 000. From that
sample, we remove the tasks that have less than 3 pro-
gram traces, because few traces cannot tell much about trace
structure. Next, for each task, we calculate the relative di-
versity for consecutive steps i = 1, . . . , 30, which results in
a vector of 30 numbers. The overall outcome is a table of
relative diversities that has 30 columns and as many rows as
the number of considered tasks |S| (here: 6375). To identify
the possible types of ‘diversity profiles’ of tasks, we cluster
the rows of this table using the k-means algorithm, and Eu-
clidean distance to measure similarity between rows. Figure
6 presents graphically the centers of clusters identified for
k = 8, with the horizontal axis corresponding to instruction
number. The translucent shading depicts variance. Table 1
gives the number of tasks assigned to each cluster.

The common feature of all profile patterns is that they
tend to get wider for the few initial instructions (program
prologue), and, conversely, narrower when approaching the
end of a program (program epilogue). This was expected,
as all traces of programs that solve the same task start at
a single state (s0), and have to meet at the same target
state. Also, task diversity cannot vary arbitrarily from step
to step, as the number of distinct states that can be reached
from any state is small (cannot exceed 8, the number of
instructions).

This is, however, where the similarities end. Cluster anal-
ysis clearly reveals a few distinct types of profiles. Between
the prologue and epilog, they vary substantially: some of
them maintain roughly the same diversity for the entire time

Table 1: Sizes of clusters shown in Fig. 6.
Cluster # Number of tasks % of tasks

0 931 15%
1 740 12%
2 928 15%
3 975 15%
4 540 8%
5 743 12%
6 939 15%
7 579 9%

of program execution, while other exhibit substantial nar-
rowing at various stages of execution. The presence of the
latter can indicate the existence of intersections. The fig-
ures in Table 1 show that such profiles are not a fluke, but
embrace a significant fraction of tasks. The results for other
program lengths, not shown here for brevity, revealed simi-
lar patterns. This suggests that traces of some tasks indeed
tend to narrow at certain execution stages.

3.2 Experiment 3: Intersections
Although analysis of diversity profiles leads to interesting

outcomes, it is naive in assuming that program traces inter-
sect at the same stage of execution. Here, we abstract from
absolute positions of instructions in the program sequence.

Let t−[s] denote the position of the earliest occurrence of
state s in program trace t. Analogously, let t+[s] be the
position of of the earliest occurrence of s counted from the
end of trace t. For the trace of p1 in Fig. 1, t−[s1] = 1 and
t+[s1] = 3. As a trace can revisit the same state, t−[s] +
t+[s] ≤ l (e.g., for trace of p2 in Fig. 1, t−[s1] = t+[s1] = 1).
If s does not occur in t, we assume t−[s] = t+[s] = 0.

Next, we define centrality of state s′ for task s as:

c(s′, s) =
1

|T (s)|(l/2)2
∑

t∈T (s)

t−[s′]t+[s′] (1)

The term in denominator serves normalization, so that
c(s′, s) ∈ (0, 1]. c(s′, s) attains the maximum value of 1 when
two conditions are fulfilled: all traces in T (s) traverse s, and,
for each t ∈ T (s), t−[s′] = t+[s′] = l

2
, i.e., s ‘halves’ each

trace. A state that is closer to s0 or s, or such that not all
traces pass through it, has lower centrality. For instance, for
the example shown in Fig. 1 c(s4, s) =

1
3∗22 (2·2+2·2+0·0) =

2
3
, while c(s1, s) =

1
3∗22 (1 ·3+0 ·0+3 ·1) = 1

2
. c(s5, s) is even

lower ( 1
3
), as it occurs only in one trace. This clearly shows

the advantage of centrality over the positional approach from
Section 3.1: an intersection (s1) can be valued more than a
non-intersection (s5) even if it does not group all traces in
T (s) at the same position.

Although both s4 and s1 occur in two traces, s4 gets a
higher value of c() as its position in traces is more central.
Centrality prefers intersections that are close-to-halfway in
trace, because such intersections provide decompositions that
lead to greatest computational gains. For instance, if all
traces meet at an intersection after k instructions, the to-
tal cardinality of search spaces of subtasks is |I|k + |I|l−k,
while for task it has |I|l programs. Decomposition leads to
exponential reduction of search space cardinality, and such
reduction is maximal for k = �l/2�. In particular, a ‘de-
generate’ decomposition (e.g., k = 1 or k = l − 1) will be
strongly discouraged by c().
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Figure 7: The distribution of tasks with respect to complexity (horizontal axis) and maximal centrality
(vertical axis), shown as density graph (left) and box plot (right).

In this experiment, we consider the sample of traces an-
alyzed in the previous section, i.e., with filtered out tasks
that have two or less traces. For each task in the sample,
we calculate the centrality for all states in its trace, and
find its maximum. This value becomes a feature of task,
intended to reflect its functional modularity (precisely, the
most prominent and central narrowing in task trace).

In Fig. 7, we present the joint distribution of task com-
plexity (as defined in Section 2.1) and maximal centrality.
Both insets present the same data, the left one using a den-
sity plot, the right one using a box plot. These charts clearly
reveal an almost monotonous tendency: maximal centrality
tends to grow with task complexity. This is almost certainly
not an artifact of our sampling method: program traces tend
to intersect more frequently and centrally for complex tasks,
despite the fact that for them we have fewer programs per
task in the sample. This suggests that complex tasks may
be more modular than the simpler ones, and is the main
result of this study.

4. DISCUSSION
The spectrum of programming tasks revealed in the ex-

periments can be characterized using concepts of modular
interdependency [16]. A task that has an intersection in
the strict sense is separable, and can be decomposed into
two fully independent subtasks (Fig. 5). If more than one
such intersection is present, this leads to more modules (e.g.,
three in Fig. 8a), each of them separable from all others.
Assuming that the number of programs that solve the task
remains constant, the greater number of separable modules,
the easier it is to solve the entire task. This is easy to no-
tice by considering an extreme degenerate case of a task with
l−1 intersections. In such a case, traces of all programs that
solve the task converge to single trace, which contains only
intersections, and there are many instructions that move the
interpreter from one intersection to the next. A mutation
that replaces a single instruction with another that leads to
the same state does not have to be compensated by another

a) s0 s′ s′′ s

b) s0

s′

s′′
s

Figure 8: Other types of task traces with respect to
modularity (cf. Fig. 1).

mutation in order to keep the program solving the task.
There is no epistasis between the components of solutions.

If an intersection in the strict sense does not exist, but
some traces do cross, a task can be considered nearly-decom-
posable [12], or decomposable but not separable [16] (p. 113).
For such tasks, modification in one module may or may not
require modification in another module in order to keep the
program being a solution to the task. For instance, in Fig.
8b), modifying the left module (subprogram) can be neu-
tral for its semantics (e.g., the trace of subprogram can still
end with s′), in which case the right subprogram does not
have to be changed. But if the semantic of left subprogram
changes from s′ to s′′, the right subprogram is likely to have
to change too, in order to keep the semantic of entire pro-
gram unchanged (as it is unlikely that the unchanged right
subprogram could lead from s′′ to s). Such tasks are par-
ticularly interesting, as there is evidence that they are the
frequent in natural systems [16], and can be hypothesized to
constitute great share of real-world problems.

5. CONCLUSION
The general conclusion from this study is that there is sub-
stantial variation of semantic characteristic among program-
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ming tasks. This variation concerns not only the distribution
of program semantic and task complexity, but also how fre-
quently the traces of programs that solve a task cross with
each other and shape so modularity. Most importantly, the
distribution of this characteristic, measured in terms of di-
versity profiles or centrality, is not uniform across the space
of all tasks: there are evident patterns that point to exis-
tence of multiple types of tasks in terms of modularity and
complexity.

Another conclusion is that, even in a random sample of
tasks, many tasks can be modular. Whether separable or
nearly-decomposable, they seem to constitute a substantial
part of the universe of all tasks. Modularity could be then
not only a feature of carefully designed artificial benchmarks
(like NK-landscapes [3], HIFF [16], or [2]), or real-world
problems, but an inherent property of many non-trivial pro-
gramming tasks.

The approach we proposed and followed here is conceptu-
ally simple and minimalistic. It abstracts from any specific
search algorithm and does not require a metric in the seman-
tic space, as it is often practiced in studies on program se-
mantics in GP (e.g., [8]). The only information exploited by
this approach is indiscernibility of memory states. Thus, the
conclusions drawn here can be considered problem-indepen-
dent, or even domain-independent; at least, it is hard to see
why they would not generalize to other loop-free stack-based
languages and instruction sets.

On the other hand, our framework has certain limitations.
To analyze the properties of a task, we require a sample of
programs that solve it. However, when a search algorithm
faces a specific task, it obviously has no solutions to it yet.
If it works in an iterative mode, as it is the case for GP, it
should gradually move toward them, but there is no guar-
antee it will ever find any. This raises a question to be ad-
dressed, i.e., whether analogous properties can be extracted
from arbitrary samples of programs.

This is related to another observation, namely that the
tools proposed here are applicable to any set of programs.
In particular, an analogous analysis could be applied to a
population of programs evolved by genetic programming.
This should help answering questions like: Do the programs
become more functionally modular with evolution time? In
further perspective, this could also help designing methods
(e.g., recombination operators) that exploit modularity for
the sake of scalability and search effectiveness.
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