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ABSTRACT
In this paper, we propose a novel approach for the multi-
objective optimization of classifier ensembles in the ROC
space. We first evolve a pool of simple classifiers with NSGA-
II using values of the ROC curves as the optimization objec-
tives. These simple classifiers are then combined at the deci-
sion level using the Iterative Boolean Combination method
(IBC). This method produces multiple ensembles of classi-
fiers optimized for various operating conditions. We perform
a rigorous series of experiments to demonstrate the prop-
erties and behaviour of this approach. This allows us to
propose interesting venues for future research on optimizing
ensembles of classifiers using multi-objective evolutionary al-
gorithms.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Search]: Heuristic methods; I.5.2
[Design Methodology]: Classifier design and evaluation

Keywords
Machine learning, ROC curve, Multi-objective evolutionary
algorithms, Ensembles of classifiers, Genetic programming

1. INTRODUCTION
Designing classifiers for prediction of events or pattern

recognition is a complex task, traditionally conducted by
optimizing a single criterion: prediction accuracy. This cri-
terion falls short of expectations when working with skewed
class distributions, unequal classification error costs, and in
presence of dynamic operating conditions. This problem
can be solved by using a more complex criterion for training
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classifiers: the Receiver Operating Characteristics (ROC)
curve.

A ROC curve is a tool for visualizing and selecting classi-
fiers based on error rates per class, instead of just the errors
of both classes. This graph provides a lot more information
than the single accuracy measurement and allows the devel-
opment of methods that better adapt to varying conditions
[10]. ROC curves can be described with a single value by
computing the Area Under the ROC Curve (AUC). This
has been used by many machine learning researchers to re-
place accuracy as the objective during optimization, with a
certain degree of success [5, 23, 25].

One problem with using the AUC as the principal ob-
jective for optimization is that two classifiers can produce
the same AUC, but their ROC curves can be very differ-
ent. These two ‘identical’ classifiers can be optimal for very
different operating conditions (class skew and error costs),
meaning that the AUC criterion is not rich enough. In this
particular case, a way to solve the problem is to keep both
classifiers, thus creating a pool of classifiers, and to select the
better classifier at a later time based on operating conditions
[13, 20].

Such a problem is very close to a Multi-Objective Prob-
lem (MOP) because it is the maximization of many different
objectives at the same time. One of the best tools available
today to solve MOPs are elitist Multi-Objective Evolution-
ary Algorithms (MOEA). They have been shown to perform
extremely well on classical MOPs [7, 26].

In this paper, we introduce a novel approach that tar-
gets the multi-objective optimization of simple classifiers to
maximize ROC performance, where a simple classifier refers
to a computionally simple classifier (e.g., a linear discrimi-
nant). Our method begins with an adaptation of the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) [7] to
evolve simple classifiers. The resulting classifiers are then
combined at the decision level using Boolean functions [16,
24]. The evolution of the pool of classifiers aims to provide
a better input for the combination layer.

Our experiments show that the joining of such simple clas-
sifiers with Boolean combination provides interesting per-
formances compared with more complex approaches. We
extensively study the behavior of those evolved simple clas-
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sifiers combined at the decision level and draw some insights
and suggestions from our observations.

A review on the usage of ROC curves as an objective for
classifier training is presented in the next section. Our pro-
posed evolution methodology is described in Section 3, and
the Boolean combination of the resulting classifiers based on
[16] is covered in Section 4. Finally, Section 5 and 6 details
the experiment and analysis of the proposed approach.

2. OPTIMIZING THE ROC CURVE
As stated in the introduction, the ROC curve is a better

objective for training classifiers than accuracy. Let us intro-
duce some concepts and notation concerning ROC curves
before going further. First, let us take input samples X =
{x1, x2, ..., xn} with labels Y = {y1, y2, ..., yn}, where yi ∈
{−1, 1}, and a classifier emitting predictions as to the labels
of those input samples. The True Positive Rate (TPR or TP
rate) is the proportion of positive samples (y = 1) correctly
classified, while the False Positive Rate (FPR or FP rate)
is the proportion of negative samples (y = −1) incorrectly
classified.

A discrete or binary classifier directly outputs labels for
each input sample provided and corresponds to a fixed point
in the ROC space. A scoring or ranking classifier produces
scores or probabilities. The labels are obtained by applying
a threshold on those scores, turning the classifier into a dis-
crete classifier (typically the threshold is 0 for scores and 0.5
for probabilities). By varying the threshold, we can obtain
all possible FP/TP rates for a single classifier. The ROC
curve is the plotting of the TP rates against the FP rates
- the space defined by FP and TP rates is called the ROC
space.

An important concept for ROC curve optimization and
exploitation is the ROC Convex Hull (ROCCH) (also called
maximum realizable ROC in other works), introduced by
Provost and Fawcett [21]. A classifier is potentially optimal
if and only if it lies on the convex hull of the set of points
in ROC space [10]. From this, the pool of classifiers can
be pruned by only keeping classifiers that lie on the convex
hull.

Ensembles of classifiers have been used in the past based
on the idea that many classifiers may be preferable to a sin-
gle classifier when solving a given problem [19]. One could
argue that it is easier to optimize many classifiers locally
than to optimize one classifier globally, and that the same
also holds for ROC curves. Some great work has been con-
ducted recently on the combination of classifiers with the
objective of improving ROC performance. Marrocco et al.
studied the linear combination of several dichotomizers or
linear discriminants trained on pairs of features [20]. They
show that their combination method geared towards ROC
performance is superior than other combination methods.

Kumar et al. use particle swarm optimization to evolve
score-level combination rules [18]. However, they keep a
fixed threshold producing only a single operating point, thus
removing the ability to adapt to changing conditions. Sebag
et al. evolve hypotheses using evolution strategies and the
AUC as an optimization criterion [23]. They also fix the
thresholds of their classifiers.

2.1 ROC optimization using MOEA
An interesting means of optimizing the ROC performance

is to formulate the problem as a multi-objective one, with
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Figure 1: Two very different ROC curves that are
equal according to the AUC criterion.

the objectives being the minimization of FP rates and the
maximization of TP rates. This formulation provides richer
information than a single numeric value such as the AUC.
Consider the example of two different classifiers that have
the same AUC but excel in different areas (as shown in Fig-
ure 1). If the operating conditions are not known before-
hand, both of these classifiers are equally valuable. The goal
of using MOEA in this setting is to produce classifiers that
are locally optimal, remembering the conditions in which
each classifier is optimal to select the appropriate one at
operation time. Using multi-objective terminology, the two
classifiers of Figure 1 are both non-dominated and Pareto
optimal.

Bhowan et al. use MOEAs to evolve expression trees and
then combine them using ensemble learning techniques such
as majority vote or negative correlation learning [1, 2]. In
order to be able to use their classifiers as a classical en-
semble, they force each classifier to adopt a single thresh-
old, thus they evolve single points in ROC space instead of
entire curves. This is because traditional ensemble fusion
techniques are not adapted to be used in ROC space. Khre-
ich et al., however, have studied and developed such fusion
techniques and we use them in this work [16].

Everson and Fieldsend consider a multi-class generaliza-
tion of ROC analysis from a multi-objective optimization
perspective [9]. They use SPEA to find Pareto optimal so-
lutions of their multi-class ROC surfaces. Their formulation
of the multi-class ROC curve is of interest, but here we con-
sider only binary classification problems.

Chatelain et al. also explore the multi-objective evolution
of classifiers. They optimize the hyperparameters of SVM
classifiers using their resulting FP and TP rates as perfor-
mance criteria [4]. They look for a pool of parametrized
classifiers corresponding to the optimal set of FP/TP trade-
offs. This optimal set of trade-offs is viewed as the Pareto
front of a multi-objective optimization problem. Chatelain
et al. use NSGA-II because it converges close to the opti-
mal Pareto front while preserving a diverse pool of solutions
and also because it executes faster than other algorithms.
NSGA-II is a population-based, elitist approach that pre-
serves diversity through the integration of a distance metric
in the selection process. Each individual in the population
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Figure 2: Four different ROC curves, their domina-
tion status and their pareto Front (also called ROC
front).

represents a classifier by encoding the classifier’s hyperpa-
rameters. Their fitness is represented by a ROC curve, thus
we have multiple pairs of FP/TP rates for each classifier.
The difference with traditional MOPs is that each individual
provides multiple fitness values in the form of a ROC curve.
Adapting the dominance concept from multi-objective opti-
mization theory, an individual is said to be non-dominated
if at least one FP/TP pair present in its ROC curve sits
on the Pareto front of the ROC space (a front that is also
called ROC front). Figure 2 shows examples of dominated
and non-dominated ROC curves.

The result of such an optimization process is a pool of
Pareto optimal classifiers, each residing on the ROC front
(as shown in Figure 2). These classifiers are all optimal for
their respective operating conditions, enabling us to select
an optimal classifier for every condition.

3. EVOLVING A POOL OF SIMPLE CLAS-
SIFIERS

Globally, our model consists of the evolution of a pool
of simple classifiers using the ROC curve as an objective
and their combination using Boolean fusion functions. The
evolved pool of classifiers should provide a better input to
the Boolean fusion stage than classically trained classifiers.
We select simple classifiers as the basis for this system to
keep inference and training times low. This constitutes an-
other novel aspect of this work - the evolution of simple
classifiers in a multiobjective setting (as opposed to com-
plex ones).

The proposed method begins with the training of a pool
of simple classifiers using NSGA-II similarly to what is ex-
plained in Section 2.1. In this work, the simple classifiers
are either linear discriminants or expression trees, although
they could be any type of classifiers. Then, taking the pool
of evolved classifiers, their class predictions are combined
using different Boolean functions (AND, OR, XOR, etc.) to
further improve the ROC performance.

In our approach, classifiers are formulated as models in
the MOEA, rather than being represented by their hyper-
parameters as in the work by Chatelain et al. [4]. The pa-
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Figure 3: Estimating a ROC curve from a dataset as
a histogram. For each bin, we compute the average
of the TP rates contained within.

rameters or models are now directly affected by mutation
and crossover operators. This removes the need to run a
separate training for each individual before evaluating their
fitness, since the individuals become directly usable mod-
els. For example, when evolving SVM hyperparameters, one
needs to fit a model on the data before computing the ROC
curve (training an SVM is approximately O(n2), where n
is the training set size, thus computing costs can escalate
quickly).

Another slightly different point in our approach is the for-
mulation of the problem and its fitness. Each ROC curve is
presented as a histogram of TP rates against fixed FP rates
(as demonstrated in Figure 3). The number of bins used is
the maximum allowed by the dataset, thus there is no esti-
mation error. For two different ROC curves estimated with
the same dataset, the bins are exactly aligned and this allows
the direct comparison of two regions. Those values become
the objectives of our MOP (there are as many objectives as
there are bins for the ROC curves). The MOP becomes the
maximization of the TP rate in every bin, which implicitly
minimizes the overall FP rates.

The comparison between two curves changes with this new
formulation. To better illustrate this, let us recall the dom-
ination concept (Algorithm 1). This operator is applied to
each pair of individual in the population, and non-dominated
individuals constitute the first front. A second front is then
drawn in the same manner on the set of all individuals ex-
cluding the ones on the first front, a third front with the
remaining, and so on. With the previous formulation of
Chatelain et al. [4], a ROC curve was non-dominated if and
only if it touched the ROC front. In our formulation, a ROC
curve is non-dominated only if it is better than all the other
ROC curves in at least one bin (for each comparison it can
be a different bin). For a ROC curve to be dominated, it
needs to be below or equal to another ROC curve for all bins
or operating points. We compare complete curves instead
of just operating points (single FP/TP pairs).

NSGA-II sorts individuals into fronts based on their Pare-
to dominance, then within a single front sorts the individuals
again based on a crowding distance, an estimate of solution
diversity. The crowding distance for a given individual is the
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Algorithm 1 Domination between two ROC curves

Input: Two curves r1 and r2, the bins of each curve must
be aligned

Output: True if r1 dominates r2, False otherwise.
for bini ∈ 1, ..., num bins do

if r1.bini > r2.bini then
return True

end if
end for
return False

sum over all objectives of the Manhattan distance between
the individual and its two closest neighbours. This crowding
distance attributes ∞ to the lowest and best individual for
each objective. In our case, these correspond to the low-
est and highest individual of each bin - this means that for
every bin, the worst and the best individual are strongly
advantaged. This helps generate more diversity in the pool.

Such a pool of classifiers can be used by itself to produce
predictions and a ROC curve. Given the pool of classifiers
resulting from the optimization, only the ones on the ROC
front should be stored. The thresholds required to produce
the FP/TP values that reside on the ROC front are then
stored. Finally, these stored classifiers and their thresh-
olds are applied on the testing dataset, creating new testing
FP/TP pairs that will become the testing ROC curve. In
Section 5, we will use this methodology to assess what type
of gain is provided by the combination covered in the next
section.

4. BOOLEAN COMBINATION
We now study the combination of the resulting classifiers

in ROC space to further push the ROC front. To each of
the evolved classifiers corresponds a ROC curve, i.e. a set
of FP/TP rates that represent the performance obtained by
a series of different thresholds. Khreich et al. have shown
that the Boolean combination of two classifiers can produce
new operating points in the ROC space, possibly yielding
better performance than the ROC curve of the pool [16].
The method has also been used and explained in greater
detail in [17] and [14].

The Boolean combination of two crisp classifiers is rather
straightforward - for every input sample provided, apply a
given Boolean function (e.g., AND or OR) to the output of
those two classifiers and this becomes the new prediction of
the pair. New FP and TP rates are computed from these
predicitions, and only the ones improving performance are
saved.

The combination of classifiers with real-valued outputs re-
quires their ROC curves and corresponding thresholds. For
every threshold of each ROC curve, the predictions are com-
puted and combined with a Boolean function, resulting in
a new point of operation in ROC space. Once the compu-
tation of these FP/TP rates is finished, we find the points
lying on the convex hull. These points correspond to the
optimal combinations - they are saved while the others are
discarded. To ensure that the method provides equal or
better performance, the ROC curves of the initial classifiers
(before combination) are always added to the pool of ROC
points before drawing the convex hull. The Boolean combi-
nation of two classifiers with real-valued outputs is described

Algorithm 2 BC ALL : Boolean combination of two ROC
curves (introduced in [16])

Input: Thresholds of ROC curves, Ta and Tb, and labels
Output: ROCCH and fused responses (Rab) of combined

curves, where each point is the result of two fused thresh-
olds along with the corresponding Boolean function (bf)

1. m← length(Ta)
2. F ← empty array of size [2,m2]
3. boolean functions← [a ∧ b,¬a ∧ b, a ∧ ¬b,¬(a ∧ b), a ∨

b,¬a ∨ b, a ∨ ¬b,¬(a ∨ b), a⊕ b, a ≡ b ]
4. for bf ∈ boolean functions do
5. for i ∈ 1, ...,m do
6. Ra ← (Ta ≥ Tai)
7. for j ∈ 1, ...,m do
8. Rb ← (Tb ≥ Tbi)
9. Rc ← bf(Ra, Rb)

10. Compute new ROC curve using Rc and labels
11. Push FP/TP rates onto F
12. end for
13. Compute ROCCHnew of F
14. Store thresholds and corresponding Boolean func-

tions that exceeded the ROCCHold in Sglobal

15. Store the responses (predictions) of these emerging
points in R

16. ROCCHnew ← ROCCHold

17. end for
18. end for
19. return ROCCHnew, R, Sglobal

in Algorithm 2. The result of a typical run on two simple
classifiers for a synthetic dataset is presented in Figure 4.

The complete algorithm, Iterative Boolean Combination
(IBC), begins with the combination of a pair of classifiers
using BC ALL. The outcome of this combination is a series
of responses (predictions) along with their thresholds and
Boolean functions. This series of responses is then combined
with a third classifier, and again with a fourth, and so on
until all classifiers have been merged.

The resulting responses are then recombined with each in-
dividual ROC curve, drawing a convex hull after each step.
This step is repeated iteratively until a maximum iteration
number is reached or the gain in AUC drops below a certain
threshold. This step can further improve the ROC perfor-
mance and usually converges after two or three iterations.
An interesting property of IBC is that the ROC curve on
the training dataset has no concavities. Another property is
that the AUC of the ensemble increases monotonically with
each additional ROC curve provided, i.e., the performance
can only improve as more ROC curves are added. Each ver-
tex on the convex hull resulting from the application of IBC
on N ROC curves represents an ensemble of models and a
Boolean fusion function adapted to their context. The car-
dinality of each of those ensembles varies between 1 and N .

5. EXPERIMENTS
In order to study the impact of the proposed method on

ROC performance, we have conducted a series of experi-
ments on standard datasets. We evolve two types of simple
classifiers: linear discriminants and expression trees. Even
simple classifiers such as these should achieve good ROC
fronts with low computing costs when trained with MOEAs.
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Figure 4: Boolean combination of two simple classi-
fiers.

We use the DEAP library [6] which provides implementa-
tions of NSGA-II and Genetic Programming (GP).

In all cases, both the base classifiers and the Boolean
combination are determined using the same training dataset
since empirical testing did not reveal any gain from splitting
the training dataset. The number of bins for the ROC curves
in the evolution section is fixed to the number of negative
samples in each case, thus no approximations of the ROC
curves are conducted given the dataset used for estimating
it. Finally, the number of thresholds for IBC evaluation of
ROC curves is empirically set to 100.

We use six datasets from the UCI machine learning repos-
itory [12], namely Australian Credit (Aust.), WDBC, Breast
Cancer (Bc.), Ionosphere (Ion.), Heart, and Pima. All tests
are executed using 5-fold cross-validation.

5.1 Linear discriminants
The first type of base classifiers used for constructing the

pools are linear discriminants. They consist of a vector of
weights in [−1, 1], one for each dimension of the input sam-
ples. The same crossover and mutation operators were used
as in NSGA-II: simulated binary crossover and Gaussian mu-
tation [7]. The probability of crossover is fixed to 0.9, and
the probability of mutation is fixed to 1/nb weights.

The population size in this case is 500 and the maximum
number of generations is 500 - we will further discuss the
impact of these parameters in Section 6.

5.2 Expression trees
The expression trees are evolved by GP and require dif-

ferent crossover and mutation operators, but the selection
operators and fitness remain the same. The operators used
for the GP classifiers are +, −, ×, a protected division op-
erator, which returns zero in case of division by zero, and
ephemeral random constants picked from a uniform distri-
bution spanning [−1, 1]. Variables used for building the ex-
pression trees are F1, F2, . . . , Fn, where Fi corresponds to
the i-th feature of the dataset.

The expression trees are generated completely full and
have a maximum depth of 5. A standard GP crossover oper-
ator is used which swaps subtrees between individuals. The
mutation operator is standard subtree mutation, where one

randomly selects a node in the tree and replaces it and its
subtree by a randomly generated subtree. The probablilities
for mutation and crossover remain the same. For expression
trees, we fix the population size to 500 and a smaller maxi-
mum number of generations, 100, is used.

5.3 Results
The testing performance is compared with the method de-

veloped by Chatelain et al. [4] and results for the best single
classifier in the literature are also borrowed from their pa-
per. We must rely on AUC as a criterion for comparison
because of space restrictions and also to simplify analysis.
We can safely say that given a choice, without prior knowl-
edge of operating conditions, the classifier (or ensemble of
classifiers) with the highest AUC would be the better choice.
The AUC performance is thus presented in Table 1 for the
single best classifier found in literature, a pool of SVMs [4]
evolved by NSGA-II (SVM-P), linear discriminants evolved
by our adaptation of NSGA-II combined with IBC (L-IBC),
and the same with expression trees (GP-IBC). As a mea-
sure of the performance stability, the standard deviation is
computed on each fold.

The comparison with Chatelain’s methods requires ad-
ditional comments, as they state in their paper that they
used “the area under the ROC front” (on the test dataset).
This way of measuring performance is overly optimistic. Our
method’s performance was not evaluated in this manner, so
this might introduce some imbalances in performance.

We can see that by evolving very simple classifiers and
combining them with IBC, we obtain comparable perfor-
mances to the literature. For the Ionosphere and Heart
datasets, the performance is worse than the basic approach
in the literature. This might be due to the fact that these are
extremely small datasets (351 and 270 data points), thus a
10-fold testing approach might have been more appropriate.

Our approach manages to perform well considering the low
computational cost for its operation. SVMs have a training
complexity of O(n2), where n is the number of training sam-
ples, while our approach requires no training, making it O(1)
in training. In both cases, the time complexity for NSGA-
II is comparable because it requires the comparison of all
FP/TP pairs in each ROC curve. The time complexity for
IBC is O(t2 + t · m), where t is the number of thresholds
for each classifier and m is the number of classifiers in the
pool. The complexity of our approach does not grow sig-
nificatively with the dataset size, while the complexity of
the SVM pool grows quadratically with it. However, the
complexity of inference is comparable for both models. The
complexity of operation for our model is the same as IBC
(O(m)), and the complexity for SVMs is O(s), where s is
the number of support vectors.

If we consider that the pool of SVMs classifiers reaches
the optimal Pareto front on the test set, we can say that our
method nearly obtains this performance. Essentially, these
results show that there is a benefit to combining evolved
simple classifiers in ROC space. We conducted further ex-
periments to develop a better understanding of our method,
they are presented in the next section.

6. INTERNAL COMPARISONS
As was stated in Section 3, we can evaluate the testing

performance of the base classifiers by placing each classifier’s
ROC curve in the same space, drawing the convex hull of

883



Table 1: AUC performance for two previous methods and our two ensembles.

Dataset Single classifier SVM-P [4] L-IBC GP-IBC

Australian 90.25 ± 0.6 [25] 96.22 ± 1.7 94.36 ± 2.38 94.79 ± 1.02
WDBC 94.70 ± 4.6 [11] 99.59 ± 0.4 99.23 ± 0.46 99.72 ± 0.33
Breast cancer 99.13 [3] 99.78 ± 0.2 98.66 ± 1.32 99.36 ± 0.54
Ionosphere 98.70 ± 3.3 [22] 99.00 ± 1.4 93.92 ± 5.06 94.46 ± 3.47
Heart 92.60 ± 0.7 [25] 94.74 ± 1.9 91.85 ± 4.90 91.79 ± 4.49
Pima 84.80 ± 6.5 [5] 87.42 ± 1.2 85.53 ± 2.23 85.22 ± 1.23

this set and keeping the operating points that were located
on the convex hull. These operating points are represented
by a classifier and a fixed threshold. By applying the same
thresholds to the same classifiers, we can evaluate testing
performance.

Table 2 presents the performance for each type of base
classifier, alone, and combined, on the same datasets as the
experiments in the previous section. We can see that the
base classifiers wield a poor performance, especially the ex-
pression trees. This means that combination by IBC is a
crucial element of our approach. Even though the linear
discriminants appear better, the gain provided by combining
the expression trees is higher, making them better overall.

Table 2: Comparison of AUC performance for pools
of base classifiers with their combination using IBC.
L stands for linear base classifiers and GP for ex-
pression trees.

Data L L-IBC GP GP-IBC

Austr. 88.83±2.70 94.36±2.38 79.72±8.28 94.49±1.02
WDBC 94.53±3.67 99.23±0.46 92.13±3.80 99.72±0.34
Bc 93.59±6.83 98.66±1.32 94.60±2.73 99.36±0.54
Ion. 85.56±5.27 93.92±5.06 83.69±8.11 94.46±3.47
Heart 86.17±5.00 91.85±4.90 80.29±6.53 91.79±4.49
Pima 79.51±2.52 85.53±2.33 73.62±3.95 85.22±1.23

Experiments were run to study the impact of the num-
ber of generations and the population size on performance
using the Australian credit dataset. Figure 5(a) shows the
evolution of performance for a fixed population size (100)
and varying numbers of generations in [100, 1000] and Fig-
ure 5(b) shows the evolution of performance for a fixed num-
ber of generations (100) and varying sizes of populations in
[100, 1000]. We can see that while the pool of linear dis-
criminants has a higher performance than expression trees
for almost all settings, GP-IBC is often superior to L-IBC.
Interestingly, performance between L and L-IBC is strongly
correlated which is not the case for GP and GP-IBC. An-
other conclusion to draw from these graphs is that the per-
formance of GP-IBC does not improve with a high number
of generations.

6.1 Comparison with diverse classifiers
To assess whether or not our evolved classifiers form a

better input to IBC than regular classifiers, we computed
the performance of IBC executed on a pool of classifiers di-
rectly fit on the input data instead of using an MOEA. In
a manner inspired by random subspaces [15], the linear dis-
criminants are trained on a subspace of the input dimensions
different for each classifier, providing diversity for IBC. Each
discriminant is assigned a random number of input dimen-
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Figure 5: Evolution of performance for varying num-
bers of generations and population sizes using the
Australian credit dataset.

sions to use for learning uniformly sampled between 2 and
the total number of dimensions of input data. Each of these
dimensions is also sampled uniformly. The classifiers are
then trained on their respective subspaces by least squares
regression, and used as base classifiers for IBC. The number
of such linear discriminants is set to 500. Table 3 presents
the performance obtained using such linear discriminants
trained on random subspaces (LRS-IBC) compared with the
performance of expression trees (GP-IBC).

Table 3: Comparison of AUC performance for GP-
IBC (expression trees) and LRS-IBC (linear classi-
fiers trained on random subspaces - not evolved)

Dataset GP-IBC LRS-IBC

Australian 94.79 ± 1.02 94.72 ± 2.54
WDBC 99.72 ± 0.34 99.38 ± 0.74
Breast cancer 99.36 ± 0.54 99.39 ± 0.65
Ionosphere 94.46 ± 3.47 94.46 ± 3.47
Heart 91.79 ± 4.49 92.43 ± 4.41
Pima 85.22 ± 1.23 85.02 ± 1.57

We can see that the performance of LRS-IBC is very close
to that of GP-IBC, a perhaps counterintuitive result. Thus
the most performant classifiers are not necessarily the best
input for IBC. According to these results, we should put
more emphasis on keeping a strong diversity in the pool of
base classifiers. This explains why GP-IBC performs slightly
better than L-IBC - because the pool is more diverse.

6.2 Overfitting
The final experiments are aimed at analyzing the occu-

rence of overfitting. Figures 6 and 7 present examples of
outcomes for the evolution chained with IBC on two UCI
datasets : Australian credit and German credit [12]. The
subfigures on the left represent the coverage in ROC space
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Figure 6: The final result for the evolution of a pool
of expression trees and their combination with IBC
(Australian credit dataset).
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Figure 7: The final result for the evolution of a pool
of expression trees and their combination with IBC
(German credit dataset).

by the final classifier pool in grey along with the classifiers
selected by IBC in black. The two upper subfigures represent
training performance while the two lower subfigures repre-
sent testing performance. In the right part, the pool convex
hull (conv. hull) represents the best performance achiev-
able by the pool of classifiers. Each point on the IBC ROC
curves represents an ensemble of simple classifiers, with dif-
ferent thresholds and different Boolean functions. Those are
the best operating points found by IBC during its training
phase.

In the right-side subfigures, we can see that the classifiers
selected by IBC provide a strong improvement over the pool
of classifiers in training, but this is lost in the testing phase,
indicating that there is overfitting to some degree. This
overfitting is also the source of the concavities observed on
the IBC testing ROC curves. A possible explanation to this
phenomenon is that the base classifiers evolved by NSGA-II
are overfit on the training data, thus are unable to general-

ize properly. If the base classifiers cannot generalize, then
their operating point in ROC space will change significantly
between training and testing. From this, it is logical that
their combination would also become flawed.

Knowing that overfitting causes concavities in the test-
ing ROC curves, we could say that a proper training ter-
minated before overfitting occurs would produce a similar
ROC curve without concavities. Thus, a way to estimate
the performance obtainable by removing overfitting would
be to use the convex hull of the ROC curves obtained on
the testing dataset. Results for convex hulls are presented
in Table 4 for the GP-IBC method. From this, we observe
that there is room for much improvement for our method
by reducing overfitting. To reduce overfitting, an external
validation set for evolution could be used, similarly to work
done by Dos Santos et al. [8]. By reducing this overfit, it is
believed that performance would become comparable with
that of the SVM pool (see Table 1), with the added benefit
of using relatively simple classifiers.

Table 4: GP-IBC performance and its convex hull

Dataset GP-IBC Conv. Hull

Australian 94.79 ± 1.02 96.67 ± 0.60
wdbc 99.72 ± 0.34 99.84 ± 0.25
Breast cancer 99.36 ± 0.54 99.90 ± 0.14
Ionosphere 94.46 ± 3.47 98.81 ± 0.90
Heart 91.79 ± 4.49 97.21 ± 0.90
Pima 85.22 ± 1.23 89.49 ± 2.04

7. CONCLUSION
In this paper, we studied the evolution of simple classifiers

in ROC space with NSGA-II and their Boolean combination
using IBC. To determine the fitness for the evolution of the
simple classifiers, we used the binning of their ROC curves.
This allows for a wider range of individuals to be considered
as non-dominated. We then combined these individuals at
the decision level, i.e. combining the outcome of each thresh-
old for each individual, using Boolean functions, a technique
called iterative Boolean combination [16].

We found that this method can perform well compared to
previous approaches in the literature. We also found that
diversity might be as important or more important than the
ROC performance as an objective for evolution especially
when the final goal is to combine the evolved classifiers at
the decision level. It would be interesting to study the be-
havior of IBC when trying to feed it only extremely diverse
classifiers. However, to our knowledge, there is no diversity
measurement in ROC space - this would be an interesting
direction for future research. It would also be beneficial
for the development of an evolutionary algorithm geared to-
wards optimizing diversity in ensembles.

An important problem encountered was the overfitting of
the ensemble on the training data, resulting in concavities
in the testing ROC curves. We estimated the performance
achievable by removing overfitting as the convex hull of the
overfit ROC curve. Further work should consider ways to
reduce overfitting such as modifying NSGA-II to use an ex-
ternal validation dataset, as in the work of Dos Santos et
al. [8].

885



8. ACKNOWLEDGMENTS
This research was supported in part by NSERC-Canada,
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