
Parallel GPU Implementation of Iterated Local

Search for the Travelling Salesman Problem

Audrey Delévacq, Pierre Delisle, and Michaël Krajecki

CReSTIC, Université de Reims Champagne-Ardenne, Reims, France
{audrey.delevacq,pierre.delisle,michael.krajecki}@univ-reims.fr

Abstract. The purpose of this paper is to propose effective paralleliza-
tion strategies for the Iterated Local Search (ILS) metaheuristic on Graph-
ics Processing Units (GPU). We consider the decomposition of the 3-opt
Local Search procedure on the GPU processing hardware and memory
structure. Two resulting algorithms are evaluated and compared on both
speedup and solution quality on a state-of-the-art Fermi GPU architec-
ture. We report speedups of up to 6.02 with solution quality similar
to the original sequential implementation on instances of the Travelling
Salesman Problem ranging from 100 to 3038 cities.

Keywords: TSP, ILS, Parallel Metaheuristics, 3-opt, GPU, CUDA

1 Introduction

Iterated Local Search (ILS) is a metaheuristic that successively applies a Local
Search (LS) procedure to an initial solution and incorporates mechanisms to
climb out of local optima. It finds good solutions to many optimization prob-
lems in a reasonable time which may remain too high in practice. Even though
this time can be reduced by parallel computing, most approaches are dedicated
to CPU-based architectures. As research on computer architectures is rapidly
evolving, new types of hardware have recently become available. Among them
are Graphics Processing Units (GPU) which provide great and affordable com-
puting power but also require new algorithmic paradigms to be used efficiently.

The purpose of this paper is to propose parallelization strategies for ILS to
efficiently solve the Travelling Salesman Problem (TSP) in a GPU computing
environment. We first present k-opt LS algorithms and the ILS metaheuristic.
Then, after a literature review on parallel LS and ILS, the proposed GPU par-
allelization strategies are detailed and experimented.

2 Iterated Local Search for the TSP

The Travelling Salesman Problem (TSP) may be defined as a complete directed
graph G = (V,A, d) where V = {1, 2 , ..., n} is a set of vertices, A = {(i, j) |
(i, j) ∈ V ×V } is a set of arcs and d : A → N is a function assigning a weight dij
to every arc. The objective is to find a minimum weight Hamilton cycle in G.



2 Audrey Delévacq, Pierre Delisle, and Michaël Krajecki

Local Search (LS) generally aims to iteratively improve an initial solution
by local transformations, replacing a current solution by a better neighbor until
no more improving moves are possible. Most well-known LS algorithms for the
TSP are based on k-opt exchanges which delete k arcs of a current solution and
reconnect partial tours with k other arcs. Figure 1 describes the specific 3-opt
method [5]. As a LS procedure may become trapped in a local optimum, it is
often embedded in a guiding construction such as Iterated Local Search (ILS)
[6]. Figure 2 shows the main steps of this metaheuristic.

Compute length L of solution S

while S is improved do

for all a, b, c ∈ [0;n] do
Delete arcs (a,a+1), (b,b+1) and (c,c+1)
Produce S′ by reconnecting partial tours
with other arcs
Compute length L′ of solution S′

if L′ < L then

S = S′ and L = L′

Return best solution S

Fig. 1. 3-opt LS pseudo-code.

Generate solution S

Apply LS procedure on S

Compute length L of solution S

while end criterion is not reached do

Transform S into S′ by a perturbation move
Apply LS procedure on S′

Compute length L′ of solution S′

if L′ < L then //acceptance criterion
S = S′ and L = L′

Return best solution S

Fig. 2. ILS pseudo-code.

The works of Stützle and Hoos [10] and Lourenço et al. [6] show the efficiency
of ILS in solving TSP problems varying from 100 to 5915 cities. However, faced
to large and hard optimization problems, it may need a considerable amount
of computing time and memory space to be effective in the exploration of the
search space. A way to accelerate this exploration is to use parallel computing.

3 Literature review on parallel LS and ILS

Verhoeven and Aarts [11] proposed a classification that distinguishes single-

walk and multiple-walk parallelization approaches for LS algorithms. In the first
category, one search process goes through the search space and its steps are
decomposed for parallel execution. In that case, neighbors of a solution may
be evaluated in parallel (single-step) or several exchanges may be performed
on different parts of that solution (multiple-step). In the second category, many
search processes are distributed over processing elements and designed either as
multiple independent walks or multiple interacting walks.

Johnson and McGeoch [4] defined three parallelization strategies for k-opt
algorithms. The first one uses geometric partitioning to divide the set of cities
into subgroups that are sent to different processors to be improved by a con-
structive algorithm and a LS procedure. As this partitioning has the drawback
of isolating subgroups without reconnecting subtours intelligently, the second
strategy favors tour-based partitioning to divide tours into partial solutions that
includes a part of the edges of the current solution. The third approach is a
simple parallelization of neighborhood construction and exploration.

Works on parallelization of ILS for the TSP mainly follow the population-
based, multiple-walk approach where many solutions are built concurrently.
Hong et al. [3] designed a parallel ILS which executes a total of m iterations



Parallel GPU Implementation of ILS for the TSP 3

using a pool of p solutions. Martin and Otto [9] proposed an implementation in
which several solutions are computed simultaneously on different processors and
the best solution replaces all solutions at irregular intervals.

Luong et al. [8] proposed a methodology for implementing large neighborhood
LS algorithms on GPU. The CPU is in charge of all LS processes while the
GPU generates and evaluates neighbor solutions which are associated to CUDA
threads. This methodology is experimented with Tabu Search on the Permuted
Perceptron Problem and maximal speedup of 25.8 is reported. In Luong et al.

[7], the GPU Tabu Search is embedded with ILS to solve the Quadratic 3-
dimensional Assignement Problem with maximal speedup of 6.1.

Most works related to parallel LS and ILS are based on traditional CPU
architectures. As LS algorithms are key underlying components of most high-
performing metaheuristics, a natural fit would be to run a guiding metaheuristic
on CPU while the GPU, acting as a co-processor, takes charge of running the
LS procedure. However, there is still much conceptual and technical work to
achieve in order to design such hybrid parallel combinatorial optimization meth-
ods. This paper aims to partially fill this gap by proposing and evaluating GPU
implementations of an ILS algorithm for the TSP based on 3-opt parallel LS.

4 Parallel GPU strategies for ILS

We present two GPU strategies for ILS which mainly differ by the way they dis-
tribute solutions to processing elements and by their use of GPU shared memory.
Beforehand, we provide a brief description of the GPU computing environment.

The NVIDIA GPU [1] architecture includes many Streaming Multiprocessors

(SM), each one of them being composed of Streaming Processors (SP). Each SM
allows the execution of many threads in a data-parallel fashion. On this special
hardware, the global memory is a specific region of the device memory that can
be accessed in read and write modes by all SPs of the GPU. It is relatively large
in size but slow in access time. Constant and texture memory caches provide
faster access to device memory but are read-only. All SPs can read and write in
their shared memory, which is fast in access time but small in size and local to
a SM. In the CUDA programming model [1], the GPU works as a co-processor
of a conventional CPU. It allows the parallel execution of many CUDA threads
that are grouped into blocks to be executed by the SMs. However, the number of
blocks that a SM can process at the same time (active blocks) is restricted by the
available shared memory and registers. Special care must also be taken to avoid
flow control instructions (if, switch, do, for, while) that may force threads of a
same block to take different paths in the program and serialize the execution.

The proposed ILS implementations are inspired by the multiple independent
walks strategy described in Section 3. However, only the LS is parallelized on
GPU instead of entire walks. In this scheme, illustrated in Figure 3(a), LS is
applied on each solution on different processing elements.

On a conventional CPU architecture, the concept of processing element is
usually associated to a single-core processor or to one of the cores of a multi-



4 Audrey Delévacq, Pierre Delisle, and Michaël Krajecki

Fig. 3. Parallelization models for ILS : general (a), ILSthread (b) and ILSblock (c).

core processor. On a GPU, the obvious choice is to associate this concept to
a single SP. In that case, a first strategy that may be defined is to associate
each LS to a CUDA thread. Each thread then improves its solution in a SIMD
fashion. This strategy, called ILSthread, is illustrated in Figure 3(b) and has been
proposed for the parallelization of Ant Colony Optimization in previous work by
the authors [2]. It has the advantage of allowing the execution of a great number
of LSs on each SM and the drawback of limiting the use of fast GPU memory.

The second strategy, called ILSblock and illustrated in Figure 3(c), is based
on associating the concept of processing element to a whole SM. In that case,
each solution is associated to a CUDA block and parallelism is preserved for the
LS phase. A single thread of a given block is still in charge of applying LS to
a solution, but another level of parallelism is exploited by sharing the multiple
neighbors between many threads of a block. Following the idea of ILSthread, a
simple implementation would then imply keeping the private data structures of
a solution in the global memory. However, as only one solution is assigned to a
block and so to a SM, it becomes possible to store the data structures needed
to improve the solution in the shared-memory. Two variants of the ILSblock

strategy are then distinguished and experimented : ILSglobal
block and ILSshared

block .

5 Experimental results

The proposed GPU strategies for ILS are experimented on TSP problems with
sizes varying from 100 to 3038 cities. Speedups are computed by dividing the se-
quential CPU time with the parallel time, which is obtained with the same CPU
and the GPU acting as a co-processor. Experiments were made on a NVIDIA
Fermi C2050 GPU containing 14 SMs, 32 SPs per SM and 48 KB of shared
memory per SM. Code was written in the ”C for CUDA V4.0” [1] programming
environment. As a premiminary step, we validated our sequential ILS with a
comparative study with Stützle and Hoos [10] and Lourenço et al. [6] works.

The parallel ILS algorithm parameters are as follows. A population of nbsol
solutions is used, a total number of 1048576 iterations is performed and the ILS



Parallel GPU Implementation of ILS for the TSP 5

procedure is limited to itlim = 1048576
nbsol

iterations for each solution. All speedups

are computed for nbsol = 2x with x ∈ {8, 9, 10, 11} from 20 trials for problems
with less than 1000 cities and from 10 trials for larger instances.

Figure 4 shows the speedups obtained for each problem and each paralleliza-
tion strategy. The reader may note that increasing the number of solutions nbsol
and so, the total number of threads, generally leads to increasing speedups for
all strategies. Moreover, speedups obtained with ILSthread are limited to 2.02
and are always lower than with ILSblock. This strategy does not execute enough
threads in parallel to efficiently hide memory latency. Furthermore, code diver-
gence induced by computing the neighbors of many solutions/threads on the
same block in SIMD mode involves significant algorithm serialization.

Fig. 4. Speedups for ILSthread, ILS
global

block and ILS
shared
block strategies for each nbsol.

The greater speedups and the maximal value of 4.32 obtained with ILS
global
block

show that sharing the work associated to each solution between several threads
is more efficient. However, speedups increase from 100 to 318 cities and then
slightly decrease. In that case, the larger data structures and frequent memory
accesses imply memory latencies that grow faster than the benefits of paral-
lelizing available computations. Further improvements are brought by the use of
shared memory of ILSshared

block , which provides a maximal speedup of 6.02. How-
ever, results for the three biggest problems show that the limits of this kind of
memory are quickly reached. In fact, since this memory is very limited in size,
either speedup is not achieved or the problem can not be solved at all.

An analysis of the average percentage deviation ∆ from the optimum showed
that the optimal solution is always found (∆ = 0.000) by the parallel implemen-
tations for small problems. For medium-sized problems, the more nbsol increases,
the less frequently the optimal solution is found (∆ = 0.002 to∆ = 0.137). As the
number of iterations becomes too low to provide a thorough search, the optimal
solution is never found for the bigger problem (∆ = 0.520 to ∆ = 1.112). This
indicates that when choosing appropriate parameters for the parallel algorithms,
a compromise must be achieved between speedup and solution quality.



6 Audrey Delévacq, Pierre Delisle, and Michaël Krajecki

6 Conclusion

The aim of this paper was to design efficient parallelization strategies for the im-
plementation of Iterated Local Search on Graphics Processing Units to solve the
Travelling Salesman Problem. The ILSthread and ILSblock strategies associated
the Local Search phase to the execution of streaming processors and multiproces-
sors respectively. Experimental results showed significant speedups of up to 6.02
with solution quality often equal or close to optima, but also considerable limi-
tations on large problems. Moreover, they highlighted that maximal exploitation
of GPU ressources often requires algorithmic configurations that do not let ILS
perform an effective exploration and exploitation of the search space.

In future work, we plan to study the GPU performance of other decom-
position approaches like tour-based partitioning. We would also like to design
k-opt based parallel algorithms that provide a better compromise between GPU
efficiency and search robustness for the TSP and related problems.

Acknowledgments. This work has been supported by the Agence Nationale
de la Recherche (ANR) under grant no. ANR-2010-COSI-003-03. The authors
would also like to thank the Centre de Calcul Régional Champagne-Ardenne for
the availability of the computational resources used for experiments.

References

1. CUDA : Computer Unified Device Architecture Programming Guide 4.0,
http://www.nvidia.com (2011)

2. Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization
on graphics processing units. In: PDPTA’10. pp. 196–202. CSREA Press (2010)

3. Hong, I., Kahng, A., Moon, B.: Improved large-step markov chain variants for the
symmetric tsp. Journal of Heuristics 3, 63–81 (September 1997)

4. Johnson, D., McGeoch, L.: The Travelling Salesman Problem: A Case Study in
Local Optimization, pp. 215–310. E.H.L. Aarts and J.K. Lenstra, editors, Local
Search in Combinatorial Optimization, John Wiley & Sons (1997)

5. Lin, S.: Computer solutions of the traveling salesman problem. Bell System Tech-
nical Journal 44, 2245–2269 (1965)

6. Lourenço, H., Martin, O., Stützle, T.: Iterated local search: framework and appli-
cations, pp. 363–397. Handbook of metaheuristics, Springer (2010)

7. Luong, T., Loukil, L., Melab, N., Talbi, E.: A gpu-based iterated tabu search for
solving the quadratic 3-dimensional assignment problem. In: AICCSA. pp. 1–8
(2010)

8. Luong, T., Melab, N., Talbi, E.: Neighborhood structures for gpu-based local search
algorithms. Parallel Processing Letters 20(4), 307–324 (2010)

9. Martin, O., Otto, S.: Combining simulated annealing with local search heuristics.
Annals of Operations Research 63, 57–75 (1996)

10. Stützle, T., Hoos, H.: Analysing the run-time behaviour of iterated local search for
the traveling salesman problem, pp. 21–43. Essays and surveys in metaheuristics,
Springer (2001)

11. Verhoeven, M., Aarts, E.: Parallel local search. Journal of Heuristics 1, 43–65
(1995)


