A Tree Search Approach to Sparse Coding

Rui Reil?, Jodo P. Pedroso'2, Hideitsu Hino®, and Noboru Murata?

! University of Porto, Faculty of Science
Rua Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
<rui.rei@dcc.fc.up.pt> <jpp@fc.up.pt>
2 INESC Porto
Rua Dr. Roberto Frias, 378, 4200-465 Porto, Portugal
3 Waseda University, School of Science and Engineering
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
<hideitsu.hino@toki.waseda.jp> <noboru.murata@eb.waseda.ac.jp>

Abstract. Sparse coding is an important optimization problem with
numerous applications. In this paper, we describe the problem and the
commonly used pursuit methods, and propose a best-first tree search
algorithm employing multiple queues for unexplored tree nodes. We as-
sess the effectiveness of our method in an extensive computational ex-
periment, showing its superiority over other methods even for modest
computational time.

1 Introduction

Sparse Coding is an important optimization problem in signal processing, with
applications in classification, image processing, etc. Computationally, it is an
NP-hard problem [2], meaning that exact methods are inapplicable in medium-
and large-scale instances of the problem. Thus, we take a look at some basic,
yet extremely fast heuristic methods developed specifically for this problem.
Afterwards, we propose a more sophisticated tree search method which will allow
considerable improvements, depending on the allowed CPU time: good results
are obtained quickly (even when comparing to greedy heuristics), and improved
as more time is given to the search.

The paper is structured as follows. Section 2 describes the sparse coding prob-
lem and methods commonly in practice. Section 3 discusses tree search methods
and explains our approach to sparse coding. A computational experiment and its
results are discussed in Section 4, and concluding remarks and ideas for future
research are presented in Section 5.

2 Sparse coding

In the sparse coding problem, given a dictionary defined as a matrix D € R***,
comprised of k prototype signals or atoms (the columns of D) of dimension
n, and a target signal Y € R", we seek the best approximation of Y using a
combination of at most m < k atoms. The approximation can be written as

D - X, where X € RF is a vector containing the coefficients of the atoms of D in
the linear combination, i.e., X; is the coefficient of atom i (i.e., the i-th column-
vector in D, denoted as D;). Since we can use at most m atoms, the number of
non-zero entries in X, || X||o (using the L° pseudo-norm) must be less or equal
to m. So, Y can be written as

Y=D X+R, 1)

where R € R" is a residual vector, i.e., the portion of Y that cannot be repre-
sented by the linear combination of atoms D - X. The objective of the problem
is then to minimize the L? (Euclidean) norm of R, since || R[]z = 0 means that
we have a perfect representation of Y. The problem can be formally defined as
follows.

minimize |Y — D - X||2 (2)
subject to || X||o < m
X eR".

The given problem is NP-hard, which means that there are no known efficient
(polynomial-time) algorithms to solve it exactly. Thus, a number of approximate
methods have been proposed to find good values for the coefficients X within
reasonable computational time. Some of these methods are briefly described
below.

First, the Matching Pursuit (MP, [3]) algorithm is a greedy heuristic method
which starts with an empty solution (X° = 0 and R® = Y), and at each iteration
j=0,1,..., the atom D; with highest correlation with R’ (the current residual),
|D; - R, is added to the sparse support (the set of atoms with non-zero coef-
ficients). Its coefficient X *1is then computed such that the updated residual
Rit! = R — X7.D; is orthogonal to D, i.e., R7t1 1 D,

Another greedy heuristic, Orthogonal Matching Pursuit (OMP, [4]), improves
on MP by keeping the residual orthogonal to all atoms in the sparse support at
each iteration. This way, unlike MP, OMP avoids undoing work done in previous
iterations. An interesting characteristic of OMP is that, for any given support,
the computed coefficients are optimal. That is, given a set of atoms, OMP com-
putes the best possible approximation using those atoms. This characteristic
turns sparse coding into a purely combinatorial problem, where one must find
a subset of S C D to represent Y, using the coefficient calculation method
employed in OMP to provide optimal coefficients for any given set of atoms.

Both MP and OMP are deterministic algorithms, since the choice of the next
atom to include in the support is fixed: the atom with highest correlation with the
current residual is always chosen. These can be easily turned into probabilistic
algorithms by, e.g., randomly selecting an atom in the case of a tie. However, due
to the unlikelihood of ties in the atom selection step, these variants would most
often produce the same solutions as their original deterministic counterparts.
A third method, Randomized OMP (RandOMP), is a variant of OMP where
variability is introduced into the atom selection step (in every iteration, not just

for tie-breaking), allowing it to generate a variety of solutions if run multiple
times. The variability can be easily exploited by generating a set of solutions
and selecting the best of them.

In the next section we propose a tree search algorithm to find good sparse
supports, and later compare it to OMP and RandOMP.

3 Tree search

For combinatorial problems, one may create a tree where different branches
contain alternative decisions. The leaves of the tree correspond to the problem’s
search space, that is, the set of complete solutions. Thus, completely exploring
the tree and finding the leaf with best objective function value corresponds to
solving the problem to optimality.

However, this is not always possible due to the size of the search space. For
example, in the case of sparse coding, the search space corresponds to all subsets
of the k atoms with size less or equal to m. In other words, the number of possible
solutions is equal to the number of combinations of k atoms taken m at a time.

Since it is infeasible to completely explore the tree even for medium-size
instances, tree search is commonly stopped after some given limit (e.g., CPU
time) has been reached. In this case, since the tree could not be entirely explored,
the best solution found may not be optimal, and the order of exploration of the
nodes in the tree becomes very important. If nodes leading to good solutions
are explored first, then the chance of obtaining good-quality solutions when the
search is stopped increases.

There exist several schemes for tree traversal order. Uninformed traversal
methods, such as depth-first or breadth-first, are often used, but other methods
like best-first, or variants of beam search, may lead to better performance under
time limitation.

In the next section we describe the base elements of a tree search specific
to sparse coding, and follow with the description of our multi-queue tree search
traversal scheme.

3.1 Application to sparse coding

A complete decision tree for sparse coding may be derived as follows. Let § be
a node in the tree, S5 a set corresponding to the sparse support in §, and Rs a
set containing the remaining atoms in §, which may be chosen for inclusion in
the support in subsequent decisions. Note that § is a leaf node if |Ss| = m or
Rs = 0.
At the root of the tree , we have S, = 0 and R, = {1,...,k}. Then, given
a node d, an atom a is chosen from Rs and two child nodes (¢’ and ¢”) are
created. On the first child, atom a is included in the support and removed from
the remaining set, i.e.,
Ssr = Ss U {CL} (3)
Rs = Rs \ {a}.

On the second child, §”, atom a is simply removed from the remaining set

Sy = S
Rov = Rs \ {a}.)

Using this branching method, we create two subtrees: on the first subtree all
solutions will contain atom a, and on the second subtree no solution will contain
a. This will be the basic branching scheme used in our tree search algorithm.

3.2 Multi-queue tree search

The proposed tree search scheme is a variant of best-first search which uses
multiple queues to hold the tree nodes which are waiting to be explored. The
idea of using several queues comes from the fact that sparse supports of different
size are not comparable, since the larger support will in general have a smaller
residual. To avoid putting together nodes containing supports of different size,
a sub-queue is created for each support size from 0 to m — 1 (since all supports
of size m are leaves).

Each time the tree search iterates, a node is picked from one of the sub-
queues (in round-robin fashion), its two child nodes are generated and a check
for new leaves is done. Then, non-leaf child nodes are placed in the sub-queue
corresponding to the size of their support. The specific position of a node in a
sub-queue is determined by its residual norm: nodes with smaller residuals are
placed in positions closer to the front of the sub-queue, meaning these will be
explored before nodes with larger residuals. Note that this results in a per sub-
queue best-first order, using residual norm of the partial solutions as a scoring
criterion.

Using this scheme allows us to quickly find complete solutions, since nodes
are taken from all sub-queues in turn, and at least one leaf node is generated from
each node in the (m—1)-th sub-queue. The selection of the atom to include in the
branching step is taken from the OMP heuristic, that is, the atom with highest
correlation with the residual is chosen. This way, the first solution found by our
multi-queue tree search (MQTS) is equal to the one produced by OMP, which
guarantees a good minimum quality level even with very little time. Since nodes
are taken from all sub-queues in equal number, the search will not be trapped
in a part of the tree as would occur with depth-first and sometimes best-first
search. One additional benefit of tree search is that no duplicate solutions are
ever analyzed, as opposed to, for example, repeated RandOMP, where the same
supports may be selected in different runs.

In the next section we describe a computational experiment designed to assess
the effectiveness of MQTS, comparing it to OMP and repeated RandOMP.

4 Computational experiment

Image encoding and compression is a common application of sparse coding, tra-
ditionally using a fixed predefined dictionary. However, the use of specially de-
signed dictionaries is known to yield better results. In our experiment, we used

the K-SVD [1] dictionary learning algorithm to build specific dictionaries for
color and greyscale images. K-SVD was run for 30 iterations on two images of
each set, using OMP as a pursuit algorithm in its sparse coding step, producing
two dictionaries with k£ = 500 atoms, for color and greyscale images, respectively.

After generating the dictionaries, the three pursuit algorithms were run on
the images, broken down into manageable patches of 16 x 16 pixels, with a CPU
limit of 1 second per patch. Note that each patch corresponds to an instance of
sparse coding. For color images with three channels, n = 16 x 16 x 3 = 768, while
for greyscale images each patch has n = 256 since there is only one channel. For
both image sets the maximum support size m was set to 10 atoms.

The experiment was run on an Intel Atom 330 1.6GHz dual-core processor
with 2GB of main memory. All programs were implemented in Python, version
2.6.5.

Tables la and 1b show the total representation error (Frobenius norm) for all
color and greyscale images, respectively. The Frobenius norm of a matrix with
r rows and ¢ columns A is given by

1AllF =

Considering the set of patches in the original image as a matrix A (each
patch being a column in A), and the set of patches in the encoded image as
a matrix B, the representation error of the encoded image is then obtained by
e=|A-Blr.

The individual image results indicate a consistent improvement of MQTS
over both OMP and repeated RandOMP. The repeated RandOMP algorithm
also proved to be better than OMP, due to its exploitation of the variability
introduced in the atom selection step. As for MQTS, its superior performance
even with very little CPU time indicates that the best-first search order is suit-
able for this problem, and the overhead of maintaining a search tree and the
algorithm’s additional complexity do not represent a significant burden. Addi-
tionally, this overhead should be diluted as CPU time is increased. The complete
absence of symmetries in the tree (no repeated solutions) is also an advantage
over RandOMP, which should manifest even more with longer run times.

A deeper analysis of the algorithm, for example by comparison with depth-
first search, should allow us to conclude whether the multi-queue mechanism for
avoiding entrapment is effective or not.

5 Conclusion

We propose a tree search algorithm for obtaining good quality solutions to the
sparse coding problem. The computational results reveal superior performance of
Multi-Queue Tree Search in all test images, despite the very low CPU time bud-
get. The algorithm quickly provides solutions of reasonable quality, improving

OMP RandOMP MQTS

Image € € Impr. %] € Impr. %
5.1.00 | 2178.22 | 2146.45 1.46 |2104.44 3.39
OMP | RandOMP MQTS 5.1.10 | 4685.04 | 4577.79 2.29 |4478.13 4.42
Image ‘ € ‘ € Impr. %| € Impr. % 5.1.11 | 1966.47 | 1910.98 2.82 | 1870.58 4.88
TR AT R R Y R X 5.1.12 | 3030.55 | 2955.66 2.47 |2886.36 4.76
5.1.13 | 7035.98 | 6860.73 2.49 |6635.06 5.70

4.1.02 | 4685.48 | 4620.57 1.39 |4560.13 2.68
5.1.14 | 3509.27 | 3428.30 2.31 |3343.48 4.72

4.1.03 | 4692.30 | 4609.49 1.76 |4531.38 3.43
5.2.08 | 6319.43 | 6174.19 2.30 |6050.19 4.26

4.1.04 |5650.37 | 5550.54 177 |5481.10 3.00
5.2.00 | 8174.90 | 7988.63 2.28 |7818.44 4.36

4.1.05 | 6013.83 | 5912.02 1.69 |5814.47 3.31
5.2.10 | 6030.22 | 5976.06 0.90 |5912.82 1.95

4.1.06 | 8877.23 | 8713.37 1.85 |8623.09 2.86
. 5.3.01 | 7743.45|7627.46 1.50 |7535.48 2.69

4.1.07 |5202.37 | 5119.77 1.59 |5037.36 3.17
5.3.02 [12019.84|11780.98 1.99 |11565.14 3.78

4.1.08 | 6400.62 | 6293.05 1.68 |6230.79 2.65
7.1.01 | 3826.14 | 3746.98 2.07 |3671.68 4.04

4.2.01 |9491.35|9249.17 2.55 |9143.37 3.67
7.1.02 | 2879.91 | 2820.30 2.07 |2756.68 4.28

4.2.02 | 9227.53 | 9083.93 1.56 |9001.29 2.45
7.1.03 | 3801.43 | 3743.87 1.51 |3682.09 3.14

4.2.03 |10594.51|10531.24 0.60 |10501.82 0.87
7.1.04 | 3360.94 | 3200.87 2.08 |3223.30 4.10

4.2.04 | 7642.89 | 7556.65 1.13 |7523.30 1.56
7.1.05 | 5357.74 | 5258.38 1.85 |5167.89 3.54

4.2.05 |11554.9511299.07 2.21 |11146.34 3.54
7.1.06 | 5265.03 | 5167.05 1.86 |5075.77 3.59

4.2.06 |14900.17|14640.49 1.74 |14475.44 2.85
4.2.07 12692.56|12458.14 1.85 |12272.67 3.31 7.1.07 14717.24 1 4636.78 - L.71 | 4564.54 3.24
= . : : : : 7.1.08 | 3202.14 | 3153.27 1.53 |3109.18 2.90
Average[8181.96 [8043.41 1.67 [7954.18 2.80 7.1.09 | 4726.41 | 4645.52 1.71 |4569.80 3.31
(a) Results for color images 7.1.10 | 3370.25 | 3286.69 2.48 |3229.31 4.18
ges. 7.2.01 | 5602.48 | 5552.87 0.89 |5491.84 1.97

Average[4945.59 [4851.35 1.93 [4761.01 3.78

(b) Results for greyscale images.
Table 1: Representation error on color (left) and greyscale (right) images, given
by the Frobenius norm of the difference between the original images and their
encoded versions.

as more time is allowed. Its performance gap over repeated Randomized Orthog-
onal Matching Pursuit should increase as more time is given, since solutions are
analyzed exactly once.

Comparing the tree search to other metaheuristics and commercial solvers is
an interesting direction for future research. Also, the performance of the algo-
rithm could be radically improved with the use of a lower bound function, since
it would allow us to discard branches of the search tree where we would be sure
not to find an improving solution.

References

1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcom-
plete dictionaries for sparse representation. Signal Processing, IEEE Transactions
on 54(11), 4311 —4322 (nov 2006)

2. Davis, G., Mallat, S., Avellaneda, M.: Greedy adaptive approximation. Journal of
Constructive Approximation 13, 57-98 (1997)

3. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. Signal
Processing, IEEE Transactions on 41(12), 3397 —3415 (dec 1993)

4. Pati, Y., Rezaiifar, R., Krishnaprasad, P.: Orthogonal matching pursuit: recursive
function approximation with applications to wavelet decomposition. In: Signals,
Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh
Asilomar Conference on. pp. 40 —44 vol.1 (nov 1993)

