
Minimizing Time when Applying Bootstrap to
Contingency Tables Analysis of Genome-Wide

Data

Francesco Sambo and Barbara Di Camillo

Department of Information Engineering, University of Padova, Italy
francesco.sambo@dei.unipd.it

Abstract. Bootstrap resampling is starting to be frequently applied to
contingency tables analysis of Genome-Wide SNP data, to cope with
the bias in genetic effect estimates, the large number of false positive
associations and the instability of the lists of SNPs associated with a
disease. The bootstrap procedure, however, increases the computational
complexity by a factor B, where B is the number of bootstrap samples.
In this paper, we study the problem of minimizing time when apply-
ing bootstrap to contingency tables analysis and propose two levels of
optimization of the procedure. The first level of optimization is based
on an alternative representation of bootstrap replicates, bootstrap his-
tograms, which is exploited to avoid unnecessary computations for re-
peated subjects in each bootstrap replicate. The second level of opti-
mization is based on an ad-hoc data structure, the bootstrap tree, ex-
ploited for reusing computations on sets of subjects which are in com-
mon across more than one bootstrap replicate. The problem of finding
the best bootstrap tree given a set of bootstrap replicates is tackled with
best improvement local search. Different constructive procedures and lo-
cal search operators are proposed to solve it.
The two proposed levels of optimization are tested on a real Genome-
Wide SNP dataset and both are proven to significantly decrease compu-
tation time.

Keywords: Bootstrap, Contingency tables analysis, Genome-Wide SNP
Data, Local Search

Introduction

In the past few years, the genetic basis of disease susceptibility has started to
be explored through the novel paradigm of Genome Wide Association Stud-
ies (GWASs). A GWAS searches for patterns of genetic variation between a
population of affected individuals (cases) and a healthy control population, for
complex diseases arising from the interaction of a genetic predisposition with
environmental risk factors [11].

The most common form of genetic variation among individuals is Single Nu-
cleotide Polymorphism (SNP), a point variation at a single DNA locus across

members of the same species. Diploid individuals, such as human, have two ho-
mologous copies of each chromosome and the genetic variation can occur at the
same locus in either of the two chromosomes: human SNPs, thus, are ternary
variables, encoding the three possible configurations of nucleotide pairs, or geno-
types, at a certain locus (AA, BB and AB).

Current technologies allow the simultaneous measurement of O(106) SNPs
for each individual and the usual number of individuals involved in a GWAS is
O(103): the size of the resulting dataset has thus induced the vast majority of
studies to search only for univariate association between each single SNP and
the disease [15, 16] or to rely on univariate SNP association as a ranking and/or
pre-filtering step [6, 12].

All the methodologies proposed in the literature to test for the association
between a SNP and a disease condition require the computation, for each SNP,
of a 2 × 3 contingency table, containing the number of case and control indi-
viduals for each of the three genotypes of the SNP. Test statistics can then be
exploited to select SNPs significantly associated with the disease or to rank SNPs
in decreasing order of genetic effect on the disease [1].

The large number of tests involved in a GWAS, together with the low sample
size relative to the number of variables tested for association, can give rise to
bias in genetic effect estimates, to a large number of false positive associations
and to instability in the ranked list of SNPs [4]. To cope with these limitations,
one of the strategies adopted in the literature consists in coupling bootstrap with
contingency tables creation [4, 12–14].

Bootstrap [2] is a data-based simulation method for statistical inference:
given a dataset X, consisting of n observations of p variables, and a statistic
s(X), the bootstrap method consists in (i) generating B bootstrap replicates of
the original dataset (X1, . . . , XB), each one obtained by sampling with replace-
ment n observations from X, (ii) computing the test statistic for each bootstrap
replicate and (iii) exploiting the B results for estimating some properties of the
statistic, such as standard error or confidence intervals.

In the context of GWAS data analysis, SNPs are the variables and subjects
are the observations; bootstrap is thus used to obtain B replicates of the dataset,
each with the same set of SNPs and with subjects sampled with replacement from
the original set. The statistic of association is then computed for each SNP in
each sample replicate. In [4], bootstrap is applied to contingency tables analysis
for computing point estimates and confidence intervals of the genetic effect of
each SNP, exploiting the relative rank of each SNP in each bootstrap replicate.
The same approach is further exploited in [14] for estimating the minimum
sample size needed in replication studies. With the aim of estimating the total
number of susceptibility SNPs of a complex disease from GWAS data, bootstrap
is applied in [13] to contingency table analysis for computing confidence intervals
of the estimate. Finally, in [12] an ensemble of Näıve Bayes classifiers is trained
on as many bootstrap replicates of a GWAS dataset, and SNP ranking through
test statistics is exploited for learning classification probabilities and for selecting
the attributes of each Näıve Bayes classifier.

The bootstrap method has the appealing feature that it can be used ”on top”
of the statistic to be computed, exploiting the statistic computation as a black
box and simply iterating it through the various bootstrap replicates. Suggested
values for B are 50-100 when estimating bias or standard error and 1000 when
estimating confidence intervals [2], thus the main drawback is the O(B) increase
in computational complexity due to the replication of the statistic computation.

Even though the time needed for acquiring and pre-processing a GWAS
dataset is much longer than the time needed for computing a statistic of associ-
ation between all SNPs and the disease, an acquired dataset is seldom processed
just once, both because multiple statistics are usually computed on the same
dataset and because separate, smaller datasets are often joined together and
re-processed in larger meta-analyses. Any attempt in reducing the computation
time of data processing is thus definitely worth the effort.

In this paper, we explore the problem of minimizing computation time when
applying bootstrap to contingency table analysis of Genome-Wide SNP data.
The main contributions of the paper are two levels of optimization of the com-
putational procedure: the first level of optimization derives from an alternative
representation of bootstrap replicates as bootstrap histograms, which is exploited
to avoid repeating computations for repeated subjects in each bootstrap repli-
cate. The second level of optimization is based on an ad-hoc data structure, the
bootstrap tree, exploited for reusing computations on sets of subjects which are
in common across more than one bootstrap replicate. The problem of finding the
best bootstrap tree, given a set of bootstrap replicates, is tackled with a best
improvement local search approach [7] and different constructive procedures and
local search operators are proposed to solve it.

We tested our optimized computational procedure on the WTCCC case-
control study on Type 1 Diabetes [15] and indeed observed a significant decrease
in computation time for both levels of optimization, with respect to a standard
bootstrap approach.

The remainder of the paper is organized as follows: Section 1 describes in de-
tails the problem of applying bootstrap to contingency table analysis of GWAS
data and presents the two levels of optimization, Section 2 describes the experi-
mental dataset and reports performance results and Section 3 draws conclusions
and presents some possible future directions.

1 Methods

Given a GWAS dataset X, consisting of p SNPs measured for n = ncases +
ncontrols subjects, and a binary vector of class labels Y of size n, computing
a contingency table like the one in Table 1 for each SNP involves scanning all
subjects and counting the occurencies of the three possible variants of the SNP.
Iterating the process on the whole SNP set has thus computational complexity
O(pn).

The frequency counts in each contingency table are exploited to test for an
association between the corresponding SNP and the disease condition, with a

AA AB BB

cases a b c

controls d e f

Table 1: Example of a 2× 3 contingency table for a particular SNP.

certain statistic s. SNPs can then be ranked according to the computed statistics
and the topmost SNPs, or the SNPs whose statistic pass a certain threshold, are
identified as associated with the disease.

The reliability of the statistic and the robustness of the list of associated
SNPs can be assessed with bootstrap.

If we define I = {i1, . . . , in} the original patient set (Figure 1a), the boost-
rap procedure generates B bootstrap replicates {I1, . . . , IB}, each of size n and
sampled with replecement from I (Figure 1b). For each SNP, B contingency
tables and B corresponding statistics are then computed. The B × p resulting
statistics can be exploited either for calculating bias, squared error or confidence
intervals for each SNP [4, 14], or for computing B ranked lists of SNPs, which
can be merged to obtain a single, more robust list [10].

The pseudocode of the classic bootstrap procedure is given in what follows. As
it is clear from the pseudocode, the computational complexity of the algorithm
is O(Bpn).

ClassicBootstrap(X, Y, B)
1 I = {i1, . . . , in}, original patient set
2 Generate the sets {I1, . . . , IB}, each sampled with replacement from I

// results of the statistics for each SNP and each replicate
3 S = p×B matrix of zeros
4 for b in {1, . . . , B}
5 for k in {1, . . . , p}

// contingency table
6 CT = 2x3 matrix of zeros
7 for j in {1, . . . , n}
8 ij = Ib[j]
9 CT [Y [ij], X[k, ij]]+=1

// statistic of the association between SNP k and the disease
// for the bootstrap replicate b

10 S[k, b] = s(CT)
11 Use S to estimate properties of the statistic or to obtain a robust SNP ranking

Bootstrap replicates Ib belong to the class of multisets, i.e. sets that allow
the repetition of elements. In the next section, we introduce a convenient rep-
resentation for multisets, which will lead to a first level of optimization of the
bootstrap procedure.

I: i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

(a)

Ib: i1 i1 i3 i5 i5 i5 i7 i8 i9 i9

(b)

Ib: 2 0 1 0 3 0 1 1 2 0

(c)

Fig. 1: (a) example of a patient set I with 10 patients. (b) example of a bootstrap
replicate of I. (c) boostrap histogram of the replicate Ib.

1.1 Level I optimization: bootstrap histograms

Given a multiset Ib with m elements, drawn from an underlying set I = {i1, . . . , in}
of n distinct elements, a histogram representation of the multiset is a vector Ib

of length n containing, for each element ij ∈ I, the number of times it appears
in the multiset Ib (Figure 1c). We define bootstrap histogram the histogram rep-
resentation of a bootstrap replicate.

Bootstrap histograms can be conveniently exploited to avoid unnecessary
operations: when computing contingency tables for each bootstrap replicate Ib,
in fact, one needs only to process the elements j such that Ib[j] > 0. Furthermore,
given that each nonzero element of the boostrap histogram counts multiple copies
of the same subject, one needs only to evaluate once the SNPs of the j-th subject
and then add Ib[j] to the corresponding elements of the contingency tables. The
pseudocode of the histogram-based bootstrap procedure is given in what follows.

HistogramBootstrap(X, Y, B)
1 I = {i1, . . . , in}, original patient set
2 Generate {I1, . . . , IB}, sampled with replacement from I
3 S = p×B matrix of zeros
4 for b in {1, . . . , B}

// tmp storage of indices, values and labels of nonzero elements of Ib

5 tmpInd = ∅, tmpVal = ∅, tmpY = ∅
6 for j in {1, . . . , n}
7 if Ib[j] > 0
8 tmpInd = tmpInd ∪ j

9 tmpVal = tmpVal ∪ Ib[j]
10 tmpY = tmpY ∪ Y [Ib[j]]
11 for k in {1, . . . , p}
12 CT = 2x3 matrix of zeros
13 for j in {1, . . . , length(tmpInd)}
14 CT [tmpY [j], X[k, tmpInd [j]]]+=tmpVal [j]
15 S[k, b] = s(CT)
16 Use S to estimate properties of the statistic or to obtain a robust SNP ranking

The preprocessing routine at lines 5−10 extracts, for each bootstrap his-
togram Ib, the indices, values and corresponding disease condition of the nonzero
elements of Ib; its computational complexity, O(Bn), can be considered negligi-
ble if n� p, as in our case.

Thanks to the preprocessing routine, the summation at line 14 is now exe-
cuted only B · p · length(tmpInd) times, resulting in an expected relative gain of
computation time equal to the average proportion of zero elements in a boot-
strap histogram: for n sufficiently large, the relative gain approaches e−1 ' 0.368
[2].

A further level of optimization, obtained by exploiting the presence of com-
mon elements across multiple bootstrap histograms, is presented in the next
section.

1.2 Level II optimization: bootstrap tree

For our second level of optimization, the aim is to group together bootstrap
histograms sharing common elements, so to be able to reuse the results of con-
tingency table computations for multiple bootstrap histograms. To this purpose,
we define intersection of two bootstrap histograms Ix and Iy the boostrap his-
togram Iz such that:

Iz[j] = Ix[j] ∩ Iy[j] =

{
Ix[j] if Ix[j] = Iy[j],
0 otherwise

for j = 1 . . . n.

Furthermore, we define size of a bootstrap histogram the number of its nonzero
elements and similarity between two bootstrap histograms the size of their in-
tersection.

Given a set of bootstrap histograms, we define bootstrap tree a data structure
with the following features:

1. the bootstrap tree is a balanced binary tree,
2. each leaf of the tree, i.e. each node at level 0, contains one of the original

bootstrap histograms,
3. each internal node of the tree, at level l > 0, contains the intersection of its

two children, i.e. the pair of nodes connected to it at level l − 1.

An example of bootstrap tree is given in Figure 2.
For each node, we define unique elements the nonzero elements of its boot-

strap histogram which are zero in the histogram of its parent node. Unique
elements are marked in bold in the example tree of Figure 2.

A bootstrap tree can be effectively exploited to obtain a further decrease
in computation time. Each bootstrap replicate can be processed by visiting the
tree in a depth-first, left-first traversal, backtracking once leaves are reached.
The intuition is that computations can be carried out while descending the tree,
exploiting the bootstrap histogram of each internal node for computing partial
results, which can then be reused for all the nodes in the corresponding subtree.
The pseudocode of such an algorithm is given in what follows.

0 0 1 0 0 0 0 0 0 0

0 0 1 0 2 0 0 3 0 0 0 0 1 0 0 0 0 2 1 0

0 1 1 0 2 0 0 3 1 2

1 0 1 0 2 1 0 3 2 0

2 0 1 0 1 0 0 2 1 3

1 0 1 0 0 3 0 2 1 2

Fig. 2: Example of a bootstrap tree, for B = 4 bootstrap replicates. The leaves
contain the bootstrap histograms of the 4 bootstrap replicates and each internal
node contains the intersection of its children. Unique elements of each node, i.e.
nonzero elements of its bootstrap histogram which are zero in the histogram of
its parent node, are marked in bold.

TreeBootstrap(X, Y, tree)
1 CTs = set of p contingency tables, all elements initialized to zero
2 S = p×B matrix of zeros
3 RecTreeBootstrap(X, Y, tree.root, tree.height, CTs)
4 Use S to estimate properties of the statistic or to obtain a robust SNP ranking

RecTreeBootstrap(X, Y, node, level, CTs)
1 Increment CTs according to the unique elements of node
2 if level > 0

// Proceed to the children
3 newCTs = copy of CTs
4 RecTreeBootstrap(X,Y,node.leftChild , level − 1, newCTs)
5 RecTreeBootstrap(X, Y, node.rightChild, level − 1, CTs)
6 else

// A leaf has been reached, compute the statistic
7 b = node.b // Index of the bootstrap replicate
8 for k in {1, . . . , p}
9 S[k, b] = s(CTs[k])

The TreeBoostrap algorithm creates a set CTs of p zero-valued contin-
gency tables, allocates space for the results of the statistic and launches the

recursive RecTreeBoostrap algorithm from the root of the tree, passing the
set CTs. Each node visited in the left-first descent receives a set of contingency
tables, increments them according to its unique elements and passes a copy of
them to its left child (RecTreeBootstrap, lines 1-4). When a leaf is reached,
its corresponding contingency tables are complete and the statistic of association
can be computed for all SNPs (lines 7-9). When backtracking from a left child to
a right child, the set of contingency tables at the parent node is directly passed
to the right child rather then copied (line 5), since it does not need to be stored
anymore. The algorithm terminates when the last right child, i.e. the rightmost
leaf, is visited.

The gain in computation time of the TreeBootstrap algorithm, relative
to the HistogramBootstrap algorithm, can be computed as the sum of the
sizes of the internal nodes over the sum of the sizes of the leaves. We prove this
intuitively: each nonzero element in the bootstrap histograms of nodes at level
1 indicates an element for which computations can be spared, because it is in
common between two histograms; nonzero elements at level 2 stands for further
spared elements when computing nodes at level 1, and so on up to the root. The
gain of the tree in Figure 2 is thus 7/24 ' 0.291.

The gain in computation time comes at the cost of an increased memory
occupation: the TreeBootstrap algorithm needs to keep in memory a number
of contingency tables, for each SNP, equal to the height of the bootstrap tree
plus one. Memory occupation is often critical when dealing with GWAS data.
We thus impose the constraint on the bootstrap tree of being a balanced binary
tree: among all possible binary trees of B nodes, balanced binary trees have the
lowest height, log(B).

Having defined the bootstrap tree, the TreeBootstrap algorithm and the
concept of gain of a tree, we can now formulate the optimization problem of
searching for the bootstrap tree with the maximum gain, given a GWAS dataset
and a set of B bootstrap histograms. We chose to tackle the problem with a
best improvement local search approach [7]: starting from an initial bootstrap
tree, we generate a neighbourhood of trees by applying a local search operator,
choose the tree with the highest gain among the neighbourhood and iterate the
process until a local maximum is reached.

We explore the use of different constructive procedures for building the initial
tree and of different local search operators for generating the neighbourhood.
Constructive procedures and local search operators are described in the next
sections.

1.3 Constructive procedures for bootstrap trees

We begin this section with a remark: since our final objective is to minimize
computation time, which includes both the time for searching for the optimal
1 To be precise, one should also consider the time spent for copying contingency tables.

Copying p contingency tables, one for each SNP, has complexity O(p) and the whole
set of contingency tables is copied B − 1 times: the computational complexity does
not depend on n and can thus be considered negligible.

bootstrap tree and the time for the TreeBootstrap algorithm, simple but
fast constructive heuristics can stand a chance against more complex but slower
heuristics and should thus be considered.

The first constructive procedure we propose is a greedy agglomerative con-
structive heuristic, inspired by the literature on hierarchical clustering [5]: the
GreedyAgglomerative heuristic builds the bootstrap tree starting from the
leaves, i.e. the original boostrap histograms, by computing the mutual similarity
between all pairs of histograms. Similarity between two bootstrap histograms,
as defined in Section 1.2, is the size of the intersection between the two his-
tograms. The two histograms with the highest similarity are joined as children
of the first node at level 1, whose histogram is computed as the intersection
of the two histograms. The heuristic keeps joining the pair of remaining leaves
with the highest similarity, until no more leaves remain. The procedure is then
iterated up to the root, by computing the mutual similarity between all pairs of
nodes at level l and by iteratively joining the nodes with the highest similarity
as children of the nodes at level l + 1. The computational complexity of the
GreedyAgglomerative heuristic is O(B2n).

The other constructive procedure we consider is RandomBuild, which builds
the bootstrap tree by joining pairs of nodes at random up to the root. Despite
the lower expected gain with respect to the GreedyAgglomerative heuris-
tic, we choose to try also the RandomBuild procedure because of its lower
computational complexity, O(Bn).

1.4 Local search operators for bootstrap trees

The first local search operator we define, TreeOpt, can be applied to all nodes
at level l ≥ 2 and operates by testing the two possible swaps between grandchil-
dren of a node G (which stands for Grandparent), i.e. between the four nodes
whose parents are the two children of G (Figure 3). The total number of nodes at
level l ≥ 2 is B/2−1, thus the size of the neighbourhood of the TreeOpt oper-
ator is B−2. The cost of a swap is the cost of updating the boostrap histograms
for G’s children, G itself and all the nodes in the path from G up to the root.
The total cost of evaluating a TreeOpt neighbourhood is thus O(nB log B).

The second operator we define, 2Opt, is inspired by the homonymous opera-
tor for the TSP problem [7]: the 2Opt operator tests all possible swaps between
two leaves of the tree, excluding the swaps between the two children of the same
node. The size of the neighbourhood of the 2Opt operator is thus B2/2−B. The
cost of a swap is the cost of updating the boostrap histograms of the nodes on
the paths from the two swapped leaves up to the root: the total cost of evaluating
a 2Opt neighbourhood is thus O(nB2 log B).

2 Experimental results

In this section, we present experimental results on the computational perfor-
mance of the algorithms ClassicBootstrap, HistogramBootstrap and

A B C D

G

A C B D

G

A D C B

G TREEOPT

Fig. 3: Example of use of the TreeOpt operator: applied to the node G of the
leftmost tree, the operator generates the two possible swaps of the nodes A, B,
C and D, whose parents are the two children of G.

TreeBootstrap. Different combinations of the constructive procedures and
of the local search operators are tested for the bootstrap tree of the Tree-
Bootstrap algorithm.

As benchmark to assess the performance of the different algorithms, we
choose the WTCCC case-control study on Type 1 Diabetes [15]: the dataset
consists of 458376 SNPs, measured for 1963 T1D cases and 2938 healthy con-
trols (after the application of all Quality Control filters reported in [15]). The
numbers of SNPs and subjects involved are in line with the ones usually encoun-
tered in a GWAS [11], thus making the dataset a meaningful benchmark for our
algorithms.

We measure the computation time spent by the following procedure: generate
B bootstrap replicates, compute a contingency table and a univariate statistic
of association (described in [12]) for each SNP in each replicate and rank SNPs
according to the computed statistic. To remove a possible source of noise, we
exclude from the measurements the time needed for loading the dataset in RAM.

The number of bootstrap replicates, B, is varied among all powers of 2 in
the range {20 . . . 210}: for each B, we generate 20 sets of B bootstrap replicates
and repeat the whole procedure on each set.

All algorithms are written in C++ and all computations are carried out on
a single 3.00 GHz Intel Xeon Processor E5450.

We first assess the effectiveness of the two levels of optimization by compar-
ing the computation time of ClassicBootstrap, HistogramBootstrap and
TreeBootstrap, the latter tested with either the GreedyAgglomerative
or the TreeOpt constructive procedure and without local search.

Results are shown in Figure 4, top panel: the figure reports, for each value
of B, the median over the 20 runs of the average time needed to process one
bootstrap replicate, computed as the total time over B. For each point, whiskers
extend from the first to the third quartile. We preferred to plot the median
rather than the mean because of the presence of a small number of random
outliers, which were however included in all the tests for significance. As it is
clear from the figure, both levels of optimization result in a significant decrease in
computation time (p-values of ClassicBootstrap vs HistogramBootstrap

1 2 4 8 16 32 64 128 256 512 1024
4

5

6

7

8

9

10

B

T
im

e
/ B

 (
s)

ClassicBootstrap
HistogramBootstrap
TreeBootstrap: GreedyAgglomerative
TreeBootstrap: RandomBuild

1 2 4 8 16 32 64 128 256 512 1024

4

4.2

4.4

4.6

4.8

5

B

T
im

e
/ B

 (
s)

TreeBootstrap: GreedyAgglomerative
TreeBootstrap: GreedyAgglomerative + TreeOpt
TreeBootstrap: GreedyAgglomerative + 2Opt

1 2 4 8 16 32 64 128 256 512 1024

4

4.2

4.4

4.6

4.8

5

B

T
im

e
/ B

 (
s)

TreeBootstrap: RandomBuild
TreeBootstrap: RandomBuild + TreeOpt
TreeBootstrap: RandomBuild + 2Opt

Fig. 4: Medians across 20 runs of the time for processing one bootstrap repli-
cate (total time / B) versus the number of replicates B. Whiskers extend from
first to third quartile. Top panel: NaiveBootsrap, HistogramBootstrap
and TreeBootstrap with the two constructive procedures and without lo-
cal search. Middle panel: TreeBootstrap with the GreedyAgglomerative
constructive procedure, without local search and with the two local search op-
erators. Bottom panel: TreeBootstrap with the RandomBuild constructive
procedure, without local search and with the two local search operators.

and HistogramBootstrap vs both versions of TreeBootstrap < 8.9×10−5

for each B, Wilcoxon signed-rank test)2.

Oberving a significant difference between HistogramBootstrap and Tree-
Bootstrap for B = 1 is somehow unexpected, since the number of operations
executed by the two algorithms is practically the same. The only notable differ-
ence is that HistogramBootstrap allocates just one contingency table and
reuses it, while TreeBootstrap has to allocate the whole set of p contingency
tables: rather than resulting in an increased overhead, the second strategy seems
to be more fit to be optimized by the compiler and thus results in a significant
gain.

Further, significant increases in the time gain of the TreeBootstrap algo-
rithm can be observed up to B = 8 (p-values of the differences between consec-
utive samples < 0.02, Wilcoxon rank-sum test). This means that the algorithm
is effectively able to avoid unnecessary computations, by reusing common ele-
ments of the bootstrap histograms. For B ≥ 16, no further gain can be observed:
the identification of groups of 16 or more bootstrap histograms of length 4901
(the total number of subjects in the dataset) sharing many common elements
seems to have a computational cost which is too high to result in an effective
improvement of the overall procedure.

Interesting is also the fact that no significant difference can be observed
between the two constructive procedures for TreeBootstrap (p-value > 0.21
for each B). The higher tree gain otained by the GreedyAgglomerative
heuristic, thus, seems to be compensated by its higher computational complexity,
with respect to the RandomBuild constructive procedure.

We then tested the effect on the TreeBootstrap algorithm of the two
local search operators, when combined with either the GreedyAgglomerative
and the RandomBuild constructive procedures (Figure 4, middle and bottom
panel). As it is clear from the figures, local search with the 2Opt operator has
a negative effect on performance, significant for B ≥ 256 when the initial tree
is built with GreedyAgglomerative and for B ≥ 64 when RandomBuild is
used (p-values < 6×10−3, Wilcoxon signed-rank test). This probably means that
the rate at which the 2Opt operator increases the gain of the bootstrap tree is
too slow to be able to improve the overall performance of the TreeBootstrap
algorithm.

On the other hand, the TreeOpt local search operator has different effects
when coupled with the GreedyAgglomerative and the RandomBuild con-
structive procedures: in the first case, the performance with local search tends
to be consistently better than without local search for all values of B; in the
second case, the performance is consistently worse for each B ≥ 8. Differences,
however, are not statistically significant, with the exception of one case.

2 For all tests throughout the paper, we consider significant a p-value < 0.05.

3 Conclusions and future directions

In this paper, we studied the problem of minimizing computation when applying
bootstrap to contingency table analysis of Genome-Wide SNP data. We proposed
two levels of optimization of the procedure, which both result in a significant
improvement in computation time: altogether, the optimization strategies pre-
sented in this paper allow us to reduce computation time by a factor of approx-
imately 2.5, a result which can be considered definitely valuable in the context
of GWAS data analysis.

The first level of optimization, implemented in the HistogramBootstrap
algorithm, is based on an alternative representation of bootstrap replicates as
bootstrap histograms. The bootstrap histogram representation is not new in the
literature: for example, in [3] the same representation is proven more effective
than the standard representation for estimating the bias of order invariant statis-
tics. As far as we know, however, the idea of exploiting the bootstrap histogram
representation for reducing computation time has never been proposed in the
literature.

The second level of optimization, implemented in the TreeBootstrap algo-
rithm, is based on an ad-hoc data structure, the bootstrap tree, which is exploited
for reusing partial results on sets of subjects shared by multiple replicates.

Once defined the bootstrap tree and the algorithm for exploiting it, we for-
mulated the optimization problem of finding the tree leading to the highest gain
in computation time and tackled the problem with a best improvement local
search approach. Two constructive procedures and two local search operators
were specifically designed for the problem and several combinations of them
were tested. Experimental results show that simpler but faster approaches to
tree construction and refinement are competitive with (and, in some cases, sig-
nificantly more effective than) more powerful, yet slower approaches. As far as
we know, the idea of exploiting common elements of the boostrap samples for
reducing computation time of boostrap has never been proposed in the literature.

The algorithms designed for the second level of optimization require the num-
ber of bootstrap replicates, B, to be a power of two. We do not see this require-
ment as a big limitation: guidelines for the choice of the number of bootstrap
replicates are present in the literature [2], but they usually give indications on
the order of magnitude of B rather than on its exact value, the choice of which
is left to the experimenter.

Concerning future directions, we intend to further explore the design of other
constructive heuristics and local search operators, together with other stochastic
local search techniques, to search for the optimal bootstrap tree.

The extent to which bootstrap performance can be improved with our two
levels of optimization has, however, a theoretical limit. In each bootstrap repli-
cate, all observations are sampled with equal probability 1/n: the expected num-
ber of elements in common among B bootstrap histrograms is thus limited.
Several authors, however, have proposed to exploit importance sampling for re-
ducing the variance of certain bootstrap estimates [8, 9, 17]. The idea beyond
importance sampling is to sample observations with nonuniform weights: such

an approach dramatically increases the number of elements in common among
subsets of bootstrap histograms and can thus further benefit from our optimiza-
tion strategies. One of our future directions is thus to study how to adapt our
two levels of optimization to importance sampling in bootstrap estimates.

Finally, the enhancement of bootstrap with the two levels of optimization
can be extended to other application domains, as long as the function to be
iterated on each bootstrap replicate has the two following features: i) the sets
of observations to be processed can be split in m distinct subsets and the func-
tion can be independently applied to each subset, ii) the computational cost of
processing each subset is considerably higher than the cost of assembling the
m results. One of our future directions is thus to study the application of our
optimization strategies to different problem domains, characterized by the two
aforementioned features.

Acknowledgements

This study makes use of data generated by the Wellcome Trust Case-Control
Consortium. A full list of the investigators who contributed to the generation
of the data is available from www.wtccc.org.uk. Funding for the project was
provided by the Wellcome Trust under award 076113 and 085475.

Francesco Sambo would like to thank Prof. Silvana Badaloni for her precious
advices and support.

References

1. Balding, D.J.: A tutorial on statistical methods for population association studies.
Nature Reviews Genetics 7(10), 781–791 (2006)

2. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall,
New York (1993)

3. Efron, B.: More Efficient Bootstrap Computations. Journal of the American Sta-
tistical Association 85(409), 79–89 (1990)

4. Faye, L., Sun, L., Dimitromanolakis, A., Bull, S.: A flexible genome-wide boot-
strap method that accounts for ranking- and threshold-selection bias in GWAS
interpretation and replication study design. Statistics in Medicine 30(15), 1898–
1912 (2011)

5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, Sec-
ond Edition: Data Mining, Inference, and Prediction. Springer Series in Statistics,
Springer (Feb 2009)

6. He, Q., Lin, D.Y.: A variable selection method for genome-wide association studies.
Bioinformatics 27, 1–8 (January 2011)

7. Hoos, H.H., Stützle, T.: Stochastic Local Search : Foundations & Applications (The
Morgan Kaufmann Series in Artificial Intelligence). Morgan Kaufmann (September
2004)

8. Hu, J., Su, Z.: Short communication: Bootstrap quantile estimation via importance
resampling. Computational Statistics and Data Analysis 52, 5136–5142 (August
2008)

9. Johns, M.: Importance sampling for bootstrap confidence intervals. Journal of the
American Statistical Association 83, 709–714 (1988)

10. Jurman, G., Merler, S., Barla, A., Paoli, S., Galea, A., Furlanello, C.: Algebraic
stability indicators for ranked lists in molecular profiling. Bioinformatics 24(2),
258–264 (2008)

11. Ku, C.S., Loy, E.Y., Pawitan, Y., Chia, K.S.: The pursuit of genome-wide associa-
tion studies: where are we now? Journal of Human Genetics 55(4), 195–206 (Mar
2010)

12. Sambo, F., Trifoglio, E., Di Camillo, B., Toffolo, G., Cobelli, C.: Bag of Näıve
Bayes: biomarker selection and classification from Genome-Wide SNP data. In:
Clinical Bioinformatics. 11th Workshop on Network Tools and Applications in
Biology NETTAB2011. Pavia, Italy (October 2011)

13. So, H.C., Yip, B.H.K., Sham, P.C.: Estimating the total number of susceptibility
variants underlying complex diseases from genome-wide association studies. PLoS
ONE 5(11), e13898 (11 2010)

14. Sun, L., Dimitromanolakis, A., Faye, L., Paterson, A., Waggott, D., Bull, S.: Br-
squared: A practical solution to the winner’s curse in genome-wide scans. Human
Genetics 129(5), 545–552 (2011)

15. The Wellcome Trust Case Control Consortium: Genome-wide association study of
14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145),
661–678 (Jun 2007)

16. Zeggini, E., et al.: Meta-analysis of genome-wide association data and large-scale
replication identifies additional susceptibility loci for type 2 diabetes. Nature Ge-
netics 40(5), 638–645 (March 2008)

17. Zhou, H., Lange, K.: A fast procedure for calculating importance weights in boot-
strap sampling. Computational Statistics and Data Analysis 55, 26–33 (January
2011)

