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Abstract. Standard dominance-based multi-objective evolutionary al-
gorithms hardly allow to integrate problem knowledge without redesign-
ing the approach as a whole. We present a flexible alternative approach
based on an abstraction from predator-prey interplay. For parallel ma-
chine scheduling problems, we find that the combination of problem
knowledge principally leads to better trade-off approximations compared
to standard class of algorithms, especially NSGA-2. Further, we show
that the incremental integration of existing problem knowledge gradu-
ally improves the algorithm’s performance.
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1 Introduction

In multi-objective evolutionary optimization, dominance-based methods are cur-
rently used as quasi-standard. They extend the concept of original single-objec-
tive evolutionary algorithms to the multi-objective domain introducing mecha-
nisms for selecting solutions regarding multiple objectives. For the NSGA-2 [2]
algorithm, the particular fitness assignment is based on sorting the population
into different fronts using the non-domination order relation. To form the next
generation of candidate solutions, NSGA-2 combines the current population and
its offspring generated by standard variation operators. Such a strong focus
on selection may devalue variation operators to a subordinate influence. That
means, for expertise integration advanced variation operators can unfold their
full benefit only along with an alternative and more dynamic selection scheme
which replaces the monolithic algorithmic architecture of dominance-based ap-
proaches. Such an alternative appears in this paper.

Our approach uses the predator-prey model (PPM) proposed by Laumanns
et al. [4] which adapts the well-known predation paradigm from biology: a popu-
lation of prey is arbitrarily distributed on a spatial structure which is represented
by a toroidal grid. Predators pursue only one objective and favor only one special
variation operator each. They randomly roam the population to chase prey which
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are weak regarding their specific objective. Multiple predators are expected to
force the prey likewise to adapt to the threats and thus result in suitable trade-off
solutions for the complete optimization problem. In our approach the coupling
of special heuristics (which realize the actual variation) to predators allows to
integrate expert knowledge from single-objective problems.

2 Multi-objective Optimization and Scheduling Problems

In multi-objective optimization, a problem instance comprises multiple and (at
least partly) contradicting goals that should be fulfilled simultaneously. Usually
it is impossible to find a single optimal solution but only a set of good trade-offs
among those goals. This solution set is called Pareto-optimal set and forms the
Pareto-front in solution space.

A scheduling problem—denoted by α|β|γ—is commonly concerned with al-
locating n jobs to a machine environment α with m machines such that all con-
straints β are met [3]. The resulting schedule should be optimal for one or more
given objective(s) γ. For example, a check-in counter queue problem is denoted
as Pm|rj , dj |

∑
Uj . Here, Pm denotes an environment of m identical counters

(machines). Passenger j arrives at time rj and needs to catch a flight at time dj .
The objective is to minimize the total number of passengers

∑
Uj , Uj ∈ {0, 1}

missing their flight (Uj = 1). Under multiple objectives, the γ-field contains all
objectives that have to be optimized simultaneously. Regarding our example the
problem Pm|rj , dj |

∑
Cj ,

∑
Uj states that not only the flight misses should be

minimized but also all customers should be served as fast as possible. This is
expressed as minimizing the sum of all completion times, while the condition
Cj ≥ rj + pj holds. There, pj is the processing time of job j.While for the

∑
Uj

objective ascending ordering of due dates dj is reasonable the
∑
Cj can be solved

optimally sequencing jobs in ascending order of pj . However, as due dates and
processing times might be unrelated (except that all due dates can be always
met, thus dj > pj holds.) both objectives are fundamentally conflicting.

As almost all multi-objective scheduling problems are NP-hard, practitioners
have to use general techniques or randomized heuristic approaches like multi-
objective evolutionary algorithms (MOEAs), see Coello et al. [1] for a detailed
overview. Today, the practitioner finds a huge amount of standard algorithms
that either apply non-dominated ranking, sorting and archiving techniques (e.g.,
NSGA-2, SPEA2, PAES) or indicator-based selection mechanisms (e.g., SMS-
EMOA, HypE) to generate a precise and diverse Pareto-front approximation.
As these methods are rather general, the practitioner still faces the problem of
integrating his already available expert knowledge into the algorithm. That is
more complicated than expected: Due to the monolithic and integrated structure
of most approaches it is usually not sufficient—in contrast to single-objective
problems—to only change variation operators. He rather has to redesign many
parts of the original algorithmic scheme in order to bring in expertise. We address
this problem by revisiting the predator-prey idea and show that it offers the
property to integrate expertise seamlessly.
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3 Predator-Prey Model for Multi-objective Optimization

The nature-inspired principle of predator and prey interaction proposed by Lau-
manns et al. [4] considers prey as solutions for multi-objective problems which
are placed at vertices of a two-dimensional toroidal grid representing the spatially
distributed population. Predators move across the spatial structure according to
a random walk scheme (usually a uniformly distributed movement) and chase
the prey only within their current neighborhood on the torus. This ”hunting”
process consists of evaluating all prey in the direct neighborhood of a predator’s
position according to a single objective assigned to it. The worst prey within this
neighborhood is ”eaten” and replaced by an offspring prey, which is created out
of neighboring prey using variation operators. In our realization, the replacement
approach follows an elitist philosophy: the worst prey is only replaced, if the off-
spring is better regarding the predators objective. The process is repeated until
a termination criterion is reached. As the described action is restricted to each
predator and completely self-contained, multiple predators can act in parallel
and bring their influence to the distributed population.

For transferring the PPM to scheduling problems we encode schedules in
prey using a permutation encoding of length n which represents the sequence of
jobs. To map the permutation into schedules, we use a non-delay First-Come-
First-Served (FCFS) approach. The main goal of expertise integration is to foster
convergence to the Pareto-front. This expertise is here provided by simple se-
quencing heuristics: The shortest processing time first (SPT) rule is known to be
optimal for the total completion time objective (1||

∑
Cj , Pm||

∑
Cj). Further,

for the number of late jobs problem on parallel machines (Pm||
∑
Uj) the earliest

due date first (EDD) rule is reasonable3. We designed a variation operator which
allows to bring the effects of SPT, EDD, or any other sorting scheme randomly
and well-dosed into the population. Figure 1 exemplary depicts the application
of this operator to a given sequence with processing times pj . A position is
selected randomly in the permutation representation of the genotype. Then, a
subsequence of 2δ + 1 genes is sorted according to the heuristic. Here, we show
the application of SPT sorting. The size of this δ-neighborhood is determined by
a always positive normal distributed value with adjustable step-size σ. A larger
δ leads to a higher probability of a completely ordered genome, δ = 0 leads to
no reordering at all.

4 Experiments and Results

To evaluate our approach, we generated 50 synthetic job sets, (J 50
1 . . .J 50

50 ) con-
taining 50 jobs each. We sampled all sets with characteristics of processing time
pj = bU(1, 50)c, ∀j = 1 . . . n and due dates dj = pj + bU(1, 100)c, ∀j = 1 . . . n.
Release dates are generated depending on pj and dj according to rj = U(0, dj −
pj) in 90 % of the cases and rj = 0 otherwise. As we consider a parallel machine

3 Certainly, a better way is to apply SBC3 by Süer et al. which however incorporates
aspects of EDD and SPT [5].
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Fig. 1. Schematic depiction of the mutation operator concept with δ = 2 and SPT-
mutation and FCFS schedule generation.

setup, we fix the machine size for this benchmark to m = 8 identical machines.
For statistical soundness, we simulated every instance 30 times.

The PPM is applied a standard configuration consisting of a 10×10 toroidal
grid with 100 immobile prey individuals and a uniformly distributed predator
step size of 1. Overall, we allow a maximum of 12, 000 function evaluations (and
fix this maximum number as termination criterion).

For comparison reasons, we also apply NSGA-2 to the considered problems
to acquire some landmark results. There, we also chose a population size of 100
individuals and allow also a maximum of 12, 000 function evaluations. Based on
extensive pre-experimental testing, we used NSGA-2 with a random swap muta-
tion operator and step size setting δ = 8. This mutation randomly swaps δ jobs
in the sequence and is applied to each individual (variation probability of 1.0).
With this setting we achieved the best NSGA-2 results. Mutation with expertise
integration as well as (interestingly) recombination have shown negative effects
on the solution quality and are thus excluded.

For the qualitative evaluation, we apply two well-known metrics: the hyper-
volume metric as well as the ε-Indicator, see Zitzler at al. [6]. For all evaluations,
we use the reference point r = (

∑
Cj ,

∑
Uj) = (5500, 50) that is beyond all max-

imum solution values in function space.We further apply the ε-dominance metric
Iε(A,B) [6] which determines, whether a solution set A dominates another solu-
tion set B entirely. Only if Iε(A,B) > 0 and the inverse comparison Iε(B,A) ≤ 0
holds, the set A dominates set B completely. Otherwise, the intersections of the
determined solution fronts do not allow a domination statement.

First, we compare the PPM with NSGA-2 on a parallel machine problem
with two criteria: P8||

∑
Cj ,

∑
Uj . We apply an SPT-based mutation which

sorts a randomly selected part of the genome according to SPT (δ = 2), an
EDD-based mutation (δ = 2) which orders according to EDD, and a Gaussian
swap mutation (δ = 4). These operators are each attached to two predators of
which one predator selects regarding

∑
Cj and the other on

∑
Uj (resulting in

overall six predators).
Evaluation results are shown in Figure 2(a). Compared to the application

of NSGA-2, the expertise-guided PPM generates a better Pareto-front approx-
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(a) P8||
∑
Cj ,

∑
Uj (b) P8|rj |

∑
Cj ,

∑
Uj

Fig. 2. Result of two examined scheduling problems.

imation. In this figure, gray shaded areas depict the hypervolumes enclosed by
the generated solution fronts. Over all 50 examined instances, the comparison to
NSGA-2 revealed a significant dominance of the PPM approximations (Wilcoxon
rank-sum test with p ≤ 0.05 regarding the enclosed hypervolume). Further, Ta-
ble 1 summarizes the ε-Indicator point of view on the acquired solutions. There,
columns show how often (in %) the results of PPM dominate the results of
NSGA-2 and vice versa compared pair-wise over all instances. The operator
A .ε B denotes the percentage domination count of A over B with respect to ε-
dominance. The first line shows that about 65 % of all PPM solutions dominate
NSGA-2 solutions completely. However, NSGA-2 often finds some solutions that
are missed by PPM and also not dominated by any PPM solution. Still, none of
the NSGA-2 solutions dominates the PPM results.

Table 1. Results of the ε-Indicator evaluation, • for pure random, ∗ for only SPT and
EDD and + for SPT, EDD, and RD configurations.

PPM .ε NSGA-2 NSGA-2 .εPPM
Problem

% (mean) std. %

P8||
∑
Cj ,

∑
Uj 64.54 25.25 0.00

96.42• 3, 70• 0.01•

92.55∗ 9.47∗ 0.03∗P8|rj |
∑
Cj ,

∑
Uj

98.94+ 2.16+ 0.00+

Adding release dates to the previous problem results in P8|rj |
∑
Cj ,

∑
Uj

which is far more difficult to optimize, even for each objective separately. SPT
is not optimal anymore for P8|rj |

∑
Cj and EDD is far from being optimal

for P8|rj |
∑
Uj . For our experiments, we use the same settings as before but

extend the set of variation operators by a release date related operator. The
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RD-mutation operator orders a subsequence according to release dates (δ = 3).
Some exemplary results are shown in Figure 2(b). The statistically more detailed
evaluation (Wilcoxon rank sum test, p ≤ 0.05) proves that the PPM with solely
mutation significantly dominates NSGA-2 on the hypervolume. The remaining
two extensions also proof their benefit significantly. Integrating the expertise
from our previous case study strongly improves convergence while adding RD-
mutation increases the solution quality once more. Further, the ε-Indicator re-
sults from Table 1 show for all three setups a strict domination of PPM over
NSGA-2 in more that 90 % of the cases. Only in the completely random setup,
NSGA-2 can by chance dominate a solution in very few cases. We were able to
show that expertise integration with the PPM is highly beneficial for improving
solution quality.

5 Conclusion

We presented the predator-prey model that allows to effectively support the
optimizer by integrating available problem specific knowledge. The expertise is
expressed by variation operators which can be seamlessly used in the algorithm.
Our results show that this is a great advantage over traditional dominance-
based methods. In our case studies, we investigated multi-objective combinato-
rial scheduling problems and found that we can reliably achieve better trade-off
approximations. Furthermore, the incremental integration of existing problem
knowledge gradually improves the algorithms performance.
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