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yesnier@uci.cu

2 Universidad de Málaga, España.
{gabriel, eat}@lcc.uma.es

Abstract. Dynamic optimization problems (DOP) challenge the per-
formance of the standard Genetic Algorithm (GA) due to its panmictic
population strategy. Several approaches have been proposed to tackle
this limitation. However, one of the barely studied domains has been the
parallel distributed GA (dGA), characterized by decentralizing the pop-
ulation in islands communicating through migrations of individuals. In
this article, we analyze the influence of the migration period in dGAs for
DOPs. Results show how to adjust this parameter for addressing different
change severities in a comprehensive set of dynamic test-bed functions.

1 Introduction

Solving dynamic optimization problems (DOPs) means pursuing an optimal
value that changes over time. Job shop scheduling (dealing with new arrivals),
semaphores (adapting to traffic), and elevator systems (minimizing customer
waiting time while receiving new calls), are some of these scenarios. These sys-
tems raise big challenges for researchers in Genetic Algorithms (GAs) [1, 2]. The
reason is that GAs hardly can, once converged, to escape from old optima and
adapt to the new environment.

An important weak part of the standard GA model lies in its panmictic
population strategy, consisting on a single pool of individuals where any two
of them can potentially mate. Consequently, a few authors have used multiple
populations for specializing and tracking promising regions of the search space
[1–3]. Most of these approaches perform periodical migrations of individuals
among the populations. However, there is no unified and comprehensive study
of the influence of the migration period in the literature.

In this article, we adopt the parallel distributed GA (dGA), which has been
barely studied in this domain [3]. Many dGAs have proven effective in scenarios
of high diversity requirements and computing resources, so their use should be
valuable to DOPs. Our contributions are twofold: (1) we analyze the influence
of the migration period in the performance of the dGA for a comprehensive set
of DOP benchmarks (Section 4) and (2) we illustrate and discuss the diversity
enhancement and speciation-like features of dGA models for DOPs (Section 5).
Let us start by providing a brief background on DOP and dGA model.
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2 Background

A dynamic optimization problem (DOP) is a real-world problems that change
on time, where the fitness function is deterministic over time intervals. The goal
here is to find the optimal solution for each time interval quickly and accurately,
and do it by reusing information from previous time intervals rather than restart-
ing the search from scratch. Two of the most important features of DOPs are
the change frequency (how often the changes occur) and change severity (how
different the environment is after a change) [1].

The dGA model [5] structures the population in demes named islands. Each
island independently evolves, usually in parallel, and communicates with the
other ones through migration of individuals. The migration period (ζ), amount of
migrants to exchange (m), criteria for selecting (ωs) or accepting (ωr) migrants,
neighborhood among islands and synchronization, form the migration policy.

Two main reasons drove us to use dGAs in DOPs. First, different islands
can naturally evolve to different solutions (speciation), which is useful to track
multiple peaks at the same time, i.e., potential optima after an environmental
change. Second, the coarse grained distribution and migrations among islands,
improves the population diversity due to the recombination of different genetic
material. This last can be seen as a mechanism to adapt to the changes in a
DOP, since both behaviors depend on the coupling degree among the islands,
which is highly influenced by the migration period.

3 Experimental Setup

The behavior of algorithms is tested using two well-known benchmarks for binary
and real encoding GAs, thus addressing both discrete and continuous DOPs. The
first one is the technique introduced in [6] to build DOPs from a given binary-
encoded stationary functions f(x)(x ∈ {0, 1}l). We use that technique on three
different functions: Onemax, Royal Road, and Deceptive [6]. We vary the change
severity (ρ ∈ {0.05, 0.1, 0.2, 0.5, 0.7}) to provide a wide set of difficulty degrees.
The second type of generator is the moving peaks benchmark (MPB) with the
parameter setting of the first standard scenario3 and vary the number of peaks

(n = {5, 50, 200}) and the step severity (ρ = {0.0, 0.5, 1.0, 2.0, 3.0}). Since we
are interested in studying the adaptation ability of the dGA, we set the same
change frequency of τ = 50 generations for all problem instances tested.

Our dGA consists of eight islands evolving homogenously. In every island,
we use a sequential GA with generational replacement. Migrations occur syn-
chronously on a unidirectional ring topology and the migration policies used are
defined in Table 1. The migration periods used are set in number of generations
and proportional to the change frequency (τ = 50). Thus, we test the influence
of migrations at each generation (ζ = 1), four times at each stationary interval
(ζ = τ

4
), one time in the half and other after a change ( τ

2
), only after a change

(ζ = τ), plus other at alternating intervals (ζ = 2τ
3
), respectively.

3 Online available at http://people.aifb.kit.edu/jbr/MovPeaks
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Table 1: Parameter settings for GAs and migration policy.
Population Size 512 (64 × 8 islands) ζ ∈ {1, 12, 25, 50, 75}
Parent‘s Selection (Binary tournament, m One copy

Binary tournament) ωs Random selection
Crossover SPX, pc=0.6, ωr Replace if-better than least-fit

(BLXα=0.5 for MPB)
Bit Mutation pm=1/L, L=string length Synchronous migrations

(Polynomial for MPB) Unidirectional ring topology

Algorithms and benchmarks were implemented in C++, using the MALLBA
library4. All experiments were performed in a PC with an Intel Core i7-720QM
processor at 1.60GHz, 4GB of RAM, and running Ubuntu 10.10. To describe
the behavior of algorithms we use the accuracy (acc) metric, also known as
relative error. Then, we apply the performance tool proposed in [7] based on
the area below the curve defined by this population feature (ABCAcc). Finally,
we average the results over 100 independent runs and evaluate the statistical
significance with a level of confidence of 95 %.

4 Influence of the migration period on the performance

Lets us first analyze the influence of the migration period in dGAs for DOPs.
Fig. 1. summarizes the ABCAcc achieved with several migration periods and
change severities. High values of this metric indicate a better adaptation of the
algorithm to the changing optimum throughout all the run.
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Fig. 1: Influence of the migration period in the performance of the dGA model
for DOPs with different severity degrees.

As a first conclusion, you can notice that the effect of the migration period
is dependent on the severity of change. The lowest migration period (ζ = 1) is
notably better for Onemax with low severity. This instance consists of a fitness
landscape with a single optimal solution drifting slowly. Therefore, a high cou-
pling among the islands produces an accumulation of visited solutions around
the optimum which is useful to pursue small variations of it, but at the expense

4 Online available at http://neo.lcc.uma.es/mallba/easy-mallba
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of the global diversity. In fact, if the severity degree is higher (ρ > 0.1) then
the algorithm hardly react and adapt to the changes in the environment (see
Fig. 1a). Conversely, a high migration period (ζ = τ = 50) results beneficial for
unimodal DOPs with high severity, since a loose coupling improves the global
diversity of the population.

Multimodal DOPs (Deceptive or MPB) add an additional behavior due to
the large number of suboptimal solutions that arise. In these scenarios, a small
change in the problem can produce abrupt and discontinuous shifts of the op-
timum in the search space. Then, a high migration period (ζ = 50 or ζ = 75)
produces better performance, even when the step severity is low, since in addi-
tion to the diversity enhancement it allows speciation for tracking several optima
candidate at the same time (see next section). We can see in Table 2 the nu-
merical results with all instances tested. For each severity value (columns in the
table), the best result is marked with a star (*) character and the bold type is
applied to those which are not significantly different from this one.

Table 2: Mean ABCAcc computed for dGA with different migration periods for
DOPs with several change severities.
ζ ρ = 0.05 ρ = 0.1 ρ = 0.2 ρ = 0.5 ρ = 0.7 ρ = 0.0 ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 3.0

Onemax MPB5

1 0.919
∗

0.845
∗

0.639 0.539 0.528 0.912 0.911 0.908 0.912 0.896

12 0.912 0.843 0.649 0.561 0.554 0.939 0.946 0.945 0.932 0.923

25 0.905 0.842 0.671 0.585 0.579 0.948 0.952 0.945 0.937 0.937

50 0.879 0.824 0.681
∗

0.599
∗

0.592
∗

0.946 0.956
∗

0.959
∗

0.947
∗

0.942
∗

75 0.852 0.800 0.664 0.588 0.579 0.958
∗

0.953 0.947 0.938 0.935

RoyalRoad MPB50

1 0.734
∗

0.601
∗

0.306 0.0758 0.0777 0.874 0.860 0.870 0.860 0.850

12 0.720 0.599 0.313 0.0944 0.098 0.906 0.898 0.907 0.903 0.887

25 0.711 0.579 0.311 0.110 0.114 0.915 0.903 0.911 0.899 0.897

50 0.661 0.562 0.319
∗

0.118
∗

0.122
∗

0.913 0.916 0.912 0.908
∗

0.903
∗

75 0.589 0.491 0.286 0.111 0.114 0.923
∗

0.916
∗

0.912
∗

0.908 0.896

Deceptive MPB200

1 0.936 0.851 0.722 0.559 0.570 0.856 0.852 0.856 0.848 0.851

12 0.957 0.877 0.765 0.631 0.648 0.898 0.900 0.894 0.887 0.879

25 0.977
∗

0.917 0.846 0.723 0.732 0.901 0.901 0.900 0.894 0.882

50 0.976 0.937
∗

0.867
∗

0.764
∗

0.772
∗

0.897 0.910 0.908
∗

0.900
∗

0.894
∗

75 0.969 0.921 0.846 0.723 0.728 0.913
∗

0.914
∗

0.897 0.886 0.888

Results in Table 2 corroborate the previous observations statistically. Another
finding is that migrating after a change produces the best overall performance.
Since it insuflates diversity into the population, through the crossbreading be-
tween individuals with different genotypes. In addition, we note that it can only
be effective if islands have had enough isolation time as to promote the speciation
of individuals, as we will illustrate in the next section.

5 Benefits of Speciation for DOPs

With the aim at illustrating the speciation feature of a dGA, we use only two
migration periods: a low one (ζ = 1) and a high value (ζ = 50), and the MPB5

instance with change severity of ρ = 3.0, ensuring the same dynamic behavior
throughout all the runs. Fig. 2 shows the best fitness evolution and the peak
being exploited by each deme. The blue line depicts the optimum trajectory.
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(a) Low Period ζ = 1
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(b) Low Period ζ = 1
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(c) High Period ζ = 50
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(d) High Period ζ = 50

Fig. 2: Fitness evolution (left) and peak tracking (right) by each island of a dGA
with low (upper half) and high (bottom half) migration periods for the MPB5.

On the one hand (low period), the dGA losses the evolutionary potential in
the Fig. 2a (curves join in a straight line), which is due to islands exploit in par-
allel a reduced number of promising areas converging to a single solution. Such
behavior is also depicted in Fig. 2b, during the first 150 generations (peak num-
ber 4). As noted in previous section, this behavior could be useful for unimodal
DOPs with continuous and drifting landscapes. However, it raises the conver-
gence problem in the long term, since it resembles the panmictic population
strategy. On the other hand, a high migration period improves the population
diversity and promotes speciation by the isolated evolution of islands. Specia-
tion process consists of the natural grouping of individuals with similar traits
(species), because of the constrained mating induced by structuring the popu-
lation in several demes. Note in Fig. 2c that the curves are more widely spaced
than the ones obtained above with a low migration period. This behavior corre-
sponds to the ability of the algorithm to track several peaks at the same time.
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This is more clear in Fig 2c from generation 150 up to 400, where the problem
changes but the optimal peak remains the same, and the two islands exploiting
this peak dynamically adapt to its movement. If the optimal peak alternates,
as can be seen in the remainder time intervals, a new specie is able to adapt to
the new environment (track island number 4 after the third change and island
number 2 after the eighth change in Fig. 2d).

6 Conclusions

In this paper we analyzed the influence of the migration period, an important
parameter for dGA models, for DOPs. We used a comprehensive test environ-
ment based on unimodal and multimodal DOP benchmarks. On the one hand,
results showed the benefits of a low migration period to address unimodal DOPs
with small changes. On the other hand, a high migration period showed more
robust to tackle a wide range of change severities in all DOP instances tested,
enhancing the diversity and speciation features of the population. In particu-
lar, migrating as response to a change in the environment shown effective as a
mechanism to adapt to dynamic environments.

In future works, we aim at developing adaptive or self-adaptive dGA models
that exploit the main findings of this work with respect to the migration period in
function of the severity of change, a unified study of all parameters governing the
migration policy, and enhancing the basic behavior with other DOP techniques
like memory, hypermutation, etc.
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