Lower Bounds and Upper Bounds for MaxSAT *

Federico Heras, Antonio Morgado, and Joao Marques-Silva

CASL, University College Dublin, Ireland

Abstract. This paper presents several ways to compauesr andupper bounds
for MaxSAT based on calling a complete SAT solver. Preliminary resulisabel
that (i) the bounds are of high quality, (ii) the bounds can boost the lsedirc
MaxSAT solvers on some benchmarks, and (iii) the upper boundsuechpy a
Stochastic Local Seargbrocedure $Lg can be substantially improved when its
search is initialized with an assignment provided by a complete SAT solver.

1 Introduction

Weighted Partial MaxSATWPMS) [3] is a well-known optimization variant of Boolean
Satisfiability (SAT) that finds a wide range of practical apgtions [3]. WPMS divides
the formula in two sets of clauses: Thard clauses that must be satisfied and shé
clauses that can be unsatisfied with a penalty of their astgavieight

Early complete algorithms for MaxSAT solving were based cambh-and-bound
search [3]. These algorithms perform very well emafted andrandominstances, but
are in general inefficient for industrial instances. An ral&ive approach is based on
iteratively calling a SAT solver. The most widely used agmio consists on relaxing
the soft clauses and then iteratively refining upper bounds on thenopt solution
(e.g. [2]). Recent work proposed to guide the search witkatisfiable subformulas
[3] (or coreg and is most often based on refining lower bounds (e.g. [4,]J1Qther
approaches refine both an upper bound and a lower bound [ih2]l\yi-a more recent
approach based on combinibgary searchandcore-guided searcf7] computes the
middle value between both bounds. Observe that all the adggweaches could benefit
from higher quality initial lower bounds and upper boundbdost the search.

An alternative way to solve MaxSAT &ochastic local searc{SLS. Such methods
are incomplete but they can find approximate solutions foblgm instances. However,
SLS algorithms have a number of drawbacks. First, they aosvkrnto provide low
quality solutions (ie. upper bounds) for industrial ingtes. Second, they are unable to
take advantage gfartial MaxSATinstances with hard and soft clauses.

This paper studies existing lower bounds and upper boursidban calling a SAT
solver, presents some improvements and relate them wigmt@ork in the field. The
empirical study shows that (i) SLS can improve its perforogawhen initializing its
search with an assignment computed by a complete SAT s¢lyethe new bounds
are tighter than the previous ones and finally that ¢i@je-guided MaxSAT algorithms
boost their performance when enhanced with the new bourstsne benchmarks.

* This work was partially supported by SFI Pl grant BEACON (09/IN.11126

2 Computing Lower and Upper Bounds

In this section lower bounds (LB) and upper bounds (UB) foxBIAT are introduced.
In what follows, standard SAT and MaxSAT definitions areadticed (e.g. [3]).

Let X = {z1,29,...,2,} be a set of Boolean variables.likeral is either a vari-
ablex; or its negationz;. A clauseC is a disjunction of literals. Arassignments a
set of literalsA = {ly,ls,...,1;}. If variablez; is assigned tarue (false) , literal
x; (z;) is satisfiedand literalz; (x;) is falsified An assignmensatisfiesa literal iff it
belongs to the assignment, it satisfies a clause iff it sesigfne or more of its literals
and itfalsifiesa clause iff it contains the negation of all its literalsnfodelis a com-
plete assignment that satisfies all the clauses in a CNF fargSAT is the problem
of deciding whether there exists a model for a given projws formula. Given an
unsatisfiable SAT formule, a subset of clauses- whose conjunction is still unsat-
isfiable is called amnsatisfiable cordor core) of the original formula. Modern SAT
solvers can be instructed to generate an unsatisfiable toéfe [

A weightedclause is a paifC, w), whereC' is a clause and thereightw is the
cost of its falsification. Weighted clauses that must bes8atl are callednandatory
(or hard) and are associated with a special weightNon-mandatory clauses are called
soft clauses and have a weight < T. A weightedformula in conjunctive normal
form (WCNF) ¢ is a set of weighted clauses.modelis a complete assignmeyt that
satisfies all hard clauses. Given a WCNF formula,Wesghted PartiaMaxSAT is the
problem of finding a model of minimum cost.

The remainder of this section introduces the notation usetkscribe bound com-
putation algorithmsypyy is the current working formula. Soft clauses may be extended
with additional variables callerklaxation variablesThe bounds may use these func-
tions: Sof t () returns the set of aoftclauses inp and S AT (¢) makes a call to the
SAT solver which returns whether (ignoring weights) is satisfiable (SAT or UNSAT).
Without loss of generality, this paper assumes that thetifggmula has a model.

2.1 Lower Bounds

Consider Algorithm 1. Let\ be the lower bound, initiallyA = 0. A SAT solver is
iteratively called while the formula is unsatisfiable. Faick corep, the minimum
weight min(pc) among the soft clauses is computed, the lower bound is updete
A = X+ min(pc) and the weight of the soft clausesin: is decreased byin(¢¢).
Besides, each soft clause that reaches a weight of 0 is rehfio® the working for-
mula. This lower bound will be referred to as sat-Ib-s. Thvedpbound in [7] is similar
to the described one but all the soft clauseginare removed from the formula which
provides a weaker lower bound (for weighted MaxSAT but egjeint for unweighted
MaxSAT) and will be referred to as sat-Ib. In [10], cores agtedted by unit propaga-
tion (UP), whereas the LB in [11, 7] additionally detectse=that cannot be identified
by UP. Given that a SAT solver always detects first all the £dme solely applying
UP and then the remaining ones, it is straightforward theat B sat-Ib is stronger that
the one in [10], but sat-lb makes calls to a SAT solver which Euire exponential
time. sat-Ib-s is an extension of [10] for weighted MaxSAatthrovides a stronger LB
because it is not restricted to UP.

Algorithm 1: Lower Bound

Input: ¢
1 (ew, A @r) + (¢,0,0)
2 whiletrue do
s | (stpc, A) « SAT(pw)
4 if st= SAT then return (\, ¢ r)
5 (A, ¢r) + (A +min(pc), prU Sof t (¢c))
6 foreach (C, w) € Soft (¢¢) do
7
8

w < w — min(pc)

ifw=0then pw < ew \ {(C,w)}
9 end
10 end

Algorithm 2; Upper Bound

Input: ¢
1 (p,lastA) < (37, ws +1,0)
2 (R,pw) + Rel ax(0, ¢, Sof t (¢))
3 (st e, A) — SAT(pw)
4 if st=truethen (lastA,p) < (A, 337" w; x (1 — A(C; \ {r:i})))
5 return SLS(lastA, ¢)

2.2 Upper Bounds

Consider Algorithm 2. Lejx be an UB. Initially, each soft clause is extended with a
relaxation variable in functioRel ax. Then, the SAT solver is called and it returns a
satisfying assignmentl. Then, the sum of weights of the soft clauses for which the
relaxation variable has been assigned to true provides amUB[7]. Note that, for
non-optimal assignment4, a relaxation variable assigned to true does not mean neces-
sarily that the soft clause associated to such variable beughsatisfied. As a result, a
slight improvement is to sum the weights of unsatisfied dafiges byA disregarding
the relaxation variables in the soft clauses. Such UB willdferred to as sat-ub and is
inspired in [5]. Additionally, a stochastic local search.§ solver is called providing
the previous computed assignment restricted to origingbkes. Recall that such as-
signment satisfies all hard clauses. The SLS solver mayratuimproved solution (or
the given one, in the worse case). This UB will be referredsteat-ub+s.

Usingnon-randoninitial assignments to improve the performance of a locafce
procedure was first studied in [13] for partial MaxSAT. Therkvin [9] executes in
parallel a SAT solver and an SLS procedure. The variable® titigped by the SLS
depend on the curremartial assignmenbf the SAT solver. However, such approach
is (i) unable to take advantage of hard and soft clauses &ndafinot improve the
SLS solver in the instances from MaxSAT Evaluations, essignbecause the SAT
solver proves the unsatisfiability very quickly and cannoidg the SLS procedure.
Differently, sat-ub+s provides an assignment that sasigfjall hard clauses and (ii) its
performance only depends on the ability of the SAT solverrtd fiuch an assignment.
As a result, it can be applied on the benchmarks of MaxSATu&tadns and still obtain
significant improvements as shown in the empirical section.

Benchmark|#Inst. sls sat-ub [sat-ub+ sat-lb sat-Ib-s
circ 9 94892 99 35 4 4
sean 112 69595 265 171 16 16
fir 59 4570 36 27 22 22
simp 138 31 41 28 25 25
msp 148 20787 375 350 227 227
mtg 215 515 18 16 6 6
haplo 6 3690 1151 1068 352 352
frb 25 447 449 446 233 233

mo3sat 80 46 55 37 26 26
mostr 60 39244 246 239 139 139
plan 56 294881 2171 2169 760 1371
spot 21 146940 159734 | 146739|| 63408 68743
rnet 78 156099 296800 |156230|| 113019 143922

upgrade 100 - 10849700000 - 25124000041686100
time 32 19354800 742 704 13 18
pedi 100 |21613900 110344 91520 13792 15391

Aborted - 0 27 27 30 33

AverageTim 34.61 3.65 5.73 17.16 21.11

Table 1. Quality of the upper bounds and lower bounds.

3 Experimental Evaluation

Experiments were conducted on a HPC cluster (3GHz) withxlifior each run, the
time limit was set to 1200 seconds and a memory limit of 4GBe Bbhunds were im-
plemented in the MSNCORE [14] system. All benchmarks from 2009-2011 MaxSAT
Evaluations (2067 instances) were considered.

3.1 Analysisof thebounds

Table 1 summarizes the quality of the computed bounds onlydme benchmark sets,
but similar improvements are observed in the remaining .ofles first column shows
the name of the set of benchmarks, the second column showmsithieer of instances
in the set. The three following columns show three differgpper bounds. The two
final columns show two different lower bounds. All five colusnpresent the average
value of the bound for all instances in the benchmark setu@inkls refers to an upper
bound computed by the SLS procedweAPTNOVELTY+ [8] included in theuBc-
SAT (with default parameters) [16] solver but any other SLS atgm could be used.
sat-ub+s usesDAPTNOVELTY+ as the SLS algorithm. Regarding the upper bounds,
the solutions provided by the SLS algorithm are of very lowldy. Differently, sat-ub
provides a solution orders of magnitude better than theipuswone. Finally, sat-ub+s
is more accurate than the previous one. One of the reasonsatfup and sat-ub+s are
better than sls is because calling a SAT solver with the euidit relaxation variables
provides a good initial assignment tteatisfies all hard clausedote that the bench-
mark setupgradecontains very large weights and the sls algorithm cannatllessuch
weights. For this reason they are omitted from the average fipper bounds.

Recall that the approach [9] is unable to improve the uppent@rovided by a SLS
procedure in the MaxSAT Evaluation instances. Regardiadawer bounds, both sat-
Ib and sat-Ib-s provide the same value for unweighted Max&#\€&xpected given that

in such case they are equivalent. Differently, for weightéakSAT sat-lb-s provides
substantially higher lower bounds.

Note the last two rows in the Table 1 that show summarizedtsesuer the 2067
instances. One shows the numbeabbrtedinstances within the time limit while com-
puting the bounds. The other one shows the average time amdsdo compute the
bounds. The upper bounds based on calling a SAT solver candsted for some very
hard instances, but they usually require much less time $h&h

3.2 Improving core-guided MaxSAT algorithmswith the bounds

In what follows, the performance of sevecalre-guidedviaxSAT algorithms [7] is stud-
ied. Each sub-table in Table 2 shows the results for msu3([&ft]), msu4 [12] (mid),
and core-guided binary search [7] (right), respectivelytiiee algorithms use exactly
one relaxation variable per soft claus@nce the LBs are computed, the algorithms will
add one relaxation variable to each soft clause returneg;i(See Algorithm 1). For
each sub-table in Table 2, the first and second columns stehethchmark set and its
number of instances, respectively. The remaining threeneos show the performance
of an algorithm with different bounds in terms of solved arstes within the time limit.
Note that the necessary time to compute the bousidiscludedin the time limit for
each execution. For each algorithm some sets of instaneeshawn where significant
differences in the performance are reported.

msu3 [11] iteratively refines a LB. Table 2 (left) shows thefpenance of msu3
without LB (3rd column), with sat-Ib (4th col.) and with dats (5th col.). Clearly,
the use of lower bounds improve the performance of msu3. Raeighted problem
sets (msp and frb), both lower bounds provide the same inepnent as expected. For
weighted problem sets (planning, upgrade and pedigreedp-sais noticeable better
than sat-Ib.

msu4 [12] refines both a LB and a UB but empirical observatimws that in most
of its iterations, msu4 refines an UB. Hence, msu4 may bemefit both bounds but
specially from a good initial UB. Table 2 (mid) shows the penfiance of msu4 where
the LB is fixed to sat-lIb-s, while the UBs considered are n@rd €ol.), sat-ub (4th
col.) and sat-ub+s (5th col.). Clearly, the use of UBs imprtihe performance of msu4,
being sat-ub+s the one that provide the best results.

Core-guided binary search [7] refines both a lower bound gpubound, and
at each iteration it asks for the middle value between theablel2 (right) shows the
performance of core-guided binary search without boundd €8l.), with both sat-
Ib and sat-ub as in [7] (4th col.) and with the two new bounddtsa and sat-ub+s
(5th col.). The additional sixth column shows the resultsdat-Ib and sat-ub+s. The
performance of core-guided binary search is quite goodowitthe bounds and their
use improves the performance in 4 of 5 sets. Note that thaesftig for theupgrade
set of problems is slightly worsened. While the use of bouraissave calls to the SAT
solver in binary search, they may move the searchaaler calls of the SAT solver
[15].

Set |#1.|Non€| sat-Ib| sat-Ib-s| sat-Ib
sat-uh sat-ub+ssat-ub+:
sean 112 72 | 77 78 78
fro | 25| O 15 15 15
msp| 148| 98 | 107 107 107
upgr| 100| 63 | 59 52 59

Set [#1.|Non€|sat-Ibjsat-Ib-§ | Set [#1.[None sat-usat-ub+
msp| 148| 89 | 92 | 92 | [sean|112| 51 | 77 | 78
fro | 25| O 14 14 fir | 59| 46 53 53
plan.| 56 | 38 | 40 44 mostr| 60 | 44 | 44 59
upgr/100| 0 | 0 | 10 || msp|148| 75| 86 | 108
pedi.| 100| 24 | 40 44 plan.| 56 | 21 35 50 -

fotal| 370] 151 186 | 204 | [fotal| 435] 237| 295 | 348 't)ciilf igg 23’(35 23;; 23:6 23932

Table 2. Bounds on msu3 (left), msu4 (mid) and core-guided binarycke@ight)

4 Conclusionsand Future Work

This paper introduces new LB and UB based on calling a SATes@wnd studies their
effect on the performance core-guided MaxSAT solvers. Townlds presented in this
paper can be integrated branch and boundaxSAT solvers and MaxSAT solvers
based on computing unsatisfiable cores that exgisjbint coreq1, 7], and which add

more than one relaxation variable per soft clause [4]. Addélly, the bounds can be
extended to other boolean optimization frameworks [6].

References

1. C. Anstegui, M. L. Bonet, and J. Levy. A new algorithm for weighted partial BAX. In
AAAI, 2010.
2. D. Le Berre and A. Parrain. The Sat4j library, release 2SAT 7:59-64, 2010.
3. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editétandbook of Satisfiability2009.
4. Z. Fu and S. Malik. On solving the partial MAX-SAT problem. $AT, pages 252-265,
August 2006.
5. E. Giunchiglia and M. Maratea. Solving optimization problems with DLLERAI, pages
377-381, August 2006.
6. F.Heras, V. M. Manquinho, and J. Marques-Silva. On applyingprojppagation-based lower
bounds in pseudo-boolean optimization. HbAIRS Conferencgages 71-76, 2008.
7. F. Heras, A. Morgado, and J. Marques-Silva. Core-guided Yisearch algorithms for
maximum satisfiability. IPAAAI, 2011.
8. H. H. Hoos. An adaptive noise mechanism for Walk SATARAI, pages 655-660, 2002.
9. L.Kroc, A. Sabharwal, C. P. Gomes, and B. Selman. Integratisigsatic and local search
paradigms: A new strategy for MaxSAT. I8CAI, pages 544-551, 2009.
10. C. M. Li, F. Many, and J. Planes. Exploiting unit propagation to compute lower bounds in
branch and bound Max-SAT solvers. @P, pages 403—414, 2005.
11. J. Marques-Silva and J. Planes. On using unsatisfiability for solvingmoum satisfiability.
Computing Research Repositpaps/0712.0097, December 2007.
12. J. Marques-Silva and J. Planes. Algorithms for maximum satisfiabgitygwnsatisfiable
cores. INDATE, pages 408-413, 2008.
13. M. E. Menai and M. Batouche. An effective heuristic algorithm fa thaximum satisfia-
bility problem. Appl. Intell, 24(3):227-239, 2006.
14. A.Morgado, F. Heras, and J. Marques-Silva. The MSUnCoreS¥a solver. InPOS 2011.
15. M. Sellmann and S. Kadioglu. Dichotomic search protocols for caingnl optimization. In
CP, pages 251-265, 2008.
16. D. A. D. Tompkins and H. H. Hoos. UBCSAT: An implementation angezknentation
environment for SLS algorithms for SAT & MAX-SAT. IBAT, 2004.
17. L. Zhang and S. Malik. Validating sat solvers using an independsalution-based checker:
Practical implementations and other applicationsDATE, pages 10880-10885, 2003.

