
A Learning Optimization Algorithm in Graph Theory
Versatile Search for Extremal Graphs Using a Learning

Algorithm ?

Gilles Caporossi and Pierre Hansen

GERAD and HEC Montréal (Canada)
Gilles.Caporossi@gerad.ca,Pierre.Hansen@gerad.ca

Abstract. Using a heuristic optimization module based upon Variable Neighbor-
hood Search (VNS), the system AutoGraphiX’s main feature is to find extremal or
near extremal graphs, i.e., graphs that minimize or maximize an invariant. From
the so obtained graphs, conjectures are found either automatically or interactively.
Most of the features of the system relies on the optimization that must be efficient
but the variety of problems handled by the system makes the tuning of the opti-
mizer difficult to achieve. We propose a learning algorithm that is trained during
the optimization of the problem and provides better results than all the algorithms
previously used for that purpose.

Keywords: extremal graphs, learning algorithm, combinatorial optimization.

1 Introduction

A graph G is defined by a set V of vertices and a set E of edges representing pairs
of vertices. A graph invariant is a function I(G) that associates a numerical value to
each graph G = (V,E) regardless of the way vertices or edges are labelled. Examples
of invariants are the number of vertices |V | = n, the number of edges |E| = m, the
maximum distance between two vertices (diameter), the chromatic number (minimum
number of colors needed so that each vertex is colored and two adjacent vertices do not
share a color). Some more sophisticated invariants are related to spectral graph theory
such as the index (largest eigenvalue of the adjacency matrix), the energy (sum of the
absolute values of the eigenvalues of the adjacency matrix). A graph that minimizes
or maximizes an invariant (or a function of invariants, which is also an invariant) is
called extremal graph. The system AutoGraphiX (AGX) for computer assisted graph
theory was developed at GERAD, Montreal. Since 1997, AGX led to the publication of
more than 50 papers. The search for extremal graphs is the first goal of AGX and it is
an important tool for graph theorists and mathematical chemists as it may be used to
handle the following other goals:

– Find a graph given some constraints, achieved by the use of Lagrangian relaxation.

? The authors gratefully acknowledge the support from NSERC (Canada).

2

– Refute or strengthen a conjecture. Suppose a conjecture says that the invariant I1
is larger than the invariant I2 (I1 ≥ I2), minimizing I1− I2 could provide a counter-
example if a negative value is obtained. Whether a counter-example is found or not,
looking at the extremal values and the corresponding graphs could help strengthen-
ing or correcting the original conjecture.

– Find conjectures. Structural or numerical conjectures may be obtained automati-
cally or interactively by analyzing or looking at the extremal graphs obtained.

Based upon the Variable Neighborhood Search metaheuristic (VNS) [16][17], Ca-
porossi and Hansen [9] developped AGX. The extremal graphs obtained by AGX are
studied either directly by the researchers or by automated routines that may identify
properties of the extremal graphs and deduce conjectures on the problem under study
[8][10].

Several graph theorists have used AGX (and the recent AGX2) for study of invari-
ants which most interested them. Applications to mathematics concern spectral graph
theory, i.e., the index [11] and the algebraic connectivity [3], as well as several standard
graphs invariants [2] and a property of trees [5]. Applications in mathematical chem-
istry concern the Randić (or connectivity) index [6, 7, 13, 14], the energy [4], indices of
irregularity [15] and the HOMO-LUMO gap [12]. This work has led to many extensions
by several mathematicians and chemists.

AGX relies on the VNS but also on a large number of transformations used within
the search for a local optimum in the Variable Neighborhood Descent (VND) phase of
the algorithm. The good performance of the system depends on the user’s knowledge to
select the correct transformations to use. If the transformations are not appropriate, the
optimization will have a poor performance, either because it fails to obtain good solu-
tions or because it takes much too long time. Indeed, choosing a transformation that is
too sophisticated will result in a waste of time while a transformation that is too simple
will be fast but inefficient. The authors of the system, aware of this problem, proposed
in the second version of AGX (called AGX 2) an algorithm that selects automatically
its transformations [1], the Adaptive Local Search (ALS). While ALS is a step toward
the automation of the selection of the transformations, it cannot as such be considered
as a learning algorithm since it is unable to learn on large graphs (its learning is very
time consuming on graphs with more than 12 vertices).

In this paper, we propose a new learning algorithm that could replace the original
VND used in AGX 1 or the Adaptive Local Search (ALS) of AGX 2. As the ALS,
the new Learning Descent (LD) does not require any knowledge in combinatorial opti-
mization and is based upon the concept of transformation matrix. However, its learning
capabilities are much more powerful. The next section of the paper describes the various
optimization algorithms that have been used to search for extremal graphs. A compar-
ison of the performance of the different algorithms is done in the third section and a
short conclusion is drawn at the end of the paper.

2 The Variable Neighborhood Search in AGX

The optimization in AGX is done by VNS which is well suited to handle a wide variety
of problems with little tuning, compared to most other methods such as tabu search or
genetic algorithms.

3

Let G be a graph and consider a transformation, for example move that consists in
removing an edge from G and inserting it in another place on G. This transformation
may be used to define N(G), the neighborhood of G, or set of all graphs that may be con-
structed from G by the transformation move. Such neighborhoods could be extended to
a succession of transformations. One thus defines the nested neighborhoods Nk(G), the
set of graphs that could be constructed by applying k times the chosen transformation
to G. This concept of neighborhoods plays an important role in VNS and the defini-
tion of a multitude of these neighborhoods is plainly used in the AGX implementation
to handle efficiently a wide variety of different problems that would require different
neighborhoods (or transformations) for good results.

In AGX, the standard implementation of VNS is used, alternating Local Search and
variable magnitude perturbations as described on figure 1.

Initialization:
• Select the neighborhood structure Nk and a stopping condition.
• Let G be an initial (usually random) graph.
• Let G∗ denote the best graph obtained to date.

Repeat until condition is met:
• Set k← 1;
• Until k = kmax,do:

(a) Generate a random graph G′ ∈ Nk(G);
(b) Apply LS to G′

Denote G′′ the obtained local optimum G′′ = LS(G′);
(c) If G′′ is better than G,

Let G∗← G′′ and
k← 1

otherwise,
set k← k +1.

done

Fig. 1. Rules of Variable Neighborhood Search.

2.1 The VND algorithm in AGX 1

The choice of a good transformation within the local search is a key to success. To add
flexibility to the system, different transformations are implemented that could be used
one after the other on the same problem. Thus, the Variable Neighborhood Descent is
a succession of local searches involving different transformations used for the search.
The program performs a local search for each transformation in the list until none of
them succeeds. VND could be considered as an extension of local search as it provides
a local optimum with respect to each of the transformations used in the search. The
VND algorithm is described on figure 2.

While the general VNS parameter k could often be set to the default value, the
choice of the list of transformations in VND is much more critical. For instance, if the

4

Initialization:
Select a list of neighborhood structures
Nl(G), ∀l = 1 . . .L, that will be used.
Consider an initial graph G,
set improved← true.
Until improved = f alse do

Set improved = f alse
Set l = 1
Until l = L do

(a) Find the best graph G′ ∈ Nl(G).
(b) If G′ is better than G,

set G← G′,
set improved← true and
return to step (a).

Otherwise,
set l← l +1;

done
done

Fig. 2. Rules of Variable Neighborhood Descent.

number of vertices and edges are fixed, any transformation that results in a modification
of these numbers will be useless.

A variety of neighborhoods are implemented in AGX to adapt the system to different
kinds of problems. Some of these transformations were specially designed to handle
special classes of problems (for example, 2-Opt is well suited for problems with fixed
numbers of edges where simple move is very inefficient). The set of transformations
used in AGX is described in [9].

To take advantage of the capabilities of AGX, the researcher must have sufficient
knowledge in combinatorial optimization, which is not necessarily the case.

2.2 The Adaptive Local Search in AGX 2

The Adaptive Local Search (ALS) may be viewed as meta-transformations that could
eventually be used within the VND frame. However, by themselves, ALS replaces most
of the transformations available within AGX 1. Each transformation is described as a
replacement of an induced subgraph g′ of G by another subgraph g”. Considering 4 ver-
tices, at most 6 edges could be present in any graph. It is therefore possible to consider
up to 26 = 64 labelled subgraphs on 4 vertices. ALS enumerates all the subgraphs g′

with 4 vertices in G. It then considers replacing g′ by an alternative subgraph g′′. As
enumerating and evaluating all the alternative subgraphs g′′ to replace g′ would be very
time consuming, replacing g′ by g′′ will only be evaluated if there are good reasons to
believe it is worthwhile. The implementation of this method encodes each subgraph g′

or g′′ as a label (number) based upon the 64 patterns as follows.
After relabeling its vertices from 1 to 4 by preserving their order, each subgraph g′

is characterized by a unique label from 0 to 63 as follows:

5

pattern 0 (vector = 000000): empty subgraph
pattern 1 (vector = 000001): E = {(1,2)}
pattern 2 (vector = 000010): E = {(1,3)}
:
pattern 13 (vector = 001101): E = {(1,2),(1,4),(2,3)}
:
pattern 63 (vector = 111111): complete subgraph on 4 vertices.

A 64×64 transformation matrix T = {ti j} is used to store information on the per-
formance of each possible transformation from pattern i to pattern j.

In ALS, T is a binary matrix indicating whether a transformation ti j from the pattern
i to the pattern j was ever found useful.

Based upon this definition of patterns, the principle of the ALS is to use the se-
lected transformations to try to obtain a better graph. Once the graph could no more
be improved by the selected transformations (a local optimum is found with respect to
the considered transformations), the algorithm searches for transformations that were
not considered but that could improve the current solution. For this search, all poten-
tial transformations are considered and those that could improve the graph are added to
the set of selected transformations (by setting the corresponding ti j = true). This step
is very time consuming and is only done for small graphs (12 vertices or less). After
selection of new transformations the matrix T is updated to take symmetry into account
(the same graph g′ may correspond to different patterns according to the labeling of the
vertices). A formal description of the algorithm is given on figure 3

When working on large graphs, ALS has to be trained before the optimization as
this training will never be modified when optimizing large graphs. The training and
optimization phases are thus well separated in ALS (for large graphs, steps 2 and 3 of
the algorithm are omitted).

2.3 The Learning Descent

As opposed to the ALS algorithm, the LD algorithm performs the training during the
optimization phase and always continues learning. The training and optimization phases
occurs at the same time.

The LD algorithm on figure 5 could be described by the following observations:

1. The pertinence of changing g′ into g′′ (replacing pattern p′ by pattern p′′) is mem-
orized in a 64×64 matrix T which is initially set to T = {ti j = 0}.

2. During the optimization, each induced subgraph g′ is considered for replacement
by any possible alternative subgraph g” but this replacement will not necessarily be
evaluated.

3. The probability to test the replacement of pattern i (g′) by j (g”) is p = sig(ti j) =
1

1+e−ti j . The initial probability to test a replacement is 50% according to point 1.
4. For any tested transformation, if changing g′ (with pattern p′) to g′′ (with pattern

p′′) improves the solution, the entry tp′,p′′ of T is increased by δ+ (and reduced
by δ− otherwise), with δ+ > δ− because it is more important to use an improv-
ing transformation than to avoid a bad one. Also, a good transformation may fail,

6

Step 1: Initialization
Load the last version of the matrix T for the problem under study if it exists initialize T = {ti j = 0}
otherwise.
Step 2: Find interesting transformations
Set f ← f alse (this flag indicates that no pattern was added to the list at this iteration).
For each subgraph of the current graph with n′ vertices do:

Let pi be the corresponding pattern
for each alternative pattern p j do:

if replacing the subgraph pi by the pattern p j
would improve the current solution:

update the matrix T by setting ti j← true
set f ← true.

done
done
Step 3: Update T for symmetry
If f = true: Update the matrix T to take symmetry into account:

for each ti j = true do:
for each pattern (i′, j′) obtained from (i, j)
by relabelling the vertices do:

set ti′ j′ ← true.
done

done
If f = f alse:

Stop; a local optimum is found.
Save the matrix T

Step 4: Apply Local Search
set improved← true
while improved = true do:

set improved← f alse
For each subgraph g′ of G on n′ vertices do:

let pi be the corresponding pattern
For each alternative pattern p j:

if ti j = true do:
if replacing pi by p j in G improves the
solution:

apply the change
set improved← true

done
done

done
Go to Step 2

Fig. 3. Rules of the Adaptive Local Search

7

specially if the graph already has a good performance (here, we use δ+ = 1 and
δ− = 0.1). The probability to test a transformation increases when it succeeds, but
decreases if it does not.

As often used in neural networks, the sigmoid function sig(x) allows the probability
to test a transformation to change according to its performance without completely
avoiding any transformation (which allows the system to always continue learning).
The figure 4 represents the replacement of pattern 60 by pattern 27 on a given graph G
for the induced subgraph g′ defined by vertices 1, 3, 5 and 6.

4

1

26

35

1 2

3 3

2

4

1

4

4

1

26

35

Pattern 60 Pattern 27

Fig. 4. Illustration of the transformation of G (left) to G’(right)

Note that if the algorithm were restricted to Step 2, it would tend to reduce the
probability to use any transformation when good solutions are encountered since few
transformations would improve such solutions. To avoid this problem, the matrix T is
centered after each local search to an average value t̄ = 0.

3 Performance comparison

In order to compare the performance of the different versions of the optimization mod-
ule in AGX-1 and AGX-2, the AGX-1 moves were added to AGX-2. The various differ-
ence in the AGX-1 and AGX-2 program are thus not taken into account, which allows
a more realistic comparison of both methods.

3.1 Experiments description

AGX-1 needs an input from the user for good performance. The program was run with
two different settings. The novice setting consists in using all the available neighbor-
hoods for the VND, except those that modify the number of vertices. The expert setting
consists in properly chosen neighborhoods. To ensure the reliability of a result stating

8

Step 1: Initialization
Load the last version of the matrix T for the problem under study if it exists and initialize
T = {ti j = 0} otherwise.
Step 2: Apply Local Search
set improved← true
while improved = true do:

set improved← f alse
For each subgraph g′ of G on n′ vertices do:

let pi be the corresponding pattern
For each alternative pattern p j
(corresponding to g′′):

let x be an uniform 0-1random number.
if x≤ sig(ti j) do:

if replacing g′ by g′′ in G improves the
solution:

apply the change
set improved← true
set ti j = ti j +δ+.

otherwise:
set ti j = ti j−δ−.

done
done

done
Step 3: Scale the matrix T

Let t̄ be the average value of the terms ti j 6= 0.
For each ti j 6= 0:

set ti j = ti j− t̄.
Step 4: Save the matrix T for future usage

Fig. 5. Rules of the Learning Descent

that new methods are better than older ones, the experimental protocol always has a bias
in favor of older methods. The choice of the neighborhoods used in the expert mode of
AGX 1 is done after results obtained by all the combinations of the 4 transformations
(add/remove, move, detour/short cut and 2-Opt) are known. The chosen strategy for
AGX-1-e (expert strategy) was the one providing the best result in success rate as first
criterion, using average value and finally cpu time in case of ties. We noticed that the
best performance for a given problem but with different number of vertices was not
necessarily due to the same scheme. This indicates clearly a bias favorable to AGX 1-e
since it is difficult that an expert would identify this choice before the tests are done.

AGX-2 is designed to run without knowledge from the user and was also run in
the three following modes : the ”complete” mode AGX 2-c in which all the possible
transformations involving 4 vertices are considered, the adaptive mode AGX 2-als in
which the software chooses the useful neighborhoods from 5 runs on the same problem
restricted to 10 and 12 vertices, and the learning descent mode AGX 2-ld in which the
probability to use a given transformation is adjusted during the optimization.

9

To avoid any bias favorable to AGX 2-ld, the training on small graphs for AGX 2-
als is done prior to the experiments and the training time (time needed by the system
to identify which transformations to use) is not considered. On the opposite, the results
of training during the optimization with AGX 2-ld was systematically erased after each
optimization, so that the benefits from previous runs is avoided, which is a bias against
AGX 2-ld.

The five optimization schemes compared are noted as follows.

– 1 b : version using the all neighborhoods available in AGX-1,
– 1 e : version using the best combination of neighborhoods available in AGX-1

(expert mode),
– 2 c : version using AGX-2 considering all the possible transformations on 4 vertices

(with the statistics matrix T = {ti j = true}),
– 2 als : version using AGX-2 and the adaptive local search,
– 2 ld : version using AGX-2 and the learning descent.

The performance of these various algorithms was tested against 12 different and rep-
resentative problems. The problems used are described in the following section. Each
problem was solved 10 times for graphs with 13, 15 and 20 vertices with each of the 5
optimization scheme. In all cases, the total CPU time allowed was 300 seconds and the
program was stopped if no improvement was encountered for 60 consecutive seconds.
To reduce bias due to the implementation, all the tests were achieved with the same
program in which the different versions of the optimizer are available thru parameters.
All these tests were achieved on a Sun with 2 Dual Core AMD Opteron(tm) Processor
275 (2.2 GHz) with 4Go RAM memory running Linux CentOS-4 operating system.
The performance of each strategy was measured in 3 ways. The first part (Average Z)
of each table indicates the average value obtained among the 10 runs; the second (Suc-
cess) indicates the number of times the best value was obtained and the last (CPU Time)
indicates the average CPU time required to reach the best value found. If the best value
was never attained by a given strategy, a ”-” is displayed.

3.2 Results analysis

Among the 360 instances tested, AGX 2-ld succeeded 275 times (76.4 %), which is the
best performance, followed by AGX 2-als with 255 successes (70.8 %), AGX 2-c with
229 (63.6 %) successes and AGX 1-e with 176 (48.8 %) successes, followed by AGX 1-b
which was only successful 61 times (16.9 %).

Regardless of the problem under study, AGX 1-b (which was often before AGX 2
was developed) shows very poor performance. Even with the experimental bias, the
AGX 2 strategies are far better, first because they involve a wide range of transfor-
mations that were not implemented in AGX 1, and also because the VND used with
AGX 1 spends some time trying to unsuccessfully optimize with a transformation be-
fore switching to the next, which is not the case in any of the AGX 2 local search
scheme. If one should compare the strategies that do not involve any knowledge of the
problem or of the optimization procedure (1 b, 2 als, 2 c and 2 ld), which is the most
important for the novice point of view, AGX 2 with its stochastic local search seems to
be the best choice.

10

The ”Best Z” line on the tables indicates the best obtained value during the whole
experiment, which may be (but is not always) the best possible value. The Min or Max at
the top left of each table recalls wether the objective is to be minimized or maximized.

– Problem 1 : Minimize the energy E among trees, where E = ∑
n
i=1 |λi| is the sum

of the absolute values of the eigenvalues of the adjacency matrix of the graph. For
this problem, the number of edges is fixed by the number of vertices ; not all the
transformations are therefore needed. The optimal solution to this problem, is a
path and the corresponding value of the energy is E = 2

√
n−1.

– Problem 2 : Minimize the value of the Randić index [18] among bicyclic connected
graphs. The Randić index is defined as χ = ∑(i j)∈E

1√
did j

where di is the degree of

vertex i. The solution to this problem is a star to which are added two edges adjacent
to the same vertex. The optimal value is χ = n−4√

n−1
+ 2√

2n−2
+ 1√

3n−3
.

– Problem 3 : Same as problem 2, except that the objective function is maximized
instead of being minimized. The optimal solution is known to be two cycles sharing
an edge or two cycles joined by an edge and the corresponding value is χ = 4√

6
+

3n−10
6 .

– Problem 4 : Minimize the sum of the average degree of the graph d̄ and the prox-
imity p, where d̄ = ∑

n
i=1

di
n and p = 1

n−1 mini(∑n
j=1 di j) where di j is the distance

between the vertices i and j. In this case, the search space is only restricted by the
connexity constraint. The optimal solution to the problem is a star and the optimal
value is Z = n+1− 2

n .
– Problem 5 : Maximize the size of the maximum stable set, the maximum number

of vertices to select such that no selected vertex is adjacent to another selected
vertex, among connected graphs with number of edges equals twice the number of
vertices (m = 2n).

– Problem 6 : Maximize the matching number, the number of edges to be selected
such that no vertex is adjacent to two selected edges, among the same set of graphs
as problem 5 (m = 2n). There are lots of graphs maximizing this invariant under the
given constraints, but the maximal value cannot exceed Z = b n

2c, which is attained
here.

– Problem 7 : Maximize the index, value of the largest eigenvalue of the adjacency
matrix, among the same set of graphs as problem 5 or problem 6 (m = 2n).

– Problem 8 : This problem is the same as problem 7 except that the objective func-
tion is to be minimized instead of being maximized.

– Problem 9 : Minimize the index among trees.
– Problem 10 : Maximize the diameter, maximum distance between two vertices of

the graph, among the same set of graphs as problems 5, 6, 7 and 8.
– Problem 11 : Maximize the diameter among connected graphs graphs with m≥ 2n.
– Problem 12 : Maximize the size of the maximum stable set among connected

graphs graphs with m≥ 2n.

Problems 1 to 10 (except problem 4) have a fixed number of edges and of vertices.
This corresponds to the problems we encounter most often, particularly for parametric
analysis on the order and the size of the graph. In problems 5,6,7,8 and 10, the number
of edges is fixed to twice the number of vertices. The number of graphs satisfying this

11

Min Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 9.36 12.63 15.69 5 1 0 55.1 50 -
1 e 6.93 7.48 11.60 10 10 1 17.2 47.7 121.8
2 c 6.93 7.48 8.72 10 10 10 0 0 39.2

2 als 6.93 7.48 8.72 10 10 10 0 0 0
2 ld 6.93 7.48 8.72 10 10 10 0.5 0.9 2.4

Best Z 6.93 7.48 8.72

Table 1. Results for problem 1 (the graphic represents the number of successes)

Min Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 4.56 5.74 6.95 4 1 0 76.3 99 -
1 e 3.99 4.29 5.53 10 10 2 26.3 78.3 149
2 c 3.99 4.29 4.94 10 10 10 5.4 11.2 71.1

2 als 3.99 4.29 4.94 10 10 10 0.4 0.9 3.7
2 ld 3.99 4.29 4.94 10 10 10 0.5 0.8 2.9

Best Z 3.99 4.29 4.94

Table 2. Results for problem 2

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 6.02 6.09 7.67 0 0 0 - - -
1 e 6.47 7.46 9.88 10 9 1 22.7 0 0
2 c 6.47 7.47 9.97 10 10 10 4.3 14.1 92.3

2 als 6.47 7.47 9.97 10 10 10 0.3 0.6 3.6
2 ld 6.47 7.47 9.97 10 10 10 0.7 1.3 5.4

Best Z 6.47 7.47 9.97

Table 3. Results for problem 3

condition is rather large, which makes the combinatorial aspect of the optimization
important. Such problems are interesting benchmarks for the optimization routine.

The Problems 5 and 12 are NP-Complete. These two problems provide informa-
tion on the capability of various strategies to handle problems which are more time
consuming. AGX 1-b completely fails, and AGX 2-c is not very efficient either; this is
because they are among all the two strategies that perform a large number of useless
computations of the objective function.

12

Min Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 2.85 2.89 3.26 10 7 0 18 35.9 -
1 e 2.85 2.87 2.95 10 9 4 0.7 25.4 33.4
2 c 2.85 2.87 2.9 10 10 10 4.4 10.7 82.4

2 als 2.85 2.87 2.9 10 10 10 0.6 1.4 6.6
2 ld 2.85 2.87 2.9 10 10 10 0.7 1.2 6.2

Best Z 2.85 2.87 2.9

Table 4. Results for problem 4

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 7.2 8.6 12.1 0 0 0 - - -
1 e 8.4 9.4 12.8 5 2 2 24 57.3 5.7
2 c 8.2 9.4 11.5 3 0 0 21.8 - -

2 als 8.3 9.8 12.7 3 1 2 2.9 10.3 35.4
2 ld 8.7 10 13.1 7 2 4 24.4 39.8 38.9

Best Z 9 11 14

Table 5. Results for problem 5

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 6 7 8.6 10 10 2 0 0.3 48.5
1 e 6 7 10 10 10 10 0.1 0 0
2 c 6 7 9.8 10 10 8 0 0.5 53.6

2 als 6 7 10 10 10 10 0 0 4.3
2 ld 6 7 10 10 10 10 0 0.1 4.3

Best Z 6 7 10

Table 6. Results for problem 6

We notice that problems 10 and 11 have a low success rate. The problem 11 on
20 vertices was completely missed by all the strategies as the best found value is only
3 even if the optimal value should be at least as good as that of problem 10. This is
an important phenomenon for researchers using AGX; even if the diameter is easy to
compute, it has really bad properties from the optimization point of view. Depending on
the current graph, changing the value of the diameter by 1 may involve a large number
of transformations and no strategy is powerful enough in this case. This phenomena is
called plateau and some practical ways to handle it are described in [9, 1].

13

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 4.92 5.28 5.91 0 0 0 - - -
1 e 5.91 6.2 6.57 1 0 0 100.9 - -
2 c 5.92 6.18 6.59 10 4 0 27 84.3 -

2 als 5.92 6.29 6.95 10 10 0 3.5 15.8 -
2 ld 5.92 6.28 6.99 10 9 2 6.4 20.9 53.3

Best Z 5.92 6.29 7.25

Table 7. Results for problem 7

Min Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 4.86 5.13 5.65 0 0 0 - - -
1 e 4.02 4.03 4.13 4 1 0 0 0 -
2 c 4 4 4.3 10 10 0 11.2 48.3 -

2 als 4 4 4.01 10 10 7 2.7 8.5 131.2
2 ld 4 4 4 10 10 10 3.3 9.6 74.1

Best Z 4 4 4

Table 8. Results for problem 8

Min Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 2.35 2.68 3.26 0 0 0 - - -
1 e 1.95 1.96 2.02 10 10 3 0 18.6 52.6
2 c 1.95 1.96 1.98 10 10 10 4.3 12.3 82.3

2 als 1.95 1.96 1.98 10 10 10 0.4 0.7 3.6
2 ld 1.95 1.96 1.98 10 10 10 0.6 1.1 3.6

Best Z 1.95 1.96 1.98

Table 9. Results for problem 9

4 Conclusion

From these experiments, we first notice that the VNS-LD and VNS-ALS algorithms are
clearly more efficient even if the performance of VNS-VND e is overestimated. The good
performance of the VNS-LD may be due to the wide range of transformations implicitly
considered in VNS-LD that are not implemented in VNS-VND. However, this is not
the only reason because some tests were achieved always using all the transformations
available in LD (by artificially setting the probability to select any of them to 1) and

14

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 5.6 5 4.9 1 0 0 84.3 - -
1 e 6.1 6.7 7 2 0 0 35.4 - -
2 c 5.9 6.8 10.7 1 0 1 6.9 - 66.6

2 als 6.3 7.5 11.4 3 1 5 19.3 8.6 30.5
2 ld 6.8 7.7 11.1 8 2 4 26.3 45.4 15.6

Best Z 7 9 12

Table 10. Results for problem 10

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 5.2 3.1 3 0 0 10 - - 0.5
1 e 6.5 4.3 3 6 1 10 26.3 57.1 0.1
2 c 4.8 3.5 3 0 0 10 - - 3.4

2 als 4.7 3.6 3 1 0 10 20.7 - 6.7
2 ld 6.1 4.2 3 6 0 10 70.5 - 6.1

Best Z 7 8 3

Table 11. Results for problem 11

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 6.5 6.9 6.4 0 0 0 - - -
1 e 8.4 8.6 7.7 1 2 0 81.5 42.7 -
2 c 8.1 8.9 7.9 0 2 0 - 58 -

2 als 8.2 8.9 8.1 0 2 0 - 42.6 -
2 ld 8.4 8.1 8.5 0 0 1 - - 6.4

Best Z 10 10 10

Table 12. Results for problem 12

the best results were only found 269 times. Indeed, one of the forces of LD and ALS
are that unlike VND which wastes some time trying to unsuccessfully optimize with a
transformation before switching to the next one, LD uses any interesting transformation
and concentrates on the most performing ones. Overall, VNS-LD performs better than
VNS-ALS even if this last algorithm’s training time is not considered here (training was
achieved before the tests on smaller graphs); furthermore, VNS-LD’s training was erased
between two tests and the system had to learn from scratch at each run.

15

References

1. M. Aouchiche, J.-M. Bonnefoy, A. Fidahoussen, G. Caporossi, P. Hansen, J. Lacheré, and
A. Monhait. Variable neighborhood search for extremal graphs. 14. the autographix 2 system.
In L. Liberti and N. Maculan, editors, Global Optimization. From Theory to Implementation.
Springer Science, New-York, 2006.

2. M. Aouchiche, G. Caporossi, and P. Hansen. Variable neighborhood search for extremal
graphs 8. variations on graffiti 105. Congressus Numerantium, 148:129–144, 2001.

3. S. Belhaiza, N.M.M. Abreu, P. Hansen, and C.S. Oliveira. Variable neighborhood search for
extremal graphs. 11. bounds on algebraic connectivity. In A. Hertz D. Avis and O. Marcotte,
editors, Graph Theory and Combinatorial Optimization. Springer, New York, 2005.

4. G. Caporossi, D. Cvetković, I. Gutman, and P. Hansen. Variable neighborhood search for
extremal graphs. 2. finding graphs with extremal energy. Journal of Chemical Information
and Computer Sciences, 39:984–996, 1999.

5. G. Caporossi, A.A. Dobrynin, I. Gutman, and P. Hansen. Trees with palindromic Hosoya
polynomials. Graph Theory Notes of New York, 37:10–16, 1999.

6. G. Caporossi, I. Gutman, and P. Hansen. Variable neighborhood search for extremal graphs:
4. chemical trees with extremal connectivity index. Computers and Chemistry, 23:469–477,
1999.

7. G. Caporossi, I. Gutman, P. Hansen, and L. Pavlović. Graphs with maximum connectivity
index. Computational Biology and Chemistry, 27:85–90, 2003.

8. G. Caporossi and P. Hansen. Finding Relations in Polynomial Time. In Proceedings of the
XVI International Joint Conference on Artificial Intelligence, pages 780–785, 1999.

9. G. Caporossi and P. Hansen. Variable neighborhood search for extremal graphs. 1. the auto-
graphix system. Discrete Math., 212:29–44, 2000.

10. G. Caporossi and P. Hansen. Variable neighborhood search for extremal graphs. v. three
ways to automate finding conjectures. Discrete Math., 276:81–94, 2004.

11. D. Cvetković, S. Simić, G. Caporossi, and P. Hansen. Variable neighborhood search for ex-
tremal graphs. iii. on the largest eigenvalue of color-constrained trees. Linear and Multilinear
Algebra, 49:143–160, 2001.

12. P.W. Fowler, P. Hansen, G. Caporossi, and A. Soncini. Variable neighborhood search for
extremal graph. 7. polyenes with maximum homo-lumo gap. Chemical Physics Letters,
342:105–112, 2001.

13. I. Gutman, O. Miljković, G. Caporossi, and P. Hansen. Alkanes with small and large randić
connectivity indices. Chemical Physics Letters, 306:366–372, 1999.

14. P. Hansen and H. Mélot. Variable neighborhood search for extremal graphs. 6. analyzing
bounds for the connectivity index. Journal of Chemical Information and Computer Sciences,
43:1–14, 2003.

15. P. Hansen and H. Mélot. Variable neighborhood search for extremal graphs. 9. bounding the
irregularity of a graph. In S. Fajtlowicz, P. Fowler, P. Hansen, M. Janowitz, and F. Roberts,
editors, Graphs and Discovery. American Mathematical Society, Providence, 2005.

16. P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications.
European J. Oper. Res., 130:449–467, 2001.

17. N. Mladenović and P. Hansen. Variable neighborhood search. Comput. Oper. Res., 24:1097–
1100, 1997.

18. M. Randić. On characterization of molecular branching. Journal of the American Chemical
Society, 97:6609–6615, 1975.

