
Natural Max-SAT Encoding of Min-SAT

Adrian Kügel

Faculty of Engineering and Computer Sciences
Ulm University, Ulm, Germany
Adrian.Kuegel@uni-ulm.de

Abstract. We show that there exists a natural encoding which trans-
forms Min-SAT instances into Max-SAT instances. Unlike previous en-
codings, this natural encoding keeps the same variables, and the opti-
mal assignment for the Min-SAT instance is identical to the optimal
assignment of the corresponding Max-SAT instance. In addition to that
the encoding can be generalized to the Min-SAT variants with clause
weights and hard clauses. We conducted experiments which give evi-
dence that our encoding is practically relevant, as Min-2-SAT instances
can be solved much faster by transforming them to Max-SAT and using
a Max-SAT solver than by using the best Min-SAT solver directly.

1 Introduction

The Minimum Satisfiability Problem (Min-SAT) asks for an assignment of Boolean
variables which satisfies the minimum number of clauses of a given formula,
whereas the Maximum Satisfiability Problem (Max-SAT) seeks to maximize the
number of satisfied clauses. Both problems can be seen as a generalization of the
Satisfiability Problem (SAT).

Recently, Li et al. [8] presented a Min-SAT solver called MinSatz and showed
that a Min-SAT encoding of the MaxClique problem (and related problems)
makes MinSatz competitive with the best MaxClique solvers. MinSatz was also
tested against Max-SAT solvers using the three different encodings presented
in [7]. In these tests, MinSatz was faster than the Max-SAT solvers on the
encodings. These experiments indicated that solving a Min-SAT instance can
be done faster using MinSatz than encoding it to a Max-SAT instance and using
one of the available Max-SAT solvers. We show that when using our better Max-
SAT encoding of Min-SAT instances it is still possible to outperform MinSatz
on several kind of Min-SAT instances by encoding them to Max-SAT and using
the Max-SAT solver akmaxsat.

Our paper is structured as follows: in Section 2 we provide basic definitions,
then in Section 3 we describe our encoding. In Section 4 we present experimental
data and finally in Section 5 we draw our conclusions.

2 Definitions

A CNF formula F is a conjunction of clauses consisting of Boolean variables. A
clause C is a disjunction of literals and is written as (l1 ∨ l2 ∨ · · · ∨ lk), where



l1, . . . , lk are from the set of variables and their negations. A literal xi is true if
the variable xi is false, and it is false otherwise. We call a clause satisfied if at
least one of its literals is true, and we call it unsatisfied if all its literals are false.

A hard clause is a clause which needs to be satisfied, whereas a soft clause
specifies a clause which may be unsatisfied by the optimal assignment. The
partial Min-SAT problem and the partial Max-SAT problem deal with both soft
and hard clauses. Another variant of the Min-SAT problem is the weighted Min-
SAT problem; in this variant, each clause has a positive weight which indicates
the relative importance of the clause, and the sum of the weights of satisfied
clauses has to be minimized. Likewise, in the weighted Max-SAT problem the
sum of the weights of satisfied clauses has to be maximized.

We define the size of a clause to be the number of literals it consists of. A CNF
formula which consists only of clauses of size k is also called a k-SAT formula, the
corresponding Max-SAT instance Max-k-SAT, and the corresponding Min-SAT
instance Min-k-SAT.

3 A natural Max-SAT encoding of Min-SAT instances

The idea of the natural Max-SAT encoding of a Min-SAT instance is quite
simple: we replace each original clause C by its negation C. However we need to
transform C into conjunctive normal form in order to get a Max-SAT instance.
We apply an idea based on Max-SAT resolution rules. Max-SAT resolution rules
were developed by Bonet et al. ([2], [3]) and Larrosa et al. ([5]). It is shown that
C = (l1 ∨ l2 ∨ . . . ∨ lk) (where l1, . . . , lk are literals) can be transformed into a
set of k clauses. We have adjusted the more general recursive resolution rule in
[5] to our special case:

CNFlinear(l1 ∨ . . . ∨ lk) = l1 ∧ (l1 ∨ l2) ∧ (l1 ∨ l2 ∨ l3) ∧ . . . ∧ (l1 ∨ l2 ∨ . . . ∨ lk)

We will illustrate the transformation rule with a small example. Let C =
(x1 ∨ x2 ∨ x3). CNFlinear(x1 ∨ x2 ∨ x3) = x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3). It can
be easily verified that only for the assignment for which C is unsatisfied, all new
clauses are satisfied, and at most one of the new clauses will be unsatisfied by
any assignment.

Using this rule, each clause C of the original Min-SAT instance is replaced
by CNFlinear(C). The set of new clauses has the property, that any assignment
that does not satisfy the original clause C satisfies all clauses of the new clause
set, and any assignment that satisfies the original clause satisfies all but one
of the new clauses. In this case, trying to maximize the number of satisfied
clauses in the encoded instance is equivalent to trying to minimize the number
of satisfied clauses in the original Min-SAT instance. Also, for any assignment,
the number of unsatisfied clauses in the encoded instance corresponds to the
number of satisfied clauses in the original Min-SAT instance.

As a clause consisting of k literals is replaced by k clauses, for a Min-k-SAT
instance with m clauses we get a Max-SAT instance with the same number of



variables and with k ·m soft clauses. Previous encodings presented in [7] used m
variables and up to Θ(m2) clauses (including some hard clauses).

Our encoding can be used in the reverse direction too, transforming a Max-
SAT instance into a Min-SAT instance. In this case, the number of unsatisfied
clauses in the Min-SAT instance corresponds to the number of satisfied clauses
of the Max-SAT instance. The encoding can also be used for weighted Min-SAT
instances; in that case, each replacement clause gets the weight of the original
clause. If a Min-SAT instance contains hard clauses, the hard clauses are not
replaced, but kept as they are. It is interesting to note that the transformation of
a partial Min-SAT encoded Maximum Clique instance yields the commonly used
partial Max-SAT encoding of the Maximum Clique instance (and vice versa).
In the next section we will present experimental evidence that our encoding is
especially useful for Min-2-SAT instances.

4 Experimental Results

In order to evaluate our natural Max-SAT encoding of Min-SAT, we selected
our Max-SAT solver akmaxsat [4] which performed best in several categories
of random and crafted Max-SAT instances in the Max-SAT evaluation 2011.
Our solver akmaxsat can be found at www.uni-ulm.de/in/theo/m/kuegel. For
comparison reasons we also used the Max-SAT solver MaxSatz in its publicly
available version from 2009 ([6]). Also, we obtained the solver MinSatz from the
authors of [8] (the same version that was used in their tests).

As benchmark instances we generated randomly unweighted Min-2-SAT and
Min-3-SAT instances. For each selection of number of variables and clauses-
to-variables ratio we generated 30 instances. Each Min-SAT instance was also
encoded to the corresponding Max-SAT instance using our natural Max-SAT
encoding. Also, we generated the corresponding partial Max-SAT instance using
the best encoding E3 of [7]. We ran akmaxsat and MaxSatz on both Max-SAT
encodings of each Min-SAT instance and compared its performance with the
performance of MinSatz on the corresponding Min-SAT instance.

We ran the experiments on a node of the bwGRiD [1] which provides two
Intel Harpertown quad-core CPUs with 2.83 Ghz and 8GB RAM each. The
installed operating system was Scientific Linux. We used a timeout of 1 hour for
each instance. Instances which were not solved within 1 hour are regarded as
unsolved.

Table 1 shows for all three solvers the average runtime in seconds on the
solved Min-2-SAT instances of each kind (showing in parentheses the number of
instances solved). Our natural Max-SAT encoding is labeled with NE. The test
results show that akmaxsat (using our encoding) clearly outperforms MinSatz
on random Min-2-SAT instances. For clauses-to-variables ratios of at most 3, the
solver MaxSatz is faster than MinSatz, too. When comparing the two encodings,
the new encoding always leads to a faster runtime for both Max-SAT solvers.

Table 2 shows the average runtime on the Min-3-SAT instances in the same
format as in Table 1. On Min-3-SAT instances, the new encoding seems to work

http://www.uni-ulm.de/in/theo/m/kuegel


Table 1. Average runtime in seconds on Min-2-SAT instances

MinSatz akmaxsat maxsatz

C/V #var NE E3 NE E3

2 160 0.05 (30) 0.01 (30) 0.04 (30) 0.01 (30) 0.02 (30)
2 180 0.08 (30) 0.01 (30) 0.04 (30) 0.01 (30) 0.03 (30)
2 200 0.13 (30) 0.01 (30) 0.05 (30) 0.01 (30) 0.04 (30)

3 160 0.19 (30) 0.02 (30) 0.21 (30) 0.07 (30) 0.14 (30)
3 180 0.31 (30) 0.02 (30) 0.26 (30) 0.08 (30) 0.17 (30)
3 200 0.52 (30) 0.04 (30) 0.48 (30) 0.18 (30) 0.34 (30)

4 160 0.96 (30) 0.11 (30) 40.06 (30) 2.59 (30) 52.58 (30)
4 180 1.47 (30) 0.15 (30) 44.80 (30) 5.18 (30) 44.94 (30)
4 200 4.09 (30) 0.28 (30) 87.73 (30) 25.80 (30) 142.62 (30)

5 160 16.85 (30) 0.78 (30) 605.81 (25) 41.41 (30) 1027.26 (21)
5 180 51.80 (30) 1.29 (30) 940.13 (19) 175.03 (30) 930.35 (13)
5 200 117.4 (30) 2.45 (30) 1474.66 (12) 722.35 (30) 1987.71 (4)

6 160 349.9 (30) 3.67 (30) 1533.23 (6) 321.30 (30) 2088.89 (2)
6 180 861.6 (26) 11.26 (30) 1617.81 (1) 1136.41 (26) - (0)
6 200 1330 (16) 31.96 (30) 2485.65 (1) 1540.48 (8) - (0)

better than the encoding E3 for clauses-to-variables ratios above 3. A clauses-
to-variables ratio of 3 leads to different results for the two Max-SAT solvers:
akmaxsat can handle the new encoding better, whereas MaxSatz is faster on
encoding E3. Note that in this case, akmaxsat on the new encoding is faster
than MaxSatz on the encoding E3. For small clauses-to-variables ratios of less
than 3, the encoding E3 seems to be always superior. Comparing the results of
akmaxsat on the new encoding to the results of MinSatz, we can see that in most
cases, MinSatz is still faster, but for some instances with a clauses-to-variables
ratio of 6, akmaxsat outperforms Minsatz.

5 Conclusions

We have presented a natural Max-SAT encoding of Min-SAT instances that has
the following advantages:

1. The encoding keeps the same variables and just increases the number of
clauses by a factor of number of variables per clause.

2. The optimal assignment of the encoded instance is identical to the optimal
assignment of the Min-SAT instance.

3. The encoding works notably well on Min-2-SAT instances, and the Max-SAT
solver akmaxsat on the encoded instance is much faster than the Min-SAT
solver MinSatz on the original instance.

4. Our encoding can also be used to transform Max-SAT instances into Min-
SAT instances.

As the tests in [8] have shown, the MinSatz solver performs much better than
Max-SAT solvers on encoded Maximum Clique instances. There might be other



Table 2. Average runtime in seconds on Min-3-SAT instances

MinSatz akmaxsat maxsatz

C/V #var NE E3 NE E3

2 80 0.01 (30) 0.09 (30) 0.04 (30) 1.01 (30) 0.05 (30)
2 90 0.02 (30) 0.22 (30) 0.10 (30) 2.77 (30) 0.10 (30)
2 100 0.05 (30) 0.68 (30) 0.31 (30) 16.65 (30) 0.28 (30)

3 80 0.15 (30) 0.71 (30) 1.55 (30) 3.93 (30) 1.93 (30)
3 90 0.45 (30) 2.89 (30) 8.87 (30) 20.43 (30) 10.70 (30)
3 100 1.41 (30) 9.34 (30) 22.85 (30) 77.29 (30) 29.16 (30)

4 80 1.71 (30) 4.67 (30) 5.51 (30) 18.07 (30) 84.11 (30)
4 90 8.54 (30) 24.17 (30) 395.7 (30) 115.44 (30) 582.39 (30)
4 100 37.06 (30) 80.61 (30) 961.9 (27) 460.72 (30) 1372.18 (25)

5 80 14.43 (30) 21.20 (30) 952.7 (29) 76.97 (30) 1226.06 (26)
5 90 112.2 (30) 134.2 (30) 1762 (13) 412.77 (29) 1684.11 (6)
5 100 439.0 (30) 587.4 (30) 1554 (1) 1824.86 (22) 3460.76 (1)

6 80 68.77 (30) 73.06 (30) 2139 (8) 264.24 (30) 3549.32 (1)
6 90 552.9 (30) 537.0 (30) - (0) 1519.72 (27) - (0)
6 100 1551 (24) 1514 (25) - (0) 2983.00 (2) - (0)

optimization problems where this could be true, and our encoding could be used
to automatically transform Max-SAT encoded optimization problems into Min-
SAT encoded optimization problems.

6 Acknowledgments

We gratefully thank the bwGRiD project [1] for the computational resources.
Also we thank Zhu Zhu for sending us an executable of the solver MinSatz, and
we thank the reviewers for helpful comments.

References

1. bwgrid. member of the german d-grid initiative, funded by the ministry for education
and research and the ministry for science, research and arts baden-wuerttemberg.
http://www.bw-grid.de

2. Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for max-sat. In: Biere, A.,
Gomes, C.P. (eds.) SAT. Lecture Notes in Computer Science, vol. 4121, pp. 240–251.
Springer (2006)

3. Bonet, M.L., Levy, J., Manyà, F.: Resolution for max-sat. Artif. Intell. 171, 606–618
(June 2007), http://dl.acm.org/citation.cfm?id=1265999.1266288

4. Kuegel, A.: Improved exact solver for the weighted max-sat problem. Workshop
Pragmatics of SAT (2010)

5. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving.
Artif. Intell. 172(2-3), 204–233 (2008)

6. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Exploiting cycle structures in
max-sat. In: SAT. pp. 467–480 (2009)

http://www.bw-grid.de
http://dl.acm.org/citation.cfm?id=1265999.1266288


7. Li, C.M., Manyà, F., Quan, Z., Zhu, Z.: Exact minsat solving. In: Strichman, O.,
Szeider, S. (eds.) SAT. Lecture Notes in Computer Science, vol. 6175, pp. 363–368.
Springer (2010)

8. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Minimum satisfiability and its applications.
In: Walsh, T. (ed.) IJCAI. pp. 605–610. IJCAI/AAAI (2011)


	Natural Max-SAT Encoding of Min-SAT

