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Abstract. This paper investigates the adaptive selection of operators
in the context of Local Search. The utility of each operator is computed
from the solution quality and distance of the candidate solution from
the search trajectory. A number of utility measures based on the Pareto
dominance relationship and the relative distances between the operators
are proposed and evaluated on QAP instances using an implied or static
target balance between exploitation and exploration. A refined algorithm
with an adaptive target balance is then examined.

1 Introduction

An increasing number of solving techniques have been proposed to address larger
and more complex optimization problems but they are often difficult to adapt
and to tune for a given problem. In fact, efficient solving tools have become out
of reach for practitioners. Among the possible solving techniques, metaheuristics
are now widely to efficiently solve optimization problems. Nevertheless, attempt-
ing to design increasingly efficient metaheuristics often results in highly complex
systems which require a non-negligible amount of expert knowledge to use, for
instance to wisely choose the method’s required parameters.

A relatively recent avenue of research is the design of generic high level control
strategies in an attempt to make optimization techniques more user-friendly [3].
A classification of these different approaches can be found in [5]. In general only
one criterion, solution quality, is considered. Concerning the control of param-
eters, the most advanced techniques were first developed in the context of evo-
lutionary computation [6]. A number of operator selection strategies for genetic
algorithms (adaptive operator selection) are presented in [4]. In [7], operator
selection techniques were proposed to handle simultaneously two criteria in the
evaluation of the operators: quality and diversity of the population.

We focus on local search algorithms to solve combinatorial optimization prob-
lems. In a previous work [10], we have proposed a general framework to control
dynamically the search process of a local search algorithm targeted at problems
that can be modeled as permutations. In this paper, we improve this mechanism
by introducing new performance evaluation techniques and more sophisticated
and dynamic control features.



The paper has five more sections. Section 2 looks at operator control in local
search. Section 3 describes the different utility values used in operator selection.
Section 4 deals with the experiments. Section 5 looks at an attempt at adaptively
changing the utility value parameter. Finally the last section is the conclusion.

2 Operator Control for Local Search

The defining feature of a good local search algorithm is the efficient exploration
of the search space in order to find the optimal solution. This requires striking
a balance between two generally conflicting objectives: exploitation (converging
towards a local optimum) with exploration (suitably sampling different areas of
the search space). One way of achieving this balance is by controlling the basic
operations (moves or operators) which drive the solution around the search space.

Our aim is to select an appropriate operator out of a set of operators to be
applied at each iteration of the local search algorithm. In order to determine
the likeliness of an operator to be useful, in terms of both exploitation and
exploration, its previous behavior needs to be recorded and analyzed. Figure 1
shows how the operator control interacts with the local search algorithm.
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Fig. 1. Overview : Operator control (left) and local search algorithm (right).

Impact Computation. Quality is measured directly as the change in the objec-
tive function. Measuring diversity is relatively straightforward in evolutionary
algorithms but less clear in single point algorithms. Here we consider a slid-
ing window containing the last solutions in the search path and measure the
difference between them and the current candidate solution c = op(s). This
difference is computed at the variable-value couple level: the less frequent the
occurrences of the candidate solution’s variable-value couples in the path, the
greater the distance between them. The following equation formalizes this notion.
Let Pi,j be the path from iteration i through j, i ≤ j. Then dP (c, Pi,j) = 1/n×∑n

kc=1
(1− occ(Pi,j , (kc, πkc

))/|Pi,j |) where occ(Pi,j , (a, b)) returns the number
of times the variable-value couple (a, b) is found in Pi,j .

3 Operator Selection and Utility

An operator is selected with a probability proportional to some utility value
which is meant to be a reflection of its previous performance. Each operator has



its own fixed-length sliding window which keeps track of the quality difference
and distance value for its m last applications. The sliding windows are initialized
by one application of each operator at the beginning of the search. The utility
of an operator is based on the average of the quality and distance values.

Given two vectors u and v of equal cardinality p and considering a maximiza-
tion problem, u dominates v if uk ≥ vk, ∀k ∈ {1, . . . , p} with at least one strict
inequality. This is often referred to as Pareto dominance and denoted by u ≻ v.

The Pareto-dominance-based utility UP of operator o among the set O of n
operators would then be defined as UP (o) = |{o′|o′ ∈ O, o ≻ o′}| + ǫ where ǫ
ensures a non-zero utility value. This utility assignment scheme (used in [10])
does not allow for a commanded balance between exploitation and exploration.

We now propose a number of ways of introducing a weight, α, in order to influ-
ence the balance. Given two operators o1 and o2 defined by the quality-distance
couples (q1, d1) and (q2, d2), we define the weighted rectilinear displacement from
o1 to o2 as dα(o1, o2) = α(d1 − d2) + (1 − α)(q1 − q2)

Based on this metric, we define three utilities: the sum of displacements to
all other operators UΣ

α (o) = max(0,
∑n

i=1
dα(o, oi)), the sum of positive dis-

placements to all other operators UΣ+
α (o) =

∑n

i=1
max(0, dα(o, oi)), the sum of

displacements to all other dominated operators UΣ≻

α (o) =
∑n

i=1,o≻oi
dα(o, oi).

We also use the very simple weighted sum of operator quality and distance
Uα(o) = αd+ (1− α)q.

Displacements, and their sum, are useful in the sense that they are a means
of describing quantitatively (the magnitude) and, to a lesser extent, qualitatively
(the sign or direction) the relationship between each operator and the rest. In
addition, the weight naturally introduces a quantifiable bias towards either ex-
ploration or exploitation.

4 Experiments for Weighted Operator Utility

The different utility values described in the previous section are tested on a very
classic permutation problem: the Quadratic Assignment Problem (QAP) which
models the problem of finding a minimum cost allocation of N facilities into N
locations, taking the costs as the sum of all possible distance-flow products.

Experimental Settings. Each operator is a combination of a neighborhood and a
selection function. We use a single basic neighborhood which swaps the values of
two variables. The selection functions used are random selection, first improving
neighbor, best neighbor, random selection among the 5 best neighbors, and best
among k neighbors.

A population of twelve operators is defined. Ten of these do not change the
solution configuration much (at most 6 variables are affected): half are inten-
sification oriented, half are exploration oriented. The last two are extremely
perturbative operators which randomly swap 25% and 50% of the variables.

For each instance, each algorithm is run thirty times starting with the same
thirty different random solutions and a maximum of 40 000 iterations are allowed
per run. All sliding windows have an arbitrary fixed length of 100.



Analysis of Results. Table 1 reports the results for all the experiments on the
QAP (instances from QAPLIB [2]) in this paper. In this section all columns
except the next-to-last one is of interest to us. They report the instances, their
best known value and the results for the different utility values with fixed weights:
Uα with ǫ = 0.1 (the values 0.001, 0.05, 0.2 and 1 were also tested but 0.1 proved
the best across almost all instances) and UΣ

α , UΣ+
α , UΣ≻

α and Uα with α taking
values 0.2, 0.5 or 0.8. The last column gives, as a comparison, the results obtained
with Robust Tabu (RoTS) [9], a dedicated local search algorithm for the QAP.
The values for each algorithm express the average percentage difference above
the best known values. Bold font indicates the best values and italics indicate
results which are within 0.05% of the best (RoTS results are not considered
because they are always better or equal).

From Table 1 it is clear that UΣ+
α is the best among the displacement-based

utility values tested and it provides consistently good results over various α.
Pareto-dominance-based selection, UP , also provides good results with respect
to all other selection methods. Our previous work had shown that it worked
slightly better than uniform selection if the operators were relatively “good”
and outperformed it when a single “very good” operator was added. Here we
can see that it remains useful despite the presence of highly disruptive operators.

When considering UP and UΣ+
α selections side-by-side, the latter is gener-

ally equivalent to the former for lower α values and only really better on taixxa
instances. Following this observation, and also because different classes of in-
stances seem to require different values of α to obtain the best results, a method
for adapting α and obtaining better results is described in the next section.

If we consider UΣ
α , the problem is that accepting negative displacements

often negates the other positive displacements thus producing results that are,
usually, worse than uniform selection. The poor performance of UΣ≻

α may be
explained by the fact that since it is based on Pareto dominance and there is no
ǫ to ensure a minimum selection probability, the operators at both ends of the
exploration-exploitation spectrum have no real chance of being selected because
they usually do not dominate any other operator. Finally, it appears that Uα

might be too simple and shows that the relationship between operators can be
useful when used appropriately (in UP and UΣ+

α ).
The next section looks at how the weight α can be varied during the search.

5 Adaptive Parameter Values for Operator Control

We consider the “correct” diversity (CD) strategy [8]. The CD strategy uses
the value of the quality of the solutions in the population as a means to assess
the diversity of population. If the number of solutions having the same quality
is above a certain threshold Tmax then it is assumed that the population is
too homogeneous and the commanded diversity is incremented by some step
sinc. Symmetrically, if the number of solutions having the same quality is below
another threshold Tmin the commanded diversity is decremented by some step
sdec (solutions are haphazardly distributed; exploitation is not strong enough).



Experiments. To tune the CD parameters we use F-Race [1] an off-line tuning
algorithm. We first tested 320 parameter combinations. The winning parameters
(Tmax = 0.3, Tmin = 0.25, sinc = 0.0001, sdec = 0.1) were at either end of
the available domain for each parameter. One could thus assume that a better
combination of parameters might be obtained by extending their domain. We
therefore ran a second race with new parameter domains (144 combinations) and
obtained a new winner (Tmax = 0.35, Tmin = 0.15, sinc = 0.0001, sdec = 0.01)
which was relatively different from the previous one and did not benefit from the
new values at the extremities of each domain. For both winners the distributions
of results were statistically equivalent. This leads us to believe that the strategy
parameters need only be within some tight domain (and not one specific value)
to obtain the best results.

Results and Discussion. The results are presented in Table 1 under the UΣ+
α CD

column. It seems clear that CD is better than the other selection methods, or
within 0.05% of the best, on most instances in terms of raw results. This supe-
riority is further confirmed by a Wilcoxon signed-rank test with 95% confidence
level. If we compare UΣ+

α CD with the best values across the different α for UΣ+
α

both distributions are statistically equivalent. This leads us to conclude that the
CD strategy is good enough to produce results equivalent to the best results of
UΣ+
α with fixed α values.

Table 1. Results for QAP instances.

Instance BKV Uniform UP U
Σ+
α U

Σ
α U

Σ≻

α Uα U
Σ+

αCD
RoTS

chr25a 3796 20.18 10.67
13.78
14.94
12.11

33.53
30.75
28.70

34.05
28.68
29.75

31.34
30.18
16.44

12.45 7.09

kra30a 88900 2.49 0.79
1.57
1.63
0.89

5.14
4.39
3.75

4.67
4.55
4.42

5.24
4.97
2.20

0.61 0.06

kra30b 91420 1.11 0.21
0 .16
0.45
0.32

3.06
2.78
2.50

3.32
3.03
2.37

3.25
2.63
0.68

0.13 0.02

nug20 2570 0.12 0.01
0.00

0 .03
0.00

1.02
0.56
1.15

1.09
0.89
1.45

1.74
0.65
0.07

0.01 0.00

nug30 6124 1.24 0.20
0.31
0.19
0.39

1.67
1.43
1.60

1.27
1.54
1.71

1.86
1.75
0.68

0.11 0.01

sko42 15812 2.28 0.29
0 .19

0.28
0.67

1.91
1.38
2.01

1.65
1.63
2.14

1.93
1.59
1.48

0.16 0.03

sko49 23386 2.48 0.36
0.21

0.27
0.81

1.37
1.34
2.31

1.46
1.60
1.74

1.57
1.42
1.91

0.24 0.13

tai30a 1818146 2.59 1.26
1.17
1.27
1.68

2.05
1.86
3.18

2.16
1.78
3.41

3.31
1.87
2.33

0.91 0.51

tai50a 4941410 4.20 2.16
1.58
1 .59

2.83

2.13
2.61
4.11

2.27
2.80
4.11

3.40
2.34
3.82

1.66 1.39

tai30b 637117113 0.43 0.13
0.44
0.35
0 .16

6.65
3.90
3.49

5.21
3.53
1.74

5.27
4.83
0.34

0.15 0.03

tai50b 458821517 2.36 0.25
0.30
0.39
0.37

4.14
3.13
2.56

4.33
3.92
2.66

5.42
4.33
1.60

0.18 0.15



6 Conclusion

In this paper we have presented different alternatives for the selection of opera-
tors in Local Search. The main contribution of the paper was the investigation of
weighted utilities which allow a target balance to be set between exploration and
exploitation. Using static weights the best of them was competitive when com-
pared to the previously proposed Pareto-dominance-based utility. An adaptive
strategy for setting the weight was investigated and proved to provide improved
results.

In future works we wish to look at more advanced on-line parameter setting
strategies. Another avenue of research is testing the existing proposed methods
with academic problems such as the One-MAX and long-path problems, whose
properties are well understood, in order to have a better theoretical understand-
ing of the methods.
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tionary algorithms. In: Monmarché, N., Talbi, E.G., Collet, P., Schoenauer, M.,
Lutton, E. (eds.) Artificial Evolution. LNCS, vol. 4926, pp. 303–315. Springer
Berlin / Heidelberg (2008)
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