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Abstract. In this paper, a dynamic optimization algorithm is used to
assess the deformations of the wall of the third cerebral ventricle in the
case of a brain cine-MR imaging. In this method, a nonrigid registration
process is applied to a 2D+t cine-MRI sequence of a region of interest. In
this paper, we propose to use a B-spline Free-Form deformation model.
The registration process consists of optimizing an objective function that
can be considered as a dynamic function. Thus, a dynamic optimization
algorithm, called MLSDO, is used to accomplish this task. The obtained
results are compared to those of several well-known static optimization
algorithms. This comparison shows the relevance of using a dynamic
optimization algorithm to solve this kind of problems, and the efficiency
of MLSDO.

Keywords: registration, image sequences, dynamic optimization, meta-
heuristics, B-splines, MRI.

1 Introduction

Recently, optimization in dynamic environments has attracted a growing in-
terest, due to its practical relevance. Almost all real-world problems are time
dependent or dynamic, i.e. their objective function changes over the time. For
dynamic environments, the goal is not only to locate the global optimum, but
also to track it as closely as possible over the time.

In this paper, we focus on a dynamic optimization problem with time con-
stant constraints. We propose to apply the Multiple Local Search algorithm for
Dynamic Optimization (MLSDO) [20, 17] to the registration of sequences of im-
ages.

Hydrocephalus pathology consists in an abnormal accumulation of cerebro-
spinal fluid in the ventricles, or cavities, of the brain. This may cause increased
intracranial pressure inside the skull and progressive enlargement of the head,
convulsion, tunnel vision, and mental disability. Hydrocephalus may be sug-
gested by symptoms; however, imaging studies of the brain are the mainstay of



diagnosis. In this paper, we focus on a method based on cine-MRI sequences to
facilitate this diagnosis, and to assist neurosurgeons in the characterization of
the pathology at hand. We propose to make use of the dynamic optimization
paradigm.

In order to characterize hydrocephalus, doctors need to estimate the am-
plitude and nature of the movements of the brain ventricles. Then, we need an
image registration procedure to approximate it. Indeed, image registration is the
process of overlaying two or more images of the same scene taken at different
times, from different viewpoints, and/or by different sensors. It is a critical step
in all image analysis tasks in which the final information is gained from the
combination of various data sources like in image fusion or change detection.
It geometrically aligns two images: the source and the target images. It is done
by determining a transformation that maps the target image to the source one.
Thus, registering a sequence of images consists of determining, for each couple
of successive images, the transformation that makes the first image of the couple
match the following image.

Comprehensive surveys of the registration approaches are available in the
literature, we can cite [29, 43, 9]. Registration approaches can be roughly based
on:

– geometric image features (geometric registration), such as points, edges and
surfaces ;

– measures computed from the image grey values (intensity based registration),
such as mutual information.

In this work we consider the nonrigid (or elastic) registration to register re-
gions containing non-rigid objects. Our goal is to remove structural variation
between the two images to be registered. As stated in [29], most applications
represent nonrigid transformations in terms of a local vector displacement (dis-
parity) field, or as polynomial transformations of the old coordinates. In the
problem at hand, each image of the region of interest (from the wall of the
third ventricle) is extracted from a brain cine-MRI sequence of 20 images. This
sequence corresponds to 80% of a R-R cardiac cycle, more details about the ac-
quisition procedure are given in [34]. An example of two images extracted from a
brain cine-MRI sequence is presented in Figure 1. Hence, each sequence is com-
posed of 20 MR images. An example of sequence is illustrated in Figure 2. The
goal is to register each couple of successive images of the sequence. Hence, for
a sequence of 20 images, 19 couples of successive images have to be registered.
Then, the transformations that result from this procedure can be used to assess
the deformation movements of the third cerebral ventricle.

Several papers are proposed in the literature about the analysis and quantifi-
cation of cardiac movements, we can cite those recently published [8, 7, 40]. In
our case, the single approach that deals with the problem at hand is [34], that
has been accelerated in [20, 21] using dynamic optimization. The main difference
between the problem at hand and the cardiac problem lies in the amplitude of
the movements of the ventricles. Indeed, the amplitude of the cardiac ventricle
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Fig. 1. Two images from a brain cine-MRI sequence: (a) first image of the sequence,
(b) sixth image of the sequence.

Fig. 2. A sequence of cine-MR images of the region of interest.

movements is higher than the amplitude of the cerebral ventricle movements. In
this paper, we propose a method inspired from [34, 20] to assess the movements
of a region of interest (ROI), using a more accurate deformation model. Besides,
another contribution of the present work is to show the importance of the use
of dynamic optimization algorithms for brain cine-MRI registration.

The rest of this paper is organized as follows. In section 2, the method pro-
posed to register sequences of images is described. In section 3, the MLSDO
algorithm and its use for the problem at hand are presented. In section 4, a
comparison of the results obtained by MLSDO on this problem to the ones of
several well-known static optimization algorithms is performed. This comparison
shows the relevance of using MLSDO on this problem. Finally, a conclusion and
the works under progress are given in section 5.

2 The registration process

A method inspired from [34, 20] is proposed in this paper to evaluate the move-
ment in sequences of cine-MR images. This operation is required in order to
assess the movements in the ROI over time. In [34, 20], a segmentation process
is performed on each image of the sequence, to determine the contours (as a set
of points) of the walls of the third cerebral ventricle. Then, a geometric regis-
tration of each successive contours is performed, based on an affine deformation
model. In the present work, we propose to use an intensity based registration
instead of a geometric registration process. This way, we do not have to use a
segmentation process anymore. Moreover, to evaluate the pulsatile movements
of the third cerebral ventricle more precisely, a nonrigid deformation model is
used in this paper.



In order to accurately model the deformations in the ROI over time, we pro-
pose to use B-spline Free-Form Deformations (FFDs) [38, 15, 31]. An advantage
of B-splines over other spline functions, such as thin-plate splines [4] and elastic-
body splines [10], is that B-splines are locally controlled, so they are easier to
understand and to manipulate, and they can be computed in parallel [15].

As illustrated in Figure 3, a B-spline FFD [38, 15, 31] is a nonrigid transfor-
mation based on the manipulation of a grid of control points overlaid on the
image. Let Φ be a 2D grid of control points φi,j , with uniform spacing dx on the
x-axis and dy on the y-axis. Let Im1 and Im2 be two successive images of the
sequence. Let the transpose of a matrix A be denoted by AT, and TΦ : o 7→ o′ be
the transformation of any point o = (x y)T in image Im2 to its corresponding
point o′ = (x′ y′)T in image Im1. Then, the nonrigid transformation TΦ by
B-spline functions is defined by:

TΦ(o) =

3∑
l=0

3∑
m=0

Bl(u) Bm(v) φi+l,j+m (1)

0,0φ 0,4φ

yd

φ φ4,0φ 4,4φ
xd

Fig. 3. B-spline free-form deformations of an image are performed by manipulating an
overlaying grid of control points. Control points are represented by white-filled circles.
dx and dy are the spatial resolutions of control points and φi,j is the control point
located on the ith column of the jth row of the grid.
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the lth basis function of cubic B-splines. The control points are the parameters
of the B-spline FFD, so the number of degrees of freedom of the transformation
depends on the resolution of the grid of control points. Denoting the cardinal
function by card, the 2D grid Φ has (2 card(Φ)) degrees of freedom. Then, this set
of parameters is estimated through the maximization of the following criterion:

C(Φ) =
NMI(Φ)

P (Φ) + 1
(2)



where NMI(Φ) computes the normalized mutual information [39] of Im1 and
Im′1, and Im′1 is the image that results from the transformation of Im2 ; P (Φ)
is part of a regularization term that penalizes large deformations of Im2, as we
are dealing with slight movements in the ROI. P (Φ) and NMI(Φ) are defined
in (3) and (4), respectively.

P (Φ) =
1

2 card(Φ)

∑
φi,j ∈ Φ

(
φi,j − φ̃i,j

)T (
φi,j − φ̃i,j

)
(3)

where φ̃i,j is the position of a control point φi,j , in the grid that corresponds to

the identity transformation (φ̃i,j = (dxi dyj)
T

).

NMI(Φ) =
H(Im1) +H(Im′1)

H(Im1, Im′1)
(4)

where Im1∩Im′1 is the overlapping area of Im1 and Im′1 ; H(Im1) and H(Im′1)
compute the Shannon entropy of Im1 and Im′1, respectively, in their overlapping
area ; H(Im1, Im

′
1) computes the joint Shannon entropy of Im1 and Im′1, in

their overlapping area. They are defined as follows:

H(Im1) = −
L−1∑
i=0

p(i) log2 (p(i)) (5)

H(Im′1) = −
L−1∑
j=0

p′(j) log2 (p′(j)) (6)

H(Im1, Im
′
1) = −

L−1∑
i=0

L−1∑
j=0

p(i, j) log2 (p(i, j)) (7)

where L is the number of possible grey values that a pixel can take ; p(i), p′(j)
and p(i, j) are the probability of the pixel intensity i in Im1, the probability of
the pixel intensity j in Im′1 and the joint probability of having a pixel intensity
i in Im1 and j in Im′1, respectively.

The registration problem can be formulated as an optimization problem de-
fined by:

Φ∗ = max C(Φ) (8)

For the problem at hand, a grid of 3× 3 control points is used. It is sufficient
to accurately model the deformations in the ROI. Then, the B-spline FFD has
18 degrees of freedom.

3 The MLSDO algorithm

In this section, MLSDO and its use on the problem at hand are described.
At first, the algorithm is presented. Then, the dynamic objective function pro-
posed for the problem at hand is described. Afterwards, the parameter fitting of
MLSDO is given to solve this problem.



3.1 Description of the algorithm

MLSDO uses several local searches, each one performed in parallel with the
others, to explore the search space, and to track the found optima over the
changes in the objective function. These local searches consist of moving step-
by-step in the search space, from a current solution to its best neighbor one,
until a stopping criterion is satisfied, reaching thus a local optimum. Each local
search is performed by an agent, and all the agents are coordinated by a dedicated
module (the coordinator). Two types of agents exist in MLSDO: the exploring
agents (to explore the search space in order to discover the local optima), and
the tracking agents (to track the found local optima over the changes in the
objective function). The local searches performed by the exploring agents have a
greater initial step size than the one of the tracking agents, because the exploring
agents have to widely explore the search space. The strategies used to coordinate
these local search agents enable the fast convergence to well diversified optima,
in order to quickly react to a change and find the global optimum. Especially,
each agent performs its local search in an exclusive area of the search space : an
exclusion radius is attributed to each agent. This way, if several agents converge
to a same local optimum, then only one of them can continue to converge to this
local optimum : all the other conflicting agents are reinitialized elsewhere in the
search space. Another important strategy is the use of two levels of precision
in the stopping criterion of the local searches of the agents. In this way, we
prevent the fine-tuning of low quality solutions, which could lead to a waste
of fitness function evaluations; only the best solution found by MLSDO is fine-
tuned. Furthermore, the local optima found during the optimization process are
archived, to accelerate the detection of the global optimum after a change in
the objective function. These archived optima are used as initial solutions of the
local searches performed by the tracking agents.

MLSDO has been compared to other dynamic optimization algorithms using
two of the main benchmarks : the Moving Peaks Benchmark (MPB) [5] and the
Generalized Dynamic Benchmark Generator (GDBG) [22, 24].

Among the three configurations of MPB proposed in [5], called scenarios, we
chose the most used one (scenario 2). The configuration of GDBG used in this
paper was used during the CEC’2009 competition on dynamic optimization.

The comparison, on MPB, of MLSDO with the other leading optimization
algorithms in dynamic environments is summarized in Table 1. These compet-
ing algorithms are the only ones that we found suitable for comparison in the
literature, i.e., they are tested by their authors using the most commonly used
configuration of MPB. The offline errors (a measure of performance used in
MPB, see [5]) and the standard deviations are given, and the algorithms are
sorted from the best to the worst. Results are averaged on 50 runs of the tested
algorithms. As we can see, MLSDO is the second ranked algorithm in terms of
offline error.

The comparison, on GDBG, of MLSDO with the other leading optimization
algorithms in dynamic environments is summarized in Figure 4. The algorithms
are ranked according to their overall performance (a score between 0 and 100,



Algorithm Offline error

Moser and Chiong, 2010 [32] 0.25± 0.08
MLSDO 0.35± 0.06
Novoa et al., 2009 [35] 0.40± 0.04
Lepagnot et al., 2009 [19, 18] 0.59± 0.10
Moser and Hendtlass, 2007 [33, 32] 0.66± 0.20
Yang and Li, 2010 [41] 1.06± 0.24
Liu et al., 2010 [26] 1.31± 0.06
Lung and Dumitrescu, 2007 [27] 1.38± 0.02
Bird and Li, 2007 [1] 1.50± 0.08
Lung and Dumitrescu, 2008 [28] 1.53± 0.01
Blackwell and Branke, 2006 [3] 1.72± 0.06
Mendes and Mohais, 2005 [30] 1.75± 0.03
Li et al., 2006 [25] 1.93± 0.06
Blackwell and Branke, 2004 [2] 2.16± 0.06
Parrott and Li, 2006 [36] 2.51± 0.09
Du and Li, 2008 [11] 4.02± 0.56

Table 1. Comparison of MLSDO with competing algorithms on MPB using standard
settings (scenario 2).

denoted by op, see [24]). As we can see, MLSDO is the first ranked algorithm on
this benchmark.

3.2 Cine-MRI registration as a dynamic optimization problem

The registration of a cine-MRI sequence can be seen as a dynamic optimization
problem. Then, the dynamic objective function optimized by MLSDO changes
according to the following rules:

– The criterion in (2) has to be maximized for each couple of successive images,
as we are in the case of a sequence, then the optimization criterion becomes:

C(Φ(t)) =
NMI(Φ(t))

P (Φ(t)) + 1
(9)

where t is the index of the current couple of images in the sequence. Φ(t),
NMI(Φ(t)) and P (Φ(t)) are the same as Φ, NMI(Φ) and P (Φ) defined
before, respectively, but here are dependent on the couple of images.

– Then, the dynamic optimization problem is defined by:

max C(Φ(t)) (10)

– If the current best solution (transformation) found for the couple t cannot
be improved anymore (according to a stagnation criterion), the next couple
(t+ 1) is treated.
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Fig. 4. Comparison of MLSDO with competing algorithms on GDBG.

– The stagnation criterion of the registration of a couple of successive images
is satisfied if no significant improvement (higher than 1E-5) in the current
best solution is observed during 5000 successive evaluations of the objective
function.

– Thus, the end of the registration of a couple of images and the beginning of
the registration of the next one constitute a change in the objective function.

3.3 Parameter fitting of MLSDO

Table 2 summarizes the six parameters of MLSDO that the user has to define.
These values will be used to perform the experiments reported in the following
section.

In this table, the values given are suitable for the problem at hand, and
they were fixed experimentally. Among several sets of values for the parameters,
we selected the one that minimizes the number of evaluations performed. One
can see that only one exploring agent is used to solve this problem. It is indeed
sufficient for this problem, and using more than one exploring agent increases the
number of evaluations required to register a sequence. However, using more than
one exploring agent can improve the performance of MLSDO on other problems.

4 Experimental results and discussion

The registrations of two couples of images are illustrated in Figures 5 and 6.
As we can see, the movements in the ROI leave an important white trail in
the difference images, as illustrated in Figures 5(e) and 6(e). Then, applying the
found transformation (Figures 5(d) and 6(d)) eliminates the white trail and only
noise remains in the difference images (see Figures 5(f) and 6(f)).

A comparison between the results obtained by MLSDO and those obtained
by several well-known static optimization algorithms is presented in this section.
These algorithms, and their parameter setting, empirically fitted to the problem
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(d) (e) (f)

Fig. 5. Illustration of the registration of a couple of images of a sequence: (a) the first
image of the couple, (b) the second image of the couple, (c) the second image after
applying the found transformation to it, (d) illustration better showing this transfor-
mation, by applying it to the image of a grid, (e) illustration showing the difference, in
the intensity of the pixels, between the two images of the couple: a black pixel indicates
that the intensities of the corresponding pixels in the images are the same, and a white
pixel indicates the highest difference between the images, (f) illustration showing the
difference, in the intensity of the pixels, between the first image and the transformed
second image.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Illustration of the registration of another couple of images of a sequence, in the
same way as in Figure 5.



Name Type Interval Value Short description

rl real (0, re) 0.005 initial step size of tracking agents

re real (0, 1] 0.1 exclusion radius of the agents, and initial step size of
exploring agents

δph real [0, δpl] 1E-5 highest precision parameter of the stopping criterion
of the agents local searches

δpl real [δph,+∞] 1E-4 lowest precision parameter of the stopping criterion
of the agents local searches

na integer [1, 10] 1 maximum number of exploring agents

nc integer [0, 20] 2 maximum number of tracking agents created after
the detection of a change

Table 2. MLSDO parameter setting for the problem at hand.

at hand, are defined below (see references for more details on these algorithms
and their parameter fitting):

– CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [14] using the
recommended parameter setting, except for the initial step size σ, set to σ =
0.5. The population size λ of children and the number of selected individuals
µ are set to λ = 11 and µ = 5 ;

– SPSO-07 (Standard Particle Swarm Optimization in its 2007 version) [12]
using the recommended parameter setting, except for the number S of par-
ticles (S = 12) and for the parameter K used to generate the particles
neighborhood (K = 8) ;

– DE (Differential Evolution) [37] using the “DE/target-to-best/1/bin” strat-
egy, a number of parents equal to NP = 30, a weighting factor F = 0.8, and
a crossover constant CR = 0.9.

The image sequence used to fit their parameters is the same as the one used
for MLSDO. However, it is not needed to fit the parameters of the algorithms
for each sequence, and the same values are used for the other ones.

As these algorithms are static, we have to consider the registration of each
couple of successive images as a new problem to optimize. Thus, these algo-
rithms are restarted after the registration of each couple of images, using the
stagnation criterion defined in section 3.2. Initializing these algorithms using the
best solution found for the last registered couple of images cannot be used to
improve their performance in our case. If we do so, algorithms perform a sig-
nificant number of iterations without improving their current solution. Indeed,
they progressively decrease the diversity of the population, before starting the
intensification phase.

In this comparison, the results obtained using MLSDO, as a static optimiza-
tion algorithm, are also given.
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Fig. 7. Convergence graph of MLSDO and CMA-ES on the problem at hand.

The parameters found for the nonrigid deformation model are given in Ta-
ble 3. In Table 4, the average number of evaluations among 20 runs of the algo-
rithms are given. The average of the best objective function values (see equation
(9)) of each registration of the sequence is also given, averaged on 20 runs of
the algorithms. The computational complexity of the registration method, using
each algorithm, is also given in this table. The convergence of MLSDO, and that
of the best performing static optimization algorithm on the problem at hand, i.e.
CMA-ES, are illustrated by the curves in Figure 7. It shows the evolution of the

relative error
(
C∗(Φ(t))−C(Φ(t))

C∗(Φ(t))

)
between the value of the objective function of

the best solution found (C∗(Φ(t))) and that of the current solution (C(Φ(t))) for
each couple of images (t). The presented curves give an idea about the conver-
gence of the algorithms to an optimal value. It can also be seen as a stagnation
metric of the algorithms. In this figure, the number of evaluations per registra-
tion of a couple of images is fixed to 5000, in order to enable the comparison of
the convergence of the algorithms. For readability, a logarithmic scale is used on
the ordinates.

We can see in Table 4 that the number of evaluations of the objective function
performed by MLSDO, used as a dynamic optimization algorithm, is significantly
lower than the ones of the static optimization algorithms. A Jarque-Bera sta-
tistical test has been applied on the numbers of evaluations performed by the
compared algorithms. This test indicates at a 95% confidence level that the num-
bers of evaluations follow a normal distribution. Then, we can perform a Welch’s
one-way ANOVA on these numbers of evaluations. This test confirms at a 95%
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21.575
33.991

) (
45.046
33.981

)
1.229

14

(
0.021
0.018

) (
22.000
−0.020

) (
44.016
−0.017

) (
0.006
17.013

) (
22.016
16.135

) (
43.996
17.027

) (
0.005
34.189

) (
22.027
34.994

) (
43.991
34.928

)
1.230

15

(
0.003
0.003

) (
21.891
−0.010

) (
44.105
−0.004

) (
0.173
17.003

) (
22.259
17.133

) (
44.801
16.991

) (
−0.007
34.052

) (
21.717
34.188

) (
45.174
35.426

)
1.235

16

(
−0.006
−0.003

) (
22.000
0.001

) (
43.988
0.004

) (
0.006
16.992

) (
21.988
16.347

) (
43.996
17.027

) (
0.005
33.934

) (
22.000
34.952

) (
43.991
34.928

)
1.214

17

(
−0.006
−0.003

) (
22.000
0.001

) (
43.988
0.004

) (
0.006
17.141

) (
21.988
16.687

) (
43.996
17.027

) (
0.005
34.444

) (
22.000
34.952

) (
43.991
34.928

)
1.224

18

(
−0.006
−0.003

) (
22.000
0.001

) (
43.988
0.004

) (
0.006
17.268

) (
21.988
16.687

) (
43.996
16.857

) (
0.005
34.529

) (
22.000
34.952

) (
43.991
34.843

)
1.224

19

(
−0.006
−0.003

) (
22.000
0.001

) (
43.988
0.004

) (
0.006
17.481

) (
21.988
16.517

) (
43.996
16.815

) (
0.005
34.529

) (
22.000
34.952

) (
43.991
34.928

)
1.212

Table 3. Transformations found for the registration of each couple of images. The
value of the objective function of the best solution found, denoted by C∗(Φ(t)), is also
given.

confidence level that there is a significant difference between the performances
of at least two of the compared algorithms. Then, the Tukey-Kramer multiple
comparisons procedure has been used to determine which algorithms differ in
terms of number of evaluations. It indicates that MLSDO performs significantly
differently from all the other tested algorithms. It can also be seen in Figure 7
that the convergence of MLSDO to an acceptable solution is faster than CMA-
ES (the best performing static optimization algorithm on the problem at hand)
for the registration of most of the couples of contours, especially for the last ones.
MLSDO needs indeed to learn from the first registrations in order to accelerate
its convergence on the next ones. Thus, this comparison shows the efficiency of
MLSDO and the significance of using a dynamic optimization algorithm on the
problem at hand.



Algorithm Evaluations
∑19

t=1

C∗(Φ(t))
19

Complexity

Dynamic optimization MLSDO 7655.16 ± 584.30 1.21 ± 4.8E-4 O(n d3)

Static optimization

CMA-ES 9805.61 ± 669.32 1.21 ± 4.9E-4 O(n d2)
SPSO-07 10155.35 ± 733.00 1.21 ± 8.2E-4 O(n d)

DE 10785.27 ± 850.99 1.21 ± 8.0E-4 O(n d)
MLSDO 10880.14 ± 820.49 1.21 ± 7.4E-4 O(n d3)

Table 4. Average number of evaluations to register a couple of images, and average
value of C∗(Φ(t)), obtained by each algorithm. The computational complexity of the
registration method, using each algorithm, is also given, where n is the number of
images in the sequence and d is the dimension of the search space.

5 Conclusion

In this paper, a registration process, based on a B-spline Free-Form deformation
model and on a dynamic optimization algorithm, is proposed to register quickly
all the images of a cine-MRI sequence. It takes profit from the effectiveness of the
dynamic optimization paradigm. The process is sequentially applied on all the
2D images. The entire procedure is fully automated and provides an accurate
assessment of the ROI deformation throughout the entire cardiac cycle. Our
work under progress consists of the parallelization of the MLSDO algorithm
using Graphics Processing Units.
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8. Chenoune, Y., Deléchelle, E., Petit, E., Goissen, T., Garot, J., Rahmouni, A.:
Segmentation of cardiac cine-MR images and myocardial deformation assessment



using level set methods. Computerized Medical Imaging and Graphics 29(8), 607–
616 (2005)
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