
Counter Implication Restart for Parallel SAT
Solvers

Tomohiro Sonobe and Mary Inaba

Graduate School of Information Science and Technology, University of Tokyo

Abstract. A portfolio approach has become the mainstream for parallel
SAT solvers, making diversification of the search for each process more
important. In the SAT Competition 2011, we proposed a novel restart
method called counter implication restart (CIR), for sequential solvers
and won gold and silver medals with CIR. CIR enables SAT solvers
to change the search spaces drastically after a restart. In this paper,
we propose an adaptation of CIR to parallel SAT solvers to provide
better diversification. Experimental results indicate that CIR provides
good diversification and its overall performance is very competitive with
state-of-the-art parallel solvers.

1 Introduction

The Boolean satisfiability (SAT) problem asks whether an assignment of vari-
ables exists that can evaluate the given formula as true. A SAT problem is one of
NP-complete problems. A formula is given in Conjunctive Normal Form (CNF),
which is a conjunction of clauses. A clause is a disjunction of literals, where a
literal is a positive or negative form of a variable. The solvers for this problem
are called SAT solvers. The recent innovations in SAT solvers are significant
and these solvers are used in many real applications, such as circuit design and
software verification.

Many SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm. In the last decades, conflict-driven learning and backjumping, Vari-
able State Independent Decaying Sum (VSIDS) decision heuristic, and restart
were added to DPLL, which improved the performance of DPLL solvers tremen-
dously. These solvers are called Conflict Driven Clause Learning (CDCL) solvers.
This kind of solver is now standard and it appears to be difficult to make a drastic
improvement without a replacement of the fundamental algorithm.

Due to recent developments in multi-core hardware, we can easily run SAT
solvers in parallel on standard PCs. However, there still appears to be a need
for parallel SAT solvers. In the SAT Competition 2011, in the application cat-
egory, the number of participants for the parallel category was about only ten,
compared with more than 50 in the category of sequential solvers. Moreover,
even though the parallel solvers were run on eight cores, the performance of the
sequential solvers was very competitive with that of parallel solvers.

Many state-of-the-art parallel solvers are based on the portfolio approach [4].
In this approach, each solver runs competitively and they share learnt clauses

between them. Each solver uses a particular parameter set and conducts a differ-
entiated but complementary search. This diversification is important for efficient
searching [2]. Diversification is attained by employing, for example, differenti-
ated restart policies [5], various strengths of saving literal polarity [6], decision
heuristics, and so on.

In the SAT Competition 2011, we submitted a solver based on MiniSAT
2.2 [7] with our novel restart method, Counter Implication Restart (CIR). Our
CIR enables SAT solvers to convert the search spaces by changing the decision-
order after the restart, and thus enables an escape from desert search spaces [1].
This method is also valid for the diversification of the parallel SAT solver. In
this paper, we propose the adaptation of CIR for use with parallel SAT solvers.
Experimental results indicate that CIR also works efficiently in parallel solvers.

In Section 2, we explain the details of CIR. We show the experimental results
in Section 3 and conclude the paper in Section 4.

2 Counter Implication Restart (CIR)

Existing restart policies only implement the restarting of the search from the
beginning without changing anything. In many cases, this is sufficient to enable
an escape from wrong branches. However, in some instances there are desert
search spaces [1] where neither the solution nor the useful learnt clause exists.
For such cases, it is difficult for SAT solvers to escape from these desert search
spaces with a standard restart. Therefore, it is necessary to change the search
activity after the restart drastically. CIR is a novel restart policy that consists of
a standard restart and bumping the VSIDS scores to change the decision order
after the restart. CIR traverses the implication graph [9] just before the restart,
focusing on the indegrees of the variables.

A variable with a large indegree implies that this variable used to be the unit
variable in a large clause. Let us consider the transformation from CSP to SAT.
Suppose a variable a in the original CSP instance has a domain between 1 to n
(1 ≤ a ≤ n), and its corresponding Boolean variables in the SAT instance are
a1, a2, ..., an. There are clauses,

∏
1≤i<j≤n(¬ai ∨ ¬aj), that ensure at-most-one

(AMO) constraint. In addition, there is one clause, (a1∨a2∨ ...an), that ensures
at-least-one (ALO) constraint. In this setting, if any variables other than a are
assigned to certain values and it causes the ALO clause for a to be unit clause
by other constraints, such that only a variable ak(1 ≤ k ≤ n) is not assigned and
the others are assigned to false, then ak has n − 1 indegrees in the implication
graph. Such variables like a are focused on by CIR and they are selected as
decision-variables at early depth of the search tree. Before the execution of CIR,
the assignments of such variables are forced by the values of other variables.
However after CIR, they contribute early branching, and intuitively it enables
the change of the search space.

The C-language-like pseudo code of the function of CIR is shown below. This
function is called before the restart routine.

1. int run_count = 0;

2. CounterImplicationRestart() begin

3. if (run_count++ % INTERVAL > 0)

4. int indegree[nVar] = {0};

5. int max_indegree = 0;

6. [calculate indegree for each variable and max_indegree]

7. for each variable var

8. bumpScore(var, BUMP_RATIO * indegree[var] / max_indegree);

9. restart();

10. end

The variable “run count” stands for the number of times this function is
executed. The main part of the function is run for every “INTERVAL” restart. In
the seventh and eighth lines, all the VSIDS scores of the variables are bumped in
proportion to their indegrees. To bump the VSIDS score drastically, the constant
number of the “BUMP RATIO” needs to be relatively large. So far, we have
confirmed that the performance of CIR depends on the value of “INTERVAL”
[8]. Fig. 1 shows the experimental result of various “INTERVAL” and fixed
“BUMP RATIO” using 200 instances from SAT Race 2008. From this result,
We have found that small “INTERVAL” such as 3 is relatively better and it
affects the total performance.

In the SAT Competition 2011, in the application category, we submitted Min-
iSAT 2.2 [7] with CIR, and won a gold medal in the minisat-hack track and a sil-
ver medal in the satisfiable problem track. Our solver could solve 202 instances in
total - eight more than the original MiniSAT 2.2. The source code of this solver is
available at http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-sources.tar.gz.

3 Experimental Results

We conducted experiments to confirm the performance of CIR for parallel solvers.
In these experiments, the number of threads was set to four. As the first step,
we implemented parallel settings of MiniSAT 2.2, called “para minisat2.2”, by
using OpenMP. We modified the base number of Luby restart and the initial
VSIDS scores of the variables for “para minisat2.2”, and added the function of
learnt clause sharing. Then, we added the CIR top to “para minisat2.2”, called
“para cir minisat”. Three of the four threads used the CIR (the other ran as the
default MiniSAT 2.2). In consideration of the previous results [8], the value of
“INTERVAL” was set to 1, 2 and 3 respectively, and the “BUMP RATIO” was
fixed to 10000 for all of them.

The experiments were conducted on a Linux machine with an Intel Xeon
quad-core CPU, running at 2.67 GHz and 24 GB of RAM. The benchmarks
were 200 instances from SAT Race 2010. Timeout was set to 5000 seconds.
We used six solvers: “para minisat2.2”, “para cir minisat”, the latest version of
Cryptominisat (denoted as “cryptominisat2.9.1”), the latest version of Plingeling
(denoted as “plingeling276”), MiniSAT 2.2 in single thread (denoted as “min-
isat2.2 single”), and MiniSAT 2.2 with CIR whose “INTERVAL” is 3 in single
thread (denoted as “cir minisat single”).

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

CIR_(INTERVAL=1_BUMP=10000)
CIR_(INTERVAL=3_BUMP=10000)
CIR_(INTERVAL=5_BUMP=10000)

CIR_(INTERVAL=10_BUMP=10000)
MINISAT_2.2

Fig. 1. The experimental result of various “INTERVAL” using 200 instances from SAT
Race 2008.

The results are shown in Fig. 2 as a cactus plot and Table 1. Despite the naive
and minimum configuration for parallel searching, “para minisat2.2” provided
good performance. In addition, “cir minisat single” is competitive with parallel
solvers. The proposed solver, “para cir minisat” displayed relatively better per-
formance than both “cryptominisat2.9.1” and “plingeling276”, which won the
first and second places in the SAT Competition 2011. This result indicates that
CIR can also work in a parallel context and that CIR encourages the diversifi-
cation of search activity in a portfolio approach.

4 Conclusion

CIR can convert the search space drastically after a restart. We propose the
adaptation of CIR for parallel solvers in order to achieve good diversification.
Experimental results show that CIR performed well for parallel settings, even
though only simple functions were implemented. The vigorous conversion of the
decision-order by CIR accelerates the diversification of search spaces. As future
work, we will consider learnt clause sharing, such as clause length control [3] and
arrange the scoring system of VSIDS so that it combines better with CIR.

Fig. 2. The cactus plot of the experimental result using 200 instances from SAT Race
2010.

5 Acknowledgment

We appreciate the insightful comments from the reviewers in LION 6.

References

1. James M. Crawford and Andrew B. Baker. Experimental results on the application
of satisfiability algorithms to scheduling problems. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pp. 1092–1097, 1994.

2. Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Diversification and
intensification in parallel sat solving. In Proceedings of the 16th international con-
ference on Principles and practice of constraint programming, CP’10, pp. 252–265,
Berlin, Heidelberg, 2010. Springer-Verlag.

3. Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Control-based clause sharing in
parallel sat solving. In Proceedings of the 21st international joint conference on Ar-
tificial intelligence, pp. 499–504, San Francisco, CA, USA, 2009. Morgan Kaufmann
Publishers Inc.

4. Youssef Hamadi and Lakhdar Sais. Manysat: a parallel sat solver. Journal on
Satisfiability, Boolean Modeling and Computation (JSAT), 2009.

Table 1. The number of solved instances for each solver.

SAT UNSAT total

cryptominisat2.9.1 65 116 181

plingeling276 70 111 181

para cir minisat 69 115 184

para minisat2.2 69 111 180

minisat2.2 single 66 106 172

cir minisat single 70 111 181

5. Jinbo Huang. The effect of restarts on the efficiency of clause learning. Proceedings
of the International Joint Conference on Artificial Intelligence, pp. 2318–2323, 2007.

6. Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme
for satisfiability solvers. Proceedings of 10th International Conference on Theory and
Applications of Satisfiability Testing(SAT), pp. 294–299, 2007.

7. Niklas Sorensson. Minisat 2.2 and minisat++ 1.1. A short description in SAT Race
2010, 2010.

8. Mary Inaba Tomohiro Sonobe and Ayumu Nagai. Counter implication restart. In
Pragmatics of SAT 2011, 2011.

9. Lintao Zhang, Conor F. Madigan, and Matthew H. Moskewicz. Efficient conflict
driven learning in a boolean satisfiability solver. In ICCAD, pp. 279–285, 2001.

